Automatic image-based stress analysis by the scaled boundary polytope elements

Size: px
Start display at page:

Download "Automatic image-based stress analysis by the scaled boundary polytope elements"

Transcription

1 Southern Cross University 3rd Australasian Conference on the Mechanics of Structures and Materials 14 Automatic image-based stress analysis by the scaled boundary polytope elements Chongmin Song University of New South Wales Publication details Song, C 14, 'Automatic image-based stress analysis by the scaled boundary polytope elements', in ST Smith (ed.), 3rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM3), vol. II, Byron Bay, NSW, 9-1 December, Southern Cross University, Lismore, NSW, pp ISBN: epublications@scu is an electronic repository administered by Southern Cross University Library. Its goal is to capture and preserve the intellectual output of Southern Cross University authors and researchers, and to increase visibility and impact through open access to researchers around the world. For further information please contact epubs@scu.edu.au.

2 3rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM3) Byron Bay, Australia, 9-1 December 14, S.T. Smith (Ed.) AUTOMATIC IMAGE-BASED STRESS ANALYSIS BY THE SCALED BOUNDARY POLYTOPE ELEMENTS Chongmin Song* Centre for Infrastructure Engineering & Safety, School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 5, Australia. (Corresponding Author) ABSTRACT Digital imaging technology is increasingly being applied in material, biomedical and other disciplines of engineering and science. Image-based stress analysis provides an attracting way to perform virtual testing of materials and structural analysis. Existing computational methods for stress analysis are developed with computer-aided design (CAD) models as input and are faced with difficulties, e.g. in mesh generation, when handing digital images. The paper presents a numerical technique to perform stress analysis directly from a D digital image segmented to its constituent materials. The quadtree algorithm is employed for mesh generation. The quadtree cells are modelled by scaled boundary polytope elements, which eliminate the issue of hanging nodes faced by standard finite elements. The whole analysis is fully automated. A numerical example is presented to demonstrate the high efficiency of the proposed technique for the analysis of high-definition images. KEYWORDS Scaled boundary finite element method, quadtree algorithm, octree algorithm, image-based analysis. INTRODUCTION The advances in the area of computational mechanics have transformed how analysis and design of engineering structures are carried out in practice. Nowadays, commercial computer software based on the finite element method (FEM) is routinely used in engineering practice. One of the key steps in the finite element analysis (FEA) of a complex structure is the mesh generation starting from, typically, a computer-aided design (CAD) model. This task is performed by numerical analysts with the aid of mesh generation software. Digital imaging technology has undergone rapid progress and is increasingly used in structural and material engineering. For example, digital images of microstructure of concrete specimens obtained by X-ray computed tomography (XCT) offers in-depth understanding of its material behaviour that would otherwise be difficult to observe (Ren, 13). In digital images, the internal structure of a material is segmented into different phases represented by the gray level of the image. Owing to the difference with CAD models in data format, existing technology for automatic mesh generation becomes often inadequate for high-fidelity analysis. The simplest approach to generate a finite element mesh from a digital image is to model each voxel as a finite element (Hollister and Kikuchi, 1994; Huang and Li, 13). However, this results in a huge number of elements for high-resolution images (a 3D image of 14 voxels in each direction has 14 3, i.e. more than 1 billion, voxels) and is not feasible for practical engineering applications. Several more sophisticated approaches exist. One approach is to generate a boundary model (similar to a CAD model) of various phases of the segmented image and use it as an input to a finite element mesh generator (Frey, 4). Another approach is to directly covering the image using triangular elements without explicitly generating a boundary model first This work is licensed under the Creative Commons Attribution 4. International License. To view a copy of this license, visit 81

3 (Langer et al., 1). These approaches necessitate significant user interaction to mesh multi-material images and often involve appreciable simplification of the images. We present the use of scaled boundary polytope elements (Ooi et al. 14) for two-dimensional image-based analysis. The polytope elements can assume the shapes of any star convex polygons in two dimensions and offers greater flexibility in mesh generation than conventional triangular and quadrilateral elements. This feature allows the use of quadtree algorithm for mesh generation without causing displacement incompatibility between quadtree cells of different size. SCALED BOUNDARY POLYTOPE ELEMENTS The scaled boundary polytope elements are constructed using the scaled boundary finite element method (Song and Wolf, 1997). As in the standard finite element method, a complex two-dimensional domain is divided into elements of simple geometry. In the present approach, these elements are starconvex polygons. Only the key concepts and equations for a polytope element are summarised in this paper. The algebraic equations of the global system are obtained by following the finite element procedure of assemblage. A scaled boundary polytope element is shown in Figure 1. It is a star-convex polygon. A scaling centre O is chosen within its kernel from which the entire polygon boundary is visible. The boundary of the polygon is discretized with one-dimensional (line) elements. The larger dots in Figure 1 show the end nodes of the elements. Any type of displacement-based elements can be used. One edge can also be divided into more than one element. The nodal coordinates of a line element are denoted as { x },{ y} and the shape functions are defined in the local coordinate as [ N] [ N( )]. At a point on the boundary, the Cartesian coordinates x x( ) and y y( ) are expressed as x [ N( )]{ x}; y [ N( )]{ y} The polygonal domain is described by scaling the boundary continuously with respect to the scaling centre O. A radial coordinate pointing from the scaling centre to a point on the boundary is introduced (Figure 1) for this purpose. is chosen as at the scaling centre and as 1 on the boundary. The coordinates of a point in the domain xˆ xˆ(, ), yˆ yˆ(, ) is expressed by using Eq. (1) as xˆ x [ N( )]{ x}; yˆ y [ N( )]{ y} where, are called the scaled boundary coordinates. (1) () Figure 1. A polytope element in scaled boundary coordinates Introducing the scaled boundary transformation defined in Eq.(), the governing differential equations for elastostatics with vanishing body force are expressed as (Song and Wolf, 1997) ACMSM3 14 8

