POST-PROCESSING A RATCHET WHEEL

Size: px
Start display at page:

Download "POST-PROCESSING A RATCHET WHEEL"

Transcription

1 A POST-PROCESS CASE STUDY POST-PROCESSING A RATCHET WHEEL The objective of this case study is to run a post process analysis of a steel ratchet wheel subjected to a set of forces. We will observe the stresses on the material and the resulting deformations. By the end of the study, the user should be able to visualize the analysis results in the GiD post process. 34

2 TABLE OF CONTENTS 1. INTRODUCTION POST-PROCESSING THE PART VISUALIZING THE RESULTS MODES OF VISUALIZATION VISUALIZING THE DEFORMED GEOMETRY CUTS AND DIVISIONS

3 1. INTRODUCTION The model in this study will be the results of an structural analysis located in the directory named "pieza.gid". The object of the study is a ratchet wheel that permits rotation of the axle in only one direction. The aim is to study how the part behaves when subjected to external forces, especially when the wheel is in equilibrium. In this condition, rotation is blocked by the pole, which resists the rotating force coming from the axle. At the same time, the pole exerts an equal and opposite force on one of the teeth. This system is illustrated in the figure A B Ratchet wheel and (in red) pole In order to simulate this condition, a simplification will be made in the following manner: the ends of the axle will be blocked and pressure will be applied to the surfaces of the tooth where the pole resists rotation. The material is steel. The material properties or pressure values the are not important for this sample, only interest show the postprocess options. 36

4 2. POST-PROCESSING THE PART Once the calculation has been run, the post process study may begin. The GiD post process enables the user to visualize the results based on the analysis Visualizing the results 1. Select Files Postprocess. 2. From the Windows menu, choose the View Results option. A window comes up from which the user may visualize the results 1. By default, no result is visualized when the user enters the post process. 3. From the View menu in the View Results window, choose Contour Fill. Window for visualizing the results 4. From the Results menu, choose the NODAL V.MISES option. Click Apply, thus obtaining a graphic representation of the VON MISES calculation, which gives an idea of the stresses on the material. NOTE: In the box labelled Steps, in the View Results window, all the steps of the calculation are listed. The steps normally show the calculations as they evolve. 1 From the options in the View results menu, one may also choose which result to visualize. 37

5 The calculation for the selected step is the one shown. In the present example, there is only one step. Visualization of the VON MISES calculation, using the Contour Fill option 5. The View menu and the Results menu may be combined in order to see the various calculations with each one of the visualization methods. For example, select Contour Lines on the View menu and NODAL STRESS on the Results menu. From the Components menu, choose S x (stress along the X axis). Click Apply. The resulting view is shown. Visualization of the X component of the NODAL STRESS calculation using Contour Lines. 38

6 6. Return to the visualization of the VON MISES calculation using the Contour Fill option. 7. The part will be rendered with a scale of colors covering the range of calculated values. In this example only one interval of the total results range is of interest. The scale of colors must be adapted so that the lower limit is 5.5e7 and the higher limit, 1e9. 8. Choose Options Contour Define Limits 2. The Contour Limits window comes up. In the box labelled Max, enter 1e9. In Min, enter 5.5e7. Click Apply. The resulting visualization is shown in the figure. The color scale of the default values Color scale with the new limits for representing the VON MISES calculation The Contour Limits window Entering the lower limit in the post process Toolbox 2 This option is also available in the post process Toolbox. 39

7 Visualization using the new color scale 9. The olor scale is distributed between the values 1e9 and 5.5e7. All values outside this range are colored blcak. The visualization of these values may be changed. For example, choose these options: Options Contour Min Options Out Min Color Min Color and Options Contour Max Options Out Max Color Transparent. The values below the visualization range are now represented in the same color as the minimum-value color. The values above the visualization range are not drawn; they are perceived as transparent. Visualization using the color scale established in point 9. The calculated values in thr transparent zones are higher than 1e To return to the initial visualization limit values, choose Options Contour Reset Limit Values. 40

8 11. Another option for visualizing the results is Iso Surfaces. This option enables the user to locate the elements of the model that have the same values (Iso). Choose View Results Iso Surfaces Exact NODAL_ V._MISES. GiD asks how many Iso Surfaces to visualize. Enter 2. Then enter the values 1e9 y 5.5e7. This results in a visualization of the surfaces with elements of the values 1e9 o 5.5e7. Visualization in two different colors of surfaces with elements having either the value 1e9. or 55e There are other ways to visualize Iso Surfaces. With View Results Iso Surfaces Automatic NODAL_ V._MISES, the user enters the number of Iso Surfaces to visualize. GiD automatically assigns a color to each Iso Surfaces. 13. Using the option View Results Iso Surfaces Automatic Width NODAL_ V._MISES, enter the incremental step between the values of the different Iso Surfaces. GiD automatically creates as many Iso Surfaces as possible Visualization of 8 Iso Surfaces using the Automatic option Visualization of Iso Surfaces using Automatic Width and an incremental step of 3,4e8. NOTE: The modes for visualizing the Iso Surfaces are located in the Options Iso Surfaces menu. 41

