1. A synchronous FIFO can only be used if both the read and write interface share the same clock.

Size: px
Start display at page:

Download "1. A synchronous FIFO can only be used if both the read and write interface share the same clock."

Transcription

1 FIFO Answers

2 1. A synchronous FIFO can only be used if both the read and write interface share the same clock. 2. The depth of the FIFO is determined by the number of addressable locations in the memory core. For an n-bit address this would be 2 n. 3. Hmm. Well, the most obvious alternative I suppose would be a two-ported memory. In that case, the read side would need to know when additional data was written (and presumably how much) in order to read it out. With a FIFO, it starts reading when the empty flag is deasserted and keeps reading until it is asserted. Much simpler implementation of an elastic buffer between two domains potentially operating at different rates.

3 1. What is the best way to count the CCs it takes for transactions 2. How in-depth should we understand the Binary to Gray code and Gray code to Binary conversions? 3. Still a little confused on how augmented counters are used to set status flags cc for synchronization of signals that are crossing the abyss and then count the number of state transitions (or similar) required to be ready for the next exchange. Repeat for the other interface. Then take into account the potentially different clock periods to get an absolute time. 2. Hmm. You can assume that an appropriate module is available, e.g., G2B and B2G. 3. Augmented counters are used to differentiate between full and empty, since without an extra bit the write pointer would roll over or wrap around and would once again be equal to the read pointer when the FIFO is full.

4 1) Are there limitations for relative clock freq differences between write domain and read domain? 2) How to implement and follow depth/full of FIFOs that aren't a ^2 depth? 3) When should you use distributed RAM instead of BRAM (bulk size excluded)? 1. Not if the FIFO controllers are properly designed, as in the Cummings paper (and the FIFO memory is not implemented with dynamic memory!). 2. Hmm. I don t know that there is a clean way of implementing a FIFO with a depth that is not a power of two (nor would there seem to be a strong motivation!). I believe you would need additional logic in your pointers to jump from 2 n x back to zero as opposed to rolling over after reaching 2 n 1. Essentially the same as building a modulo-n counter. The problem is that for an asynchronous FIFO your pointers are no longer going to adhere to the single bitchange. 3. Aside from the size issue, I suspect that at some point the wiring between the distributed memory chunks might become a limiting factor. However, using the core wizard is always the best bet when targeting a specific technology.

5 1. You would have to read the rest of the Wikipedia entry. 2. Presumably. All things being equal, more or bigger pipes make things faster, assuming you can benefit from the increased throughput. Depends where your bottleneck is. 3. NMOS and PMOS transistors? How about static RAM cells for the memory core?

6 1. This is two questions! LFSRs have simpler next state logic, but can only be used with synchronous FIFOs because they do not satisfy the single bit-change requirement. I don t know of any way to implement an augmented LFSR, so you would need to use the status flag method, where setting of the flag was dependent upon both the pointer comparison and the operation being performed. 2. Yes, absolutely. Otherwise the read interface would read every clock cycle. 3. See the answer to question (1). 4. Sorry, you only get three questions. You can use the gray code pointers as addresses into memory. Whether you would want to probably depends upon how it affects area/speed. I m not sure there is a good reason to.

7 1. Not that I can think of. 2. I don t know about pipelining, but if you had a master and multiple slaves operating off of the same system clock, the master could distribute lengthy jobs to the slaves without having to worry about how long it took to complete. Just keep polling for a slave FIFO that wasn t full. 3. Not very easily. All of the data has to move in parallel if a word is read and inserting a word during a write has to bubble through the string until it encounters an occupied location. While it s easy to construct enough storage, the control logic is a bear.

8 (1) and (3) Our book probably says something about this. A FIFO is an efficient interface between two systems that are producing and consuming data at different rates, either because of differences in clock frequency or the processing times. (2) A synchronous FIFO is designed on the assumption that the read and write interfaces are operating from a common clock and thus all signals that pass