4 T { } [ L]{ u} ; { } [ E]{ } ; [ L ] { } (3) with the strains { }, displacements { u} and stresses { }. The differential operator [ L ] is written as 1 1 [ L] [ b ] [ b ] where [ b 1 ] and [ b ] depend on the location of the scaling centre and the boundary geometry only 1 1 [ b ] x, ; J x, y, y 1 x J x y [ b ] y, with the determinant of the Jacobian matrix on the boundary J xy, yx, (6) Along the radial lines passing through the scaling centre O and a node on the boundary, nodal displacement functions { u ( )} are introduced. The displacements at a point (, ) inside the domain are obtained by interpolating the nodal functions { u(, )} [ N( )]{ u( )} (7) Applying the weighted residual technique (Deeks and Wolf, ) in leads to the scaled boundary finite element equation 1 [ E ] { u( )}, ([ E 1 1 T ] [ E ] [ E ] ) { u( )}, [ E ]{ u( )} where [ E ], [ E ] and [ E ] are coefficient matrices assembled from the element matrices with 1 1 T 1 [ E ] [ B ] [ D][ B ] J d; T [ E ] [ B ] [ D][ B ] J d; 1 1 T [ E ] [ B ] [ D][ B ] J d [ B ] [ b ][ N] [ B ] [ b ][ N] The nodal force functions along the radial lines are expressed as 1 { q( )} [ E ] { u( )}, [ E ]{ u( )} (4) (5) (8) (9) (1) (11) Equations (8) and (11) can be solved by using the eigenvalue decomposition 1 1 T 1 [ E ] [ E ] [ E ] [ u] [ u] T 1 1 [ E ] [ E ][ E ] [ E ] [ E ][ E ] [ q] [ q] where only the eigenvalues with the negative real part are retained in, [ u] and [ q ] constitute the eigenvectors. The solutions are expressed as (1) ACMSM

5 { u( )} [ ] { c}; { q( )} [ ] { c} u q where { c } are the integration constants. Eliminating { c } from Eq. (13) leads to the stiffness matrix of the polytope element [ K] [ ][ ] For elasto-plasticity analysis, the reader is referred to Ooi et al. (14). Quadtree Algorithm for Mesh Generation (13) 1 q u (14) The quadtree algorithm for mesh generation is based on the recursive subdivision of cells into four smaller ones of equal size (Samet, 199). A part of a balanced (also called regularized) quadtree mesh, where the ratio between two adjacent cells is limited to, is shown in Figure a as an example. The quadtree data structure allows fast data retrieval and efficient storage. The quadtree mesh provides a simple and efficient technique for nonuniform and adaptive mesh refinement. However, a hanging node appears when two adjacent quadtree cells are at different levels as indicated by the solid squares. When standard finite elements are used, the displacements become incompatible across the edges with a hanging node, which greatly hinders the application of quadtree mesh in the finite element method. a) b) Figure. a) Quadtree mesh; b) Quadtree cells modeled as scaled boundary polytope elements where the numbers in circle are the line element numbers on the edges The scaled boundary polytope elements overcome the issue of displacement incompatibility by modeling an edge with a hanging node as two line elements as illustrated in Figure b. No special treatments are necessary. Owing to the structure of a quadtree mesh, only the six types of cells in Figure b exist. The quadtree algorithm is ideally suited to process digital images. As a part of its Image Processing Toolbox, MATLAB provides a function qtdecomp. This function performs a quadtree decomposition of an image according to a criterion of homogeneity. To reduce the number of unique elements to the six shown in Figure b, the quadtree decomposition is balanced, i.e., enforcing the :1 ratio between adjacent quadtree cells. A mesh of scaled boundary polytope elements can be easily generated from the balanced quadtree decomposition. The whole mesh generation process is fully automatic. NUMERICAL EXAMPLE A digital image (Figure 3) reported in Ren et al. (13) is analysed as an example to illustrate the digital based analysis by the scaled boundary polytope element. The image is obtained from an in-situ microscale X-ray Computed Tomography test. The image size of the concrete specimen is 37 by 37. Each pixel represents.1mm by.1mm. The black phase represents aggregates, the gray phase mortar ACMSM