9 14. Visualizing the results using vectors is also an option. A vector is drawn for each element of the mesh. In the View Results window, choose Display Vectors from the View menu and NODAL STRESS from the Results menu. From the Components menu, choose Si (stress along the i axis). Click Apply. Magnify the zone indicated in the image. Visualization of the results using vectors 15. Now select All from the Components menu in the View Results window. Click Apply. A magnification of the surfaces under pressure and visualization of the stresses using vectors Visualization of the the vector compoenents of NODAL STRESS 16. Red vectors indicate traction (tensile stress) and blue vectors indicate compression. 42

10 2.2. Modes of visualization 1. Choose Windows View Style. A window labelled Select & Display Style comes up in which to change the options for visualizing the geometry. This window is composed of various menus, each characterizing some aspect of the visualization of the model. All these menus can be combined to achieve a suitable visualization. The Select & Display Style window NOTE: In the post process, the elements of the mesh are classified into Meshes, Sets and Cuts. A new Set is created for each group of surfaces that share the same material. There is a Mesh for each group of volumes sharing the same material. Cuts are sections made into the geometry during the pot process. The categories Meshes, Sets and Cuts are at the top of the window in the figure. For each category the user may choose a color using the Color Change option. Each one may be clicked On or Off 3, or deleted (Del). In the present example there is only one volume. Therefore, only one Mesh appears. It is named "Mesh1". The Style, Render, Culling and Conditions menus as well as the Massive and Transparent options affect the visualization of the entire mesh. 2. Try out the various options offered in the Style 3. Click Apply to see the results. 3 This option is also located in the post process Toolbox. For further information on the tools in Toolbox, click on the corresponding icon with the right mouse button. 43

11 Visualization using Style Boundaries. Visualization using Style All Lines. Visualization using Style Hidden Lines. Visualization using Style Body. Visualization using Style Body Bound. Visualization using Style Body Lines. 3. Try out the various options offered in the Culling 3 menu combined with the Conditions menu and the Transparent and Massive options. Click Apply to see the results. Culling Front Faces. Culling Front Faces with the Massive option Culling None, Conditions Geometry aand the Transparent option 44

12 2.3. Visualizing the deformed geometry 1. Choose Windows Deform Mesh. The Mesh Deformation window comes up. 2. From the Style menu in the Select & Display Style window, select Boundaries. 3. From the Mesh Deformation window, select Deformation, under the heading Main Geometry. Under the heading Reference Geometry select Original. Click Apply. In order to better distinguish the two geometries, select Body Bound from the Style menu in the Select & Display Style window. NOTE: Changes carried out in the Select & Display Style window do not affect the reference geometry (in Reference Geometry in the Mesh Deformation window.). NOTE: The factor box in the Mesh Deformation window indicates the multiplying factor of the real deformation. NOTE: In the Steps boxes in the Mesh Deformation window, the user may select the steps to be visualized. The Mesh Deformation window The (yellow) deformed geometry (Body Bound) versus the original geometry (Boundaries) 45

13 4. Now the deformed geometry may be visualized. For example, in the View Results window, select Contour Fill and NODAL V.MISES. Click Apply. Visualizing the results of the deformed mesh (colored) 46

14 2.4. Cuts and divisions 1. In the GiD post process, the user may cut or divide the mesh to visualize the results on the interior of the part. Begin the cutting process by choosing Do cuts Cut plane 3 points Using the Join C-a option on the Contextual menu, located on the mouse menu, select the three points indicated in the image to define the cutting plane. 3. A Cut is made. To visualize it, click Off "Mesh1" in the Select & Display Style. The cutting plane defined by three points "Mesh1" is Off. The section resulting from the cut NOTE: The sections (Cuts) made in the original mesh also deform when the mesh deforms. And vice versa, the cuts made in the deformed mesh deform when the mesh returns to its origianal state. 4 Another option is Do cuts Cut plane 2 points. Here, the cutting plane is the plane perpendicular to the screen that passes through the line defined by the 2 points. The cutting options are also located in the post process Toolbox. 47

15 4. Starting from the View Results window, select Contour Lines from the View menu, and select NODAL V.MISES. from the Results menu. Click Apply, thus visualizing the results within the cut. Visualizing the results within the cut 5. From the mouse menu, choose Label Select Results. Select several nodes, thus obtaining the numeric value of the VON MISES module for each node selected. Visualizing the numeric values of the VON MISES module 6. To return to the previous visualization, choose Label Off from the mouse menu. 7. In the Select & Display Style window, click "Cut1" Off and "Mesh1" On. Choose Rotate planexz from the mouse menu. 48

16 8. Choose Do cuts Succession. This tool enables the user to make a specific number of equidistant cross-sections along an axis. Enter two points to define the axis. Defining the axis 9. A window comes up in which to enter the number of cuts to make. For the present example, enter 20. In the Select & Display Style window, click "Mesh1" Off. Cuts made using Do cuts Succession with no visualization of the results The Select & Display Style window with a list of all the cuts made 10. Use the View Results window and the Select & Display Style window to visualize the results in the cuts made. NOTE: With the option Files save cut, the cuts may be saved in a file in order to be used during another GiD session. 49

17 NOTE: Using Options Iso Surfaces Convert to cuts, the Iso Surfaces may be converted into Cuts. 11. In the Select & Display Style window, select all the cuts and click Del to delete them. Click "Mesh1" On. Choose the Rotate planexy option from the mouse menu. 12. Choose Do cuts Divide Mesh 2 points. Using this option the mesh is divided by a plane, without cutting the elements. (The plane may be defined by two or three points and the right or left portion of the model may be selected. A new mesh is created that contains the selected portion. The cutting line. 13. Enter two points to define the plane that will divide the part, as shown. Click on the right portion of the model to indicate that this is the side to select. After clicking "Mesh1" Off, the result will be that shown in th figure. 50

18 A visualization of the divided mesh using VON MISES and Contour Fill. NOTE: The dividing tools are classified in three groups: Divide mesh, Divide Sets and Divide lines. In the three cases, entities may be divided by defining 2 or 3 points. 51

DMU Engineering Analysis Review

DMU Engineering Analysis Review Page 1 DMU Engineering Analysis Review Preface Using This Guide Where to Find More Information Conventions What's New? Getting Started Inserting a CATAnalysis Document Using DMU Space Analysis From CATAnalysis

More information

Kratos Multi-Physics 3D Fluid Analysis Tutorial. Pooyan Dadvand Jordi Cotela Kratos Team

Kratos Multi-Physics 3D Fluid Analysis Tutorial. Pooyan Dadvand Jordi Cotela Kratos Team Kratos Multi-Physics 3D Fluid Analysis Tutorial Pooyan Dadvand Jordi Cotela Kratos Team Kratos 3D Fluid Tutorial In this tutorial we will solve a simple example using GiD and Kratos Geometry Input data

More information

Getting Started. These tasks should take about 20 minutes to complete. Getting Started

Getting Started. These tasks should take about 20 minutes to complete. Getting Started Getting Started Getting Started This tutorial will guide you step-by-step through your first ELFINI and Generative Part Structural Analysis session, allowing you to get acquainted with the product. You

More information

Abaqus/CAE Axisymmetric Tutorial (Version 2016)

Abaqus/CAE Axisymmetric Tutorial (Version 2016) Abaqus/CAE Axisymmetric Tutorial (Version 2016) Problem Description A round bar with tapered diameter has a total load of 1000 N applied to its top face. The bottom of the bar is completely fixed. Determine

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

ABAQUS for CATIA V5 Tutorials

ABAQUS for CATIA V5 Tutorials ABAQUS for CATIA V5 Tutorials AFC V2.5 Nader G. Zamani University of Windsor Shuvra Das University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com ABAQUS for CATIA V5,

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

6-1. Simple Solid BASIC ANALYSIS. Simple Solid

6-1. Simple Solid BASIC ANALYSIS. Simple Solid 6-1 6 BASIC ANALYSIS 6-2 Model Description: This example is used to show some simple solid modeling while keeping the number of nodes of the solid mesh under the 300 node limit of the demonstration version.

More information

DMU Engineering Analysis Review

DMU Engineering Analysis Review DMU Engineering Analysis Review Overview Conventions What's New? Getting Started Entering DMU Engineering Analysis Review Workbench Generating an Image Visualizing Extrema Generating a Basic Analysis Report

More information

Abaqus CAE Tutorial 6: Contact Problem

Abaqus CAE Tutorial 6: Contact Problem ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 6: Contact Problem Problem Description In this problem, a segment of an electrical contact switch (steel) is modeled by displacing the upper

More information

Analysis Steps 1. Start Abaqus and choose to create a new model database

Analysis Steps 1. Start Abaqus and choose to create a new model database Source: Online tutorials for ABAQUS Problem Description The two dimensional bridge structure, which consists of steel T sections (b=0.25, h=0.25, I=0.125, t f =t w =0.05), is simply supported at its lower

More information

Case Study 2: Piezoelectric Circular Plate

Case Study 2: Piezoelectric Circular Plate Case Study 2: Piezoelectric Circular Plate PROBLEM - 3D Circular Plate, kp Mode, PZT4, D=50mm x h=1mm GOAL Evaluate the operation of a piezoelectric circular plate having electrodes in the top and bottom

More information

Post-Processing Static Results of a Space Satellite

Post-Processing Static Results of a Space Satellite LESSON 7 Post-Processing Static Results of a Space Satellite 3.84+05 3.58+05 3.33+05 3.07+05 2.82+05 3.84+05 2.56+05 2.30+05 2.05+05 1.79+05 1.54+05 1.28+05 1.02+05 7.68+04 0. 5.12+04 Z Y X Objectives:

More information

TRINITAS. a Finite Element stand-alone tool for Conceptual design, Optimization and General finite element analysis. Introductional Manual

TRINITAS. a Finite Element stand-alone tool for Conceptual design, Optimization and General finite element analysis. Introductional Manual TRINITAS a Finite Element stand-alone tool for Conceptual design, Optimization and General finite element analysis Introductional Manual Bo Torstenfelt Contents 1 Introduction 1 2 Starting the Program

More information

Case Study 5: Langevin Transducer

Case Study 5: Langevin Transducer Case Study 5: Langevin Transducer PROBLEM Langevin Transducer, 2D Axisymmetric with ½ portion, PZT 8 (50mm x 1mm Thick) sandwiched between Steel blocks (50mm x 19mm thick), Fluid is Water. GOAL The first

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

Lesson: Static Stress Analysis of a Connecting Rod Assembly

Lesson: Static Stress Analysis of a Connecting Rod Assembly Lesson: Static Stress Analysis of a Connecting Rod Assembly In this tutorial we determine the effects of a 2,000 pound tensile load acting on a connecting rod assembly (consisting of the rod and two pins).

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

FEM-Analysis of a Column Crane with FEM-System MEANS V10. Website: Phone:

FEM-Analysis of a Column Crane with FEM-System MEANS V10. Website:    Phone: FEM-Analysis of a Column Crane with FEM-System MEANS V10 Website: www.fem-infos.com Email: info@fem-infos.com Phone: 0049-7844 - 98 641 Part 19: FEM-Analysis of a Column Crane with MEANS V10 1 Part 19:

More information

Existing API Scripts. Andy Haines Senior Applications Engineer. Unrestricted Siemens AG 2013 All rights reserved.

Existing API Scripts. Andy Haines Senior Applications Engineer. Unrestricted Siemens AG 2013 All rights reserved. Existing API Scripts Andy Haines Senior Applications Engineer Agenda Existing API Scripts Who am I? What you will learn Femap capabilities Demonstrations Benefits of this topic How to learn more Page 2

More information

Case Study 1: Piezoelectric Rectangular Plate

Case Study 1: Piezoelectric Rectangular Plate Case Study 1: Piezoelectric Rectangular Plate PROBLEM - 3D Rectangular Plate, k31 Mode, PZT4, 40mm x 6mm x 1mm GOAL Evaluate the operation of a piezoelectric rectangular plate having electrodes in the

More information

Plasticity Bending Machine Tutorial (FFlex)

Plasticity Bending Machine Tutorial (FFlex) Plasticity Bending Machine Tutorial (FFlex) Copyright 2018 FunctionBay, Inc. All rights reserved. User and training documentation from FunctionBay, Inc. is subjected to the copyright laws of the Republic

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

Creating and Analyzing a Simple Model in Abaqus/CAE

Creating and Analyzing a Simple Model in Abaqus/CAE Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you through the Abaqus/CAE modeling process by visiting

More information

TexGraf4 GRAPHICS PROGRAM FOR UTEXAS4. Stephen G. Wright. May Shinoak Software Austin, Texas

TexGraf4 GRAPHICS PROGRAM FOR UTEXAS4. Stephen G. Wright. May Shinoak Software Austin, Texas TexGraf4 GRAPHICS PROGRAM FOR UTEXAS4 By Stephen G. Wright May 1999 Shinoak Software Austin, Texas Copyright 1999, 2007 by Stephen G. Wright - All Rights Reserved i TABLE OF CONTENTS Page LIST OF TABLES...v

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

Spur Gears Static Stress Analysis with Linear Material Models

Spur Gears Static Stress Analysis with Linear Material Models Exercise A Spur Gears Static Stress Analysis with Linear Material Models Beam and Brick Elements Objective: Geometry: Determine the stress distribution in the spur gears when a moment of 93.75 in-lb is

More information

Introduction to MSC.Patran

Introduction to MSC.Patran Exercise 1 Introduction to MSC.Patran Objectives: Create geometry for a Beam. Add Loads and Boundary Conditions. Review analysis results. MSC.Patran 301 Exercise Workbook - Release 9.0 1-1 1-2 MSC.Patran

More information

Problem description. Bolt. Upper bracket. Lower bracket. Nut. A bracket assemblage is shown below in an exploded view:

Problem description. Bolt. Upper bracket. Lower bracket. Nut. A bracket assemblage is shown below in an exploded view: Problem description A bracket assemblage is shown below in an exploded view: Bolt Upper bracket Lower bracket Nut The two parts of the bracket are bolted together. After the parts are bolted together,

More information

Static Stress Analysis

Static Stress Analysis Static Stress Analysis Determine stresses and displacements in a connecting rod assembly. Lesson: Static Stress Analysis of a Connecting Rod Assembly In this tutorial we determine the effects of a 2,000-pound