6 and the white phase voids. The Young s modulus of the aggregates and mortar are 7GPa and 5 GPa, respectively. The Poisson s ratio is equal to. for both the aggregates and mortar. Figure 3. Digital image of concrete specimen (37x37 pixels) A quadtree mesh is shown in Figure 4a. The materials are assigned to the elements based on the gray level. The size of the smallest polytope elements is chosen as 1 pixel and, thus, the full resolution of the image is perserved. The enlarged view around a void is illustrated in Figure 4b. The smallest elements concentrate around the material interfaces. Within the aggregates and mortar, larger elements present. This reduces the number of elements and degrees of freedom in the system. a) b) Figure 4. Quadtree mesh of concrete specimen. The size of the smallest elements is 1 pixel: a) Global mesh; b) Enlarged view around a void In this preliminary study, an elastic analysis of the concrete specimen under uniaxial tension is performed. The vertical displacement is constrained at the bottom of the specimen. A vertical displacement leading to an average strain of 1 5 is prescribed at the top of the specimen. The tensile principal stresses developed in the aggregates and mortar are depicted in Figure 5. Overall, the stresses in aggregates are higher than the stresses in mortar as the former is stiffer. The highest stresses occur mostly in slender aggregates and in mortar and aggregates surrounding the voids. The equivalent Young s modulus of the concrete specimen is determined as 39.6GPa. The proposed image based analysis technique is not only automatic, eliminating the human effort in mesh generation, but also computationally very efficient. The computer time is measured on a laptop computer with an i7-35m CPU. The computer code is written in MATLAB. It takes about 1.6s to create the numerical model (generating mesh, enforcing boundary conditions, etc.), 1.6s to perform the analysis to obtain nodal displacements and 3s for stress calculation and graphical output. ACMSM

7 a) b) Figure 5. Tensile principal stresses (MPa) in: a) Aggregates; b) Mortar.1.1 CONCLUSIONS An automatic procedure for D image-based analysis is presented. This technique combines the quadtree algorithm for mesh generation, which is fully automatic and highly efficient, and the scaled boundary polytope elements for stress analysis, which satisfies compatibility across edges connecting quadtree cells of different size. A numerical example is presented to demonstrate its simplicity and efficiency. Further research on extending this technique to 3D analysis, elasto-plasticity and damage mechanics is in progress. REFERENCES Deeks, A. J. and Wolf, J. P. (). A virtual work derivation of the scaled boundary finite-element method for elastostatics. Computation Mechanics, Vol. 8, pp Frey, P. J. (4). Generation and adaptation of computational surface meshes from discrete anatomical data, International Journal for Numerical Methods in Engineering, Vol. 6, pp Hollister, S. J. and Kikuchi, N. (1994). Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue, Biotechnology and Bioengineering, Vol. 43, pp Huang, M. and Li, Y. M. (13). X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials, Computational Materials Science, Vol. 67, pp Langer, S. A., Fuller Jr., E. R. and Carter, W. C. (1). OOF: an image-based finite-element analysis of material microstructures. Computing in Science & Engineering, Vol. 3, pp Ooi, E. T., Song, C. and Tin-Loi, F. (14). A scaled boundary polygon formulation for elasto-plastic analyses, Computer Methods in Applied Mechanics and Engineering, Vol. 68, pp Ren, W., Yang, Z.J. and Withers, P. (13) Meso-scale fracture modelling of concrete based on X-ray computed tomography images, Proceedings of the 5th Asia Pacific Congress on Computational Mechanics, Singapore, 11-14th December 13. Samet, H. (199). Application of Spatial Data Structure, Addison-Wesley, New York, NY. Song, C. and Wolf, J. P. (1997). The scaled boundary finite-element method alias consistent infinitesimal finite-element cell method for elastodynamics. Computer Methods in Applied Mechanics and Engineering, Vol. 147, pp ACMSM

Numerical modelling of seismic waves using imageprocessing

Numerical modelling of seismic waves using imageprocessing Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Numerical modelling of seismic waves using imageprocessing and quadtree meshes

More information

STRESS ANALYSIS OF CONCRETE MATERIAL BASED ON GEOMETRICALLY ACCURATE FINITE ELEMENT MODELING

STRESS ANALYSIS OF CONCRETE MATERIAL BASED ON GEOMETRICALLY ACCURATE FINITE ELEMENT MODELING Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICATIO Publishers, D-79104 Freiburg, Gennany STRESS ANALYSIS OF CONCRETE MATERIAL BASED ON GEOMETRICALLY ACCURATE FINITE ELEMENT MODELING

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

An explicit feature control approach in structural topology optimization

An explicit feature control approach in structural topology optimization th World Congress on Structural and Multidisciplinary Optimisation 07 th -2 th, June 205, Sydney Australia An explicit feature control approach in structural topology optimization Weisheng Zhang, Xu Guo