More information

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Contents Beam under 3-Pt Bending [Balken unter 3-Pkt-Biegung]... 2 Taking advantage of symmetries... 3 Starting and Configuring ANSYS Workbench... 4 A. Pre-Processing:

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

Modeling a Shell to a Solid Element Transition

Modeling a Shell to a Solid Element Transition LESSON 9 Modeling a Shell to a Solid Element Transition Objectives: Use MPCs to replicate a Solid with a Surface. Compare stress results of the Solid and Surface 9-1 9-2 LESSON 9 Modeling a Shell to a

More information

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD Haval Kamal Asker Department of Mechanical Engineering, Faculty of Agriculture and Forestry, Duhok University, Duhok,

More information

Frame Analysis Using Visual Analysis

Frame Analysis Using Visual Analysis Frame Analysis Using Visual Analysis 1. The software is available at the Open Access Labs (OAL) and the Virtual OAL at http://voal.tamu.edu in Programs under the Windows Start menu. The software can also

More information

Module 1.7W: Point Loading of a 3D Cantilever Beam

Module 1.7W: Point Loading of a 3D Cantilever Beam Module 1.7W: Point Loading of a 3D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution 14 Results

More information

ANSYS AIM Tutorial Fluid Flow Through a Transition Duct

ANSYS AIM Tutorial Fluid Flow Through a Transition Duct ANSYS AIM Tutorial Fluid Flow Through a Transition Duct Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Start Up Geometry Import Geometry Extracting Volume Suppress

More information

INSTED /CFD Post-Processor. Post-Processor. Chapter 5 INSTED /CFD (2D) Post-Processor

INSTED /CFD Post-Processor. Post-Processor. Chapter 5 INSTED /CFD (2D) Post-Processor INSTED /CFD Chapter 5 INSTED /CFD (2D) The part of INSTED/CFD (2D) plots lines or filled contours of variables such as velocities, temperature, pressure, scalars, and stream function. The program also

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

Similar Pulley Wheel Description J.E. Akin, Rice University

Similar Pulley Wheel Description J.E. Akin, Rice University Similar Pulley Wheel Description J.E. Akin, Rice University The SolidWorks simulation tutorial on the analysis of an assembly suggested noting another type of boundary condition that is not illustrated

More information

FOUNDATION IN OVERCONSOLIDATED CLAY

FOUNDATION IN OVERCONSOLIDATED CLAY 1 FOUNDATION IN OVERCONSOLIDATED CLAY In this chapter a first application of PLAXIS 3D is considered, namely the settlement of a foundation in clay. This is the first step in becoming familiar with the

More information

Exercise 1: 3-Pt Bending using ANSYS Workbench

Exercise 1: 3-Pt Bending using ANSYS Workbench Exercise 1: 3-Pt Bending using ANSYS Workbench Contents Starting and Configuring ANSYS Workbench... 2 1. Starting Windows on the MAC... 2 2. Login into Windows... 2 3. Start ANSYS Workbench... 2 4. Configuring

More information

Module 1.5: Moment Loading of a 2D Cantilever Beam

Module 1.5: Moment Loading of a 2D Cantilever Beam Module 1.5: Moment Loading of a D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Loads

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Consider the classic example of a circular hole in a rectangular plate of constant thickness. The plate

More information

Course in ANSYS. Example0303. ANSYS Computational Mechanics, AAU, Esbjerg

Course in ANSYS. Example0303. ANSYS Computational Mechanics, AAU, Esbjerg Course in Example0303 Example Gear axle 3D Objective: Compute the maximum stress von Mise Tasks: How should this be modeled? Topics: Element type, Real constants, modeling, Plot results, output graphics,

More information

Tutorial 2: Particles convected with the flow along a curved pipe.

Tutorial 2: Particles convected with the flow along a curved pipe. Tutorial 2: Particles convected with the flow along a curved pipe. Part 1: Creating an elbow In part 1 of this tutorial, you will create a model of a 90 elbow featuring a long horizontal inlet and a short

More information

Start AxisVM by double-clicking the AxisVM icon in the AxisVM folder, found on the Desktop, or in the Start, Programs Menu.

Start AxisVM by double-clicking the AxisVM icon in the AxisVM folder, found on the Desktop, or in the Start, Programs Menu. 4. MEMBRANE MODEL 1.1. Preprocessing with surface elements Start New Start AxisVM by double-clicking the AxisVM icon in the AxisVM folder, found on the Desktop, or in the Start, Programs Menu. Create a

More information

WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD. For ANSYS release 14

WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD. For ANSYS release 14 WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD For ANSYS release 14 Objective: In this workshop, a weld fatigue analysis on a VKR-beam with a plate on top using the nominal stress method is demonstrated.

More information

Stiffened Plate With Pressure Loading

Stiffened Plate With Pressure Loading Supplementary Exercise - 3 Stiffened Plate With Pressure Loading Objective: geometry and 1/4 symmetry finite element model. beam elements using shell element edges. MSC.Patran 301 Exercise Workbook Supp3-1

More information

ANSYS AIM Tutorial Stepped Shaft in Axial Tension

ANSYS AIM Tutorial Stepped Shaft in Axial Tension ANSYS AIM Tutorial Stepped Shaft in Axial Tension Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Contents: Problem Specification 3 Learning Goals 4 Pre-Analysis & Start Up 5 Calculation

More information

Chapter 2. Structural Tutorial

Chapter 2. Structural Tutorial Chapter 2. Structural Tutorial Tutorials> Chapter 2. Structural Tutorial Static Analysis of a Corner Bracket Problem Specification Problem Description Build Geometry Define Materials Generate Mesh Apply

More information

Linear Static Analysis of a Simply-Supported Stiffened Plate

Linear Static Analysis of a Simply-Supported Stiffened Plate WORKSHOP 7 Linear Static Analysis of a Simply-Supported Stiffened Plate Objectives: Create a geometric representation of a stiffened plate. Use the geometry model to define an analysis model comprised

More information

file://c:\documents and Settings\sala\Configuración local\temp\~hha54f.htm

file://c:\documents and Settings\sala\Configuración local\temp\~hha54f.htm Página 1 de 26 Tutorials Chapter 2. Structural Tutorial 2.1. Static Analysis of a Corner Bracket 2.1.1. Problem Specification Applicable ANSYS Products: Level of Difficulty: Interactive Time Required:

More information

WORKSHOP 6.4 WELD FATIGUE USING HOT SPOT STRESS METHOD. For ANSYS release 14

WORKSHOP 6.4 WELD FATIGUE USING HOT SPOT STRESS METHOD. For ANSYS release 14 WORKSHOP 6.4 WELD FATIGUE USING HOT SPOT STRESS METHOD For ANSYS release 14 Objective: In this workshop, a weld fatigue analysis on a VKR-beam with a plate on top using the nominal stress method is demonstrated.

More information

Module 1.6: Distributed Loading of a 2D Cantilever Beam

Module 1.6: Distributed Loading of a 2D Cantilever Beam Module 1.6: Distributed Loading of a 2D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing

More information

BioIRC solutions. CFDVasc manual

BioIRC solutions. CFDVasc manual BioIRC solutions CFDVasc manual Main window of application is consisted from two parts: toolbar - which consist set of button for accessing variety of present functionalities image area area in which is

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA 1 FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA This tutorial shows the basics of a solid bending, torsional, tension, and shear FEA (Finite Elemental Analysis) model in CATIA. Torsion - page

More information

Lesson 6: Assembly Structural Analysis

Lesson 6: Assembly Structural Analysis Lesson 6: Assembly Structural Analysis In this lesson you will learn different approaches to analyze the assembly using assembly analysis connection properties between assembly components. In addition

More information

NC Manufacturing Verification

NC Manufacturing Verification NC Manufacturing Verification Page 1 Preface Using This Guide Where to Find More Information Conventions What's New? User Tasks Accessing NC Manufacturing Verification Comparing the Machined Stock Part

More information

Exercise 1a: Interacting With HyperMesh

Exercise 1a: Interacting With HyperMesh Exercise 1a: Interacting With HyperMesh This exercise will cover many of the basic concepts that are central to many of the features in HyperMesh. By the end of this exercise you should be familiar with

More information

SAFIR training session level 1 Johns Hopkins University, Baltimore. Example: 3D structural model of a beam. 3D steel beam with thermal insulation

SAFIR training session level 1 Johns Hopkins University, Baltimore. Example: 3D structural model of a beam. 3D steel beam with thermal insulation SAFIR training session level 1 Johns Hopkins University, Baltimore Example: 3D structural model of a beam 3D steel beam with thermal insulation T. Gernay & J.M. Franssen 3D Beam 1 1. General description

More information

Code_Aster. SSND106: Multiple tractions rotations in great deformations, isotropic work hardening

Code_Aster. SSND106: Multiple tractions rotations in great deformations, isotropic work hardening Titre : SSD106 - Tractions rotations multiples en grandes[...] Date : 06/06/2016 Page : 1/9 SSD106: Multiple tractions rotations in great deformations, isotropic work hardening Summary: This test models

More information

Linear Buckling Analysis of a Plate

Linear Buckling Analysis of a Plate Workshop 9 Linear Buckling Analysis of a Plate Objectives Create a geometric representation of a plate. Apply a compression load to two apposite sides of the plate. Run a linear buckling analysis. 9-1

More information

AutoCAD DWG Drawing Limitations in SAP 3D Visual Enterprise 9.0 FP02

AutoCAD DWG Drawing Limitations in SAP 3D Visual Enterprise 9.0 FP02 AutoCAD DWG Drawing Limitations in SAP 3D Visual Enterprise 9.0 FP02 AutoCAD Import Limitations The following is a list of AutoCAD features that will not give an expected viewable when using SAP 3D Visual