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

Transient analysis of wave propagation in 3D soil by using the scaled boundary finite element method

Transient analysis of wave propagation in 3D soil by using the scaled boundary finite element method Southern Cross University epublications@scu 23r Australasian Conference on the Mechanics of Structures an Materials 214 Transient analysis of wave propagation in 3D soil by using the scale bounary finite

More information

Modeling Flexibility with Spline Approximations for Fast VR Visualizations

Modeling Flexibility with Spline Approximations for Fast VR Visualizations Modeling Flexibility with Spline Approximations for Fast VR Visualizations Abstract: Kevin Tatur a and Renate Sitte a a Faculty of Engineering and Information Technology, Griffith University, Gold Coast,

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Eduardo Luís Gaertner Marcos Giovani Dropa de Bortoli EMBRACO S.A. Abstract A linear elastic model is often not appropriate

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction GTU Paper Analysis (New Syllabus) Sr. No. Questions 26/10/16 11/05/16 09/05/16 08/12/15 Theory 1. What is graphic standard? Explain different CAD standards. 2. Write Bresenham s

More information

ME 345: Modeling & Simulation. Introduction to Finite Element Method

ME 345: Modeling & Simulation. Introduction to Finite Element Method ME 345: Modeling & Simulation Introduction to Finite Element Method Examples Aircraft 2D plate Crashworthiness 2 Human Heart Gears Structure Human Spine 3 F.T. Fisher, PhD Dissertation, 2002 Fluid Flow

More information

Finite element algorithm with adaptive quadtree-octree mesh refinement

Finite element algorithm with adaptive quadtree-octree mesh refinement ANZIAM J. 46 (E) ppc15 C28, 2005 C15 Finite element algorithm with adaptive quadtree-octree mesh refinement G. P. Nikishkov (Received 18 October 2004; revised 24 January 2005) Abstract Certain difficulties

More information

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 113 CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 6.1 INTRODUCTION Superplastic properties are exhibited only under a narrow range of strain rates. Hence, it

More information

NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD)

NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD) NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD) NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES (LINEAR ELASTICITY AND THE FINITE ELEMENT METHOD) Author: Tamás

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks Computer Life (CPL) ISSN: 1819-4818 Delivering Quality Science to the World Finite Element Analysis of Bearing Box on SolidWorks Chenling Zheng 1, a, Hang Li 1, b and Jianyong Li 1, c 1 Shandong University

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

FEMORAL STEM SHAPE DESIGN OF ARTIFICIAL HIP JOINT USING A VOXEL BASED FINITE ELEMENT METHOD

FEMORAL STEM SHAPE DESIGN OF ARTIFICIAL HIP JOINT USING A VOXEL BASED FINITE ELEMENT METHOD FEMORAL STEM SHAPE DESIGN OF ARTIFICIAL HIP JOINT USING A VOXEL BASED FINITE ELEMENT METHOD Taiji ADACHI *, Hiromichi KUNIMOTO, Ken-ichi TSUBOTA #, Yoshihiro TOMITA + Graduate School of Science and Technology,

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

First Order Analysis for Automotive Body Structure Design Using Excel

First Order Analysis for Automotive Body Structure Design Using Excel Special Issue First Order Analysis 1 Research Report First Order Analysis for Automotive Body Structure Design Using Excel Hidekazu Nishigaki CAE numerically estimates the performance of automobiles and

More information

Global and clustered approaches for stress constrained topology optimization and deactivation of design variables

Global and clustered approaches for stress constrained topology optimization and deactivation of design variables th World Congress on Structural and Multidisciplinary Optimization May 9-24, 23, Orlando, Florida, USA Global and clustered approaches for stress constrained topology optimization and deactivation of design

More information

Exam paper: Numerical Analysis of Continua I

Exam paper: Numerical Analysis of Continua I Exam paper: Numerical Analysis of Continua I Tuesday April th:. - 2. Code: 8W3, BMT 3. Biomedical Technology Eindhoven University of Technology This is an open book exam. It comprises questions. The questions

More information

Effectiveness of Element Free Galerkin Method over FEM

Effectiveness of Element Free Galerkin Method over FEM Effectiveness of Element Free Galerkin Method over FEM Remya C R 1, Suji P 2 1 M Tech Student, Dept. of Civil Engineering, Sri Vellappaly Natesan College of Engineering, Pallickal P O, Mavelikara, Kerala,

More information

IMPROVED MESOSCALE MATERIAL PROPERTY BOUNDS BASED ON VORONOI TESSELLATION OF STATISTICAL VOLUME ELEMENTS

IMPROVED MESOSCALE MATERIAL PROPERTY BOUNDS BASED ON VORONOI TESSELLATION OF STATISTICAL VOLUME ELEMENTS Meccanica dei Materiali e delle Strutture Vol. VI (216), no.1, pp. 179-186 ISSN: 235-679X Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, Dei Materiali DICAM IMPROVED MESOSCALE MATERIAL PROPERTY

More information

Shape optimization of free-form shells consisting of developable surfaces

Shape optimization of free-form shells consisting of developable surfaces 26 30 September, 2016, Tokyo, Japan K. Kawaguchi, M. Ohsaki, T. Takeuchi (eds.) Shape optimization of free-form shells consisting of developable surfaces Kengo NAKAMURA*, Makoto OHSAKI a, Jinglan CUI b

More information

ITERATIVE LIMIT ANALYSIS OF STRUCTURES WITHIN A SCALED BOUNDARY FINITE ELEMENT FRAMEWORK

ITERATIVE LIMIT ANALYSIS OF STRUCTURES WITHIN A SCALED BOUNDARY FINITE ELEMENT FRAMEWORK Iterative limit analysis of structures within a scaled boundary finite element framework XIII International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XIII A. Mellati,

More information

Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket

Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket RESEARCH ARTICLE OPEN ACCESS Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket Gowtham K L*, Shivashankar R. Srivatsa** *(Department of Mechanical Engineering, B. M.

More information

The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix Journal of Physics: Conference Series The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix To cite this article: Jeong Soo

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Introduction to Finite Element Analysis using ANSYS

Introduction to Finite Element Analysis using ANSYS Introduction to Finite Element Analysis using ANSYS Sasi Kumar Tippabhotla PhD Candidate Xtreme Photovoltaics (XPV) Lab EPD, SUTD Disclaimer: The material and simulations (using Ansys student version)

More information

Available from Deakin Research Online:

Available from Deakin Research Online: Deakin Research Online Deakin University s institutional research repository DDeakin Research Online Research Online This is the published version (version of record) of: Xiang, Yang and Zhou, Wanlei 2002,

More information

FINITE ELEMENT ANALYSIS PROGRAM OF FRAMES

FINITE ELEMENT ANALYSIS PROGRAM OF FRAMES FINITE EEMENT ANAYSIS PROGRAM OF FRAMES Monica V. Pathak 1, Asst. Prof. G. B. Bhaskar 2 1 Student, M.Tech, 2 Associate Professor Department of Civil Engineering, G. H. Raisoni Academy of Engineering &

More information

Fatigue Crack Growth Simulation using S-version FEM

Fatigue Crack Growth Simulation using S-version FEM Copyright c 2008 ICCES ICCES, vol.8, no.2, pp.67-72 Fatigue Crack Growth Simulation using S-version FEM M. Kikuchi 1,Y.Wada 2, A. Utsunomiya 3 and Y. Li 4 Summary Fatigue crack growth under mixed mode

More information

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY J. Sauvé 1*, M. Dubé 1, F. Dervault 2, G. Corriveau 2 1 Ecole de technologie superieure, Montreal, Canada 2 Airframe stress, Advanced Structures,

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

Embedded Reinforcements

Embedded Reinforcements Embedded Reinforcements Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of embedded reinforcements in DIANA. Basic assumptions and definitions, the pre-processing

More information

INTERIOR POINT METHOD BASED CONTACT ALGORITHM FOR STRUCTURAL ANALYSIS OF ELECTRONIC DEVICE MODELS

INTERIOR POINT METHOD BASED CONTACT ALGORITHM FOR STRUCTURAL ANALYSIS OF ELECTRONIC DEVICE MODELS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Topology Optimization of Two Linear Elastic Bodies in Unilateral Contact

Topology Optimization of Two Linear Elastic Bodies in Unilateral Contact 2 nd International Conference on Engineering Optimization September 6-9, 2010, Lisbon, Portugal Topology Optimization of Two Linear Elastic Bodies in Unilateral Contact Niclas Strömberg Department of Mechanical

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

An Iterative Convex Optimization Procedure for Structural System Identification

An Iterative Convex Optimization Procedure for Structural System Identification An Iterative Convex Optimization Procedure for Structural System Identification Dapeng Zhu, Xinjun Dong, Yang Wang 3 School of Civil and Environmental Engineering, Georgia Institute of Technology, 79 Atlantic

More information

Beams. Lesson Objectives:

Beams. Lesson Objectives: Beams Lesson Objectives: 1) Derive the member local stiffness values for two-dimensional beam members. 2) Assemble the local stiffness matrix into global coordinates. 3) Assemble the structural stiffness

More information

RELIABILITY OF THE FEM CALCULATIONS OF THE FRACTURE MECHANICS PARAMETERS

RELIABILITY OF THE FEM CALCULATIONS OF THE FRACTURE MECHANICS PARAMETERS International Conference on Economic Engineering and Manufacturing Systems Braşov, 26 27 November 2009 RELIABILITY OF THE FEM CALCULATIONS OF THE FRACTURE MECHANICS PARAMETERS Galina TODOROVA, Valentin

More information

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA DYNAMIC SIMULATION USING LS-DYNA CHAPTER-10 10.1 Introduction In the past few decades, the Finite Element Method (FEM) has been developed into a key indispensable technology in the modeling and simulation