More information

Embedded Reinforcements

Embedded Reinforcements Embedded Reinforcements Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of embedded reinforcements in DIANA. Basic assumptions and definitions, the pre-processing

More information

In-plane principal stress output in DIANA

In-plane principal stress output in DIANA analys: linear static. class: large. constr: suppor. elemen: hx24l solid tp18l. load: edge elemen force node. materi: elasti isotro. option: direct. result: cauchy displa princi stress total. In-plane

More information

The Essence of Result Post- Processing

The Essence of Result Post- Processing APPENDIX E The Essence of Result Post- Processing Objectives: Manually create the geometry for the tension coupon using the given dimensions then apply finite elements. Manually define material and element

More information

RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS

RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS RADIOSS, MotionSolve, and OptiStruct RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS In this tutorial, you will learn the method of modeling an axi- symmetry problem in RADIOSS. The figure

More information

CONTACT STATE AND STRESS ANALYSIS IN A KEY JOINT BY FEM

CONTACT STATE AND STRESS ANALYSIS IN A KEY JOINT BY FEM PERJODICA POLYTECHNICA SER. ME CH. ENG. VOL. 36, NO. 1, PP. -15-60 (1992) CONTACT STATE AND STRESS ANALYSIS IN A KEY JOINT BY FEM K. VARADI and D. M. VERGHESE Institute of Machine Design Technical University,

More information

Two Dimensional Truss

Two Dimensional Truss Two Dimensional Truss Introduction This tutorial was created using ANSYS 7.0 to solve a simple 2D Truss problem. This is the first of four introductory ANSYS tutorials. Problem Description Determine the

More information

Revolve 3D geometry to display a 360-degree image.

Revolve 3D geometry to display a 360-degree image. Tutorial 24. Turbo Postprocessing Introduction This tutorial demonstrates the turbomachinery postprocessing capabilities of FLUENT. In this example, you will read the case and data files (without doing

More information

MASTERCAM DYNAMIC MILLING TUTORIAL. June 2018

MASTERCAM DYNAMIC MILLING TUTORIAL. June 2018 MASTERCAM DYNAMIC MILLING TUTORIAL June 2018 MASTERCAM DYNAMIC MILLING TUTORIAL June 2018 2018 CNC Software, Inc. All rights reserved. Software: Mastercam 2019 Terms of Use Use of this document is subject

More information

Basic Electrodes. CimatronE 8.5 Tutorial

Basic Electrodes. CimatronE 8.5 Tutorial Basic Electrodes CimatronE 8.5 Tutorial Table of Contents Electrodes... 1 Attachment... 1 Electrodes Introduction... 1 Attachment... 1 Blank & Electrode UCS... 7 Blank & Electrode UCS... 7 Extension...

More information

User s Manual. CAM Software CAM Programmable Encoder. Power supply 24 volts DC 8 CAM ways (6 differential + 2 single-ended)

User s Manual. CAM Software CAM Programmable Encoder. Power supply 24 volts DC 8 CAM ways (6 differential + 2 single-ended) User s Manual CAM Software CAM Programmable Encoder Power supply 24 volts DC 8 CAM ways (6 differential + 2 single-ended) Your partner for standard and special designs - precise, reliable and fast - IDE

More information

CHAPTER 8 FINITE ELEMENT ANALYSIS

CHAPTER 8 FINITE ELEMENT ANALYSIS If you have any questions about this tutorial, feel free to contact Wenjin Tao (w.tao@mst.edu). CHAPTER 8 FINITE ELEMENT ANALYSIS Finite Element Analysis (FEA) is a practical application of the Finite

More information

TABLE OF CONTENTS INTRODUCTION... 2 OPENING SCREEN BEGIN ANALYSIS... 4 Start a New File or Open a Previously Saved File... 4

TABLE OF CONTENTS INTRODUCTION... 2 OPENING SCREEN BEGIN ANALYSIS... 4 Start a New File or Open a Previously Saved File... 4 3D-BLAST August 2010 TABLE OF CONTENTS INTRODUCTION... 2 OPENING SCREEN... 3 BEGIN ANALYSIS... 4 Start a New File or Open a Previously Saved File... 4 PROGRAM TOOLBAR... 5 NAVIGATING IN THE PROGRAM...

More information

Engine Gasket Model Instructions

Engine Gasket Model Instructions SOL 600 Engine Gasket Model Instructions Demonstrated:! Set up the Model Database! 3D Model Import from a MSC.Nastran BDF! Creation of Groups from Element Properties! Complete the Material Models! Import

More information

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS 5.1 Introduction The problem selected to illustrate the use of ANSYS software for a three-dimensional steadystate heat conduction

More information

Analysis Run Exercise

Analysis Run Exercise Analysis Run Exercise In this exercise you will setup and run an analysis on the original design and the optimized design to compare the results. The exercise follows very closely the video in the See

More information

ME Week 12 Piston Mechanical Event Simulation

ME Week 12 Piston Mechanical Event Simulation Introduction to Mechanical Event Simulation The purpose of this introduction to Mechanical Event Simulation (MES) project is to explorer the dynamic simulation environment of Autodesk Simulation. This