More information

IJMH - International Journal of Management and Humanities ISSN:

IJMH - International Journal of Management and Humanities ISSN: EXPERIMENTAL STRESS ANALYSIS SPUR GEAR USING ANSYS SOFTWARE T.VADIVELU 1 (Department of Mechanical Engineering, JNTU KAKINADA, Kodad, India, vadimay28@gmail.com) Abstract Spur Gear is one of the most important

More information

Optimal selection of topologies for the minimum-weight design of continuum structures with stress constraints

Optimal selection of topologies for the minimum-weight design of continuum structures with stress constraints 755 Optimal selection of topologies for the minimum-weight design of continuum structures with stress constraints Q Q Liang1*, Y M Xie1 and G P Steven2 1School of the Built Environment, Victoria University

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

Abaqus CAE Tutorial 6: Contact Problem

Abaqus CAE Tutorial 6: Contact Problem ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 6: Contact Problem Problem Description In this problem, a segment of an electrical contact switch (steel) is modeled by displacing the upper

More information

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2014, 5(1):150-155 ISSN: 0976-8610 CODEN (USA): AASRFC A numerical grid and grid less (Mesh less) techniques for

More information

CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007

CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007 CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007 FE Project 1: 2D Plane Stress Analysis of acantilever Beam (Due date =TBD) Figure 1 shows a cantilever beam that is subjected to a concentrated

More information

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

Nodal Integration Technique in Meshless Method

Nodal Integration Technique in Meshless Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 1 Ver. IV (Feb. 2014), PP 18-26 Nodal Integration Technique in Meshless Method Ahmed MJIDILA

More information

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections Dawit Hailu +, Adil Zekaria ++, Samuel Kinde +++ ABSTRACT After the 1994 Northridge earthquake

More information

Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements

Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements G. P. Nikishkov University of Aizu, Aizu-Wakamatsu 965-8580, Japan niki@u-aizu.ac.jp http://www.u-aizu.ac.jp/ niki Abstract. This

More information

Assignment in The Finite Element Method, 2017

Assignment in The Finite Element Method, 2017 Assignment in The Finite Element Method, 2017 Division of Solid Mechanics The task is to write a finite element program and then use the program to analyse aspects of a surface mounted resistor. The problem

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation 3D Finite Element Software for Cracks Version 3.2 Benchmarks and Validation October 217 1965 57 th Court North, Suite 1 Boulder, CO 831 Main: (33) 415-1475 www.questintegrity.com http://www.questintegrity.com/software-products/feacrack

More information

Simulation of rotation and scaling algorithm for numerically modelled structures

Simulation of rotation and scaling algorithm for numerically modelled structures IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Simulation of rotation and scaling algorithm for numerically modelled structures To cite this article: S K Ruhit et al 2018 IOP

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

Calibration of Nonlinear Viscoelastic Materials in Abaqus Using the Adaptive Quasi-Linear Viscoelastic Model

Calibration of Nonlinear Viscoelastic Materials in Abaqus Using the Adaptive Quasi-Linear Viscoelastic Model Calibration of Nonlinear Viscoelastic Materials in Abaqus Using the Adaptive Quasi-Linear Viscoelastic Model David B. Smith *, Uday Komaragiri **, and Romil Tanov ** ** * Ethicon Endo-Surgery, Inc., Cincinnati,

More information

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems 2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems Choon Ki Ahn, Jung Hun Park, and Wook Hyun Kwon 1 Abstract CEMTool is a command style design and analyzing package for scientific

More information

An optimization method for generating self-equilibrium shape of curved surface from developable surface

An optimization method for generating self-equilibrium shape of curved surface from developable surface 25-28th September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.) An optimization method for generating self-equilibrium shape of curved surface from developable surface Jinglan CI *, Maoto

More information

Configuration Optimization of Anchoring Devices of Frame-Supported Membrane Structures for Maximum Clamping Force

Configuration Optimization of Anchoring Devices of Frame-Supported Membrane Structures for Maximum Clamping Force 6 th China Japan Korea Joint Symposium on Optimization of Structural and Mechanical Systems June 22-25, 200, Kyoto, Japan Configuration Optimization of Anchoring Devices of Frame-Supported Membrane Structures

More information

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Vol 4 No 3 NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Ass Lecturer Mahmoud A Hassan Al-Qadisiyah University College of Engineering hasaaneng@yahoocom ABSTRACT This paper provides some lighting

More information

A meshfree weak-strong form method

A meshfree weak-strong form method A meshfree weak-strong form method G. R. & Y. T. GU' 'centre for Advanced Computations in Engineering Science (ACES) Dept. of Mechanical Engineering, National University of Singapore 2~~~ Fellow, Singapore-MIT

More information

Computational methods - modelling and simulation

Computational methods - modelling and simulation Computational methods - modelling and simulation J. Pamin With thanks to: Authors of presented simulations C.A. Felippa (Univ. of Colorado at Boulder) www.colorado.edu/engineering/cas/courses.d/ifem.d

More information

A Finite Element Method for Deformable Models

A Finite Element Method for Deformable Models A Finite Element Method for Deformable Models Persephoni Karaolani, G.D. Sullivan, K.D. Baker & M.J. Baines Intelligent Systems Group, Department of Computer Science University of Reading, RG6 2AX, UK,

More information

SSR Polygonal Search Area

SSR Polygonal Search Area SSR Polygonal Search Area 22-1 SSR Polygonal Search Area In this tutorial, Phase2 is used to determine the factor of safety of a slope using the shear strength reduction (SSR) method. The SSR Polygon Search

More information

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 Pavel SOLFRONK a, Jiří SOBOTKA a, Pavel DOUBEK a, Lukáš ZUZÁNEK a a TECHNICAL UNIVERSITY OF LIBEREC,

More information

studying of the prying action effect in steel connection

studying of the prying action effect in steel connection studying of the prying action effect in steel connection Saeed Faraji Graduate Student, Department of Civil Engineering, Islamic Azad University, Ahar Branch S-faraji@iau-ahar.ac.ir Paper Reference Number:

More information

DETERMINATION OF THE SIZE OF REPRESENTATIVE VOLUME ELEMENTS FOR DISCONTINUOUS FIBRE COMPOSITES

DETERMINATION OF THE SIZE OF REPRESENTATIVE VOLUME ELEMENTS FOR DISCONTINUOUS FIBRE COMPOSITES 1 Introduction DETERMINATION OF THE SIZE OF REPRESENTATIVE VOLUME ELEMENTS FOR DISCONTINUOUS FIBRE COMPOSITES C. Qian, L.T. Harper*, T. A. Turner, S. Li, N. A. Warrior Division of Mechanics, Materials

More information

lecture 8 Groundwater Modelling -1

lecture 8 Groundwater Modelling -1 The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Water Resources Msc. Groundwater Hydrology- ENGC 6301 lecture 8 Groundwater Modelling -1 Instructor: Dr. Yunes Mogheir

More information

Hexahedral Mesh Refinement Using an Error Sizing Function

Hexahedral Mesh Refinement Using an Error Sizing Function Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-06-01 Hexahedral Mesh Refinement Using an Error Sizing Function Gaurab Paudel Brigham Young University - Provo Follow this

More information

Recent Developments in Isogeometric Analysis with Solid Elements in LS-DYNA

Recent Developments in Isogeometric Analysis with Solid Elements in LS-DYNA Recent Developments in Isogeometric Analysis with Solid Elements in LS-DYNA Liping Li David Benson Attila Nagy Livermore Software Technology Corporation, Livermore, CA, USA Mattia Montanari Nik Petrinic

More information

course outline basic principles of numerical analysis, intro FEM

course outline basic principles of numerical analysis, intro FEM idealization, equilibrium, solutions, interpretation of results types of numerical engineering problems continuous vs discrete systems direct stiffness approach differential & variational formulation introduction

More information

VOLCANIC DEFORMATION MODELLING: NUMERICAL BENCHMARKING WITH COMSOL

VOLCANIC DEFORMATION MODELLING: NUMERICAL BENCHMARKING WITH COMSOL VOLCANIC DEFORMATION MODELLING: NUMERICAL BENCHMARKING WITH COMSOL The following is a description of the model setups and input/output parameters for benchmarking analytical volcanic deformation models

More information

Evaluating usability of screen designs with layout complexity

Evaluating usability of screen designs with layout complexity Southern Cross University epublications@scu Southern Cross Business School 1995 Evaluating usability of screen designs with layout complexity Tim Comber Southern Cross University John R. Maltby Southern

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

Chapter 5 Modeling and Simulation of Mechanism

Chapter 5 Modeling and Simulation of Mechanism Chapter 5 Modeling and Simulation of Mechanism In the present study, KED analysis of four bar planar mechanism using MATLAB program and ANSYS software has been carried out. The analysis has also been carried

More information

Reasoning Boolean Operation for Modeling, Simulation and Fabrication of Heterogeneous Objects. Abstract

Reasoning Boolean Operation for Modeling, Simulation and Fabrication of Heterogeneous Objects. Abstract Reasoning Boolean Operation for Modeling, Simulation and Fabrication of Heterogeneous Objects X. Hu, T. Jiang, F. Lin, and W. Sun Department of Mechanical Engineering and Mechanics, Drexel University,

More information

ASSIGNMENT 1 INTRODUCTION TO CAD

ASSIGNMENT 1 INTRODUCTION TO CAD Computer Aided Design(2161903) ASSIGNMENT 1 INTRODUCTION TO CAD Theory 1. Discuss the reasons for implementing a CAD system. 2. Define computer aided design. Compare computer aided design and conventional