More information

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis Tutorial 7 Finite Element Groundwater Seepage Steady state seepage analysis Groundwater analysis mode Slope stability analysis Introduction Within the Slide program, Slide has the capability to carry out

More information

v Data Visualization SMS 12.3 Tutorial Prerequisites Requirements Time Objectives Learn how to import, manipulate, and view solution data.

v Data Visualization SMS 12.3 Tutorial Prerequisites Requirements Time Objectives Learn how to import, manipulate, and view solution data. v. 12.3 SMS 12.3 Tutorial Objectives Learn how to import, manipulate, and view solution data. Prerequisites None Requirements GIS Module Map Module Time 30 60 minutes Page 1 of 16 Aquaveo 2017 1 Introduction...

More information

ANSYS. Geometry. Material Properties. E=2.8E7 psi v=0.3. ansys.fem.ir Written By:Mehdi Heydarzadeh Page 1

ANSYS. Geometry. Material Properties. E=2.8E7 psi v=0.3. ansys.fem.ir Written By:Mehdi Heydarzadeh Page 1 Attention: This tutorial is outdated, you will be redirected automatically to the new site. If you are not redirected, click this link to the confluence site. Problem Specification Geometry Material Properties

More information

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Course Curriculum (Duration: 120 Hrs.) Section I: ANSYS Mechanical APDL Chapter 1: Before you start using ANSYS a. Introduction to

More information

Advanced Meshing Tools

Advanced Meshing Tools Page 1 Advanced Meshing Tools Preface Using This Guide More Information Conventions What's New? Getting Started Entering the Advanced Meshing Tools Workbench Defining the Surface Mesh Parameters Setting

More information

Advance Design. Tutorial

Advance Design. Tutorial TUTORIAL 2018 Advance Design Tutorial Table of Contents About this tutorial... 1 How to use this guide... 3 Lesson 1: Preparing and organizing your model... 4 Step 1: Start Advance Design... 5 Step 2:

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Problem Description: FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Dimitri Soteropoulos Programs Utilized: Abaqus/CAE 6.11-2 This tutorial explains how to build

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

Tutorial 4 Arch Bridge

Tutorial 4 Arch Bridge Tutorial 4 Arch Bridge Civil TUTORIAL 4. ARCH BRIDGE Summary 1 Analysis Model and Load Cases / 2 File Opening and Preferences Setting 5 Enter Material and Section Properties 6 Structural Modeling Using

More information

Finite Element Analysis Using Pro/Engineer

Finite Element Analysis Using Pro/Engineer Appendix A Finite Element Analysis Using Pro/Engineer A.1 INTRODUCTION Pro/ENGINEER is a three-dimensional product design tool that promotes practices in design while ensuring compliance with industry

More information

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Part 1: Planar Analysis A Deterministic Analysis This exercise will demonstrate the basics of a deterministic limit equilibrium planar analysis

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

NC Manufacturing Verification

NC Manufacturing Verification NC Manufacturing Verification Overview Conventions What's New? User Tasks Accessing NC Manufacturing Verification Comparing the Machined Stock Part and the Design Part Pick Point Analysis in Video Mode

More information

GiD v12 news. GiD Developer Team: Miguel Pasenau, Enrique Escolano, Jorge Suit Pérez, Abel Coll, Adrià Melendo and Anna Monros

GiD v12 news. GiD Developer Team: Miguel Pasenau, Enrique Escolano, Jorge Suit Pérez, Abel Coll, Adrià Melendo and Anna Monros GiD v12 news GiD Developer Team: Miguel Pasenau, Enrique Escolano, Jorge Suit Pérez, Abel Coll, Adrià Melendo and Anna Monros New preferences window New preferences window: Tree to organize the different

More information

Geostatistics 3D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

Geostatistics 3D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS Geostatistics 3D 1 Introduction Three-dimensional geostatistics (interpolation) can be performed in GMS using the 3D Scatter Point module. The module is used to interpolate from sets

More information

Sliding Block LESSON 26. Objectives: Demonstrate the use of Contact LBCs in a simple exercise.

Sliding Block LESSON 26. Objectives: Demonstrate the use of Contact LBCs in a simple exercise. LESSON 26 Sliding Block 5 Objectives: Demonstrate the use of Contact LBCs in a simple exercise. Present method for monitoring a non-linear analysis progress. 26-1 26-2 LESSON 26 Sliding Block Model Description:

More information

Multi-Step Analysis of a Cantilever Beam

Multi-Step Analysis of a Cantilever Beam LESSON 4 Multi-Step Analysis of a Cantilever Beam LEGEND 75000. 50000. 25000. 0. -25000. -50000. -75000. 0. 3.50 7.00 10.5 14.0 17.5 21.0 Objectives: Demonstrate multi-step analysis set up in MSC/Advanced_FEA.

More information