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

FINITE ELEMENT MODELLING AND ANALYSIS OF WORKPIECE-FIXTURE SYSTEM

FINITE ELEMENT MODELLING AND ANALYSIS OF WORKPIECE-FIXTURE SYSTEM FINITE ELEMENT MODELLING AND ANALYSIS OF WORKPIECE-FIXTURE SYSTEM N. M. KUMBHAR, G. S. PATIL, S. S. MOHITE & M. A. SUTAR Dept. of Mechanical Engineering, Govt. College of Engineering, Karad, Dist- Satara,

More information

Comparative Study of Topological Optimization of Beam and Ring Type Structures under static Loading Condition

Comparative Study of Topological Optimization of Beam and Ring Type Structures under static Loading Condition Comparative Study of Topological Optimization of Beam and Ring Type Structures under static Loading Condition Vani Taklikar 1, Anadi Misra 2 P.G. Student, Department of Mechanical Engineering, G.B.P.U.A.T,

More information

INTRODUCTION TO CAD/CAM SYSTEMS IM LECTURE HOURS PER WEEK PRESENTIAL

INTRODUCTION TO CAD/CAM SYSTEMS IM LECTURE HOURS PER WEEK PRESENTIAL COURSE CODE INTENSITY MODALITY CHARACTERISTIC PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE INTRODUCTION TO CAD/CAM SYSTEMS IM0242 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 96 HOURS

More information

ScienceDirect. Vibration Response Prediction of the Printed Circuit Boards using Experimentally Validated Finite Element Model

ScienceDirect. Vibration Response Prediction of the Printed Circuit Boards using Experimentally Validated Finite Element Model Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 144 (2016 ) 576 583 12th International Conference on Vibration Problems, ICOVP 2015 Vibration Response Prediction of the Printed

More information

AN IMPROVED METHOD TO MODEL SEMI-ELLIPTICAL SURFACE CRACKS USING ELEMENT MISMATCH IN ABAQUS

AN IMPROVED METHOD TO MODEL SEMI-ELLIPTICAL SURFACE CRACKS USING ELEMENT MISMATCH IN ABAQUS AN IMPROVED METHOD TO MODEL SEMI-ELLIPTICAL SURFACE CRACKS USING ELEMENT MISMATCH IN ABAQUS R. H. A. Latiff and F. Yusof School of Mechanical Engineering, UniversitiSains, Malaysia E-Mail: mefeizal@usm.my

More information

3D Numerical Analysis of an ACL Reconstructed Knee

3D Numerical Analysis of an ACL Reconstructed Knee 3D Numerical Analysis of an ACL Reconstructed Knee M. Chizari, B. Wang School of Engineering, University of Aberdeen, Aberdeen AB24 7QW, UK Abstract: Numerical methods applicable to the tibia bone and

More information

Smooth finite elements

Smooth finite elements Smooth finite elements seamless handling of incompressibility, distorted and polygonal meshes; links with equilibrium methods Stéphane Bordas * Nguyen-Xuan Hung ** Nguyen-Dang Hung *** * University of

More information

Computer modelling and simulation of the mechanical response of composite lattice structures

Computer modelling and simulation of the mechanical response of composite lattice structures 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Computer modelling and simulation of the mechanical response of composite

More information

Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417

Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417 Introduction Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417 Most finite element analysis tasks involve utilizing commercial software, for which you do not have the source code. Thus,

More information

Introduction to Design Optimization

Introduction to Design Optimization Introduction to Design Optimization First Edition Krishnan Suresh i Dedicated to my family. They mean the world to me. ii Origins of this Text Preface Like many other textbooks, this text has evolved from

More information

Finite Element Modeling and Failure Analysis of Roll Bending. Forming of GLARE Laminates

Finite Element Modeling and Failure Analysis of Roll Bending. Forming of GLARE Laminates Finite Element Modeling and Failure Analysis of Roll Bending Forming of GLARE Laminates Jingming Tian, Gang Tao, Cheng Liu, Huaguan Li, Xian Zhang, Jie Tao* College of Materials Science and Technology,

More information

Optimization of Crane Cross Sectional

Optimization of Crane Cross Sectional 0Tboom), IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 7, July 2017 ISSN (Online) 2348 7968 Impact Factor (2016) 5.264 www.ijiset.com Optimization of Crane

More information

Effect of Subdivision of Force Diagrams on the Local Buckling, Load-Path and Material Use of Founded Forms

Effect of Subdivision of Force Diagrams on the Local Buckling, Load-Path and Material Use of Founded Forms Proceedings of the IASS Annual Symposium 218 July 16-2, 218, MIT, Boston, USA Caitlin Mueller, Sigrid Adriaenssens (eds.) Effect of Subdivision of Force Diagrams on the Local Buckling, Load-Path and Material

More information

A nodal based evolutionary structural optimisation algorithm

A nodal based evolutionary structural optimisation algorithm Computer Aided Optimum Design in Engineering IX 55 A dal based evolutionary structural optimisation algorithm Y.-M. Chen 1, A. J. Keane 2 & C. Hsiao 1 1 ational Space Program Office (SPO), Taiwan 2 Computational

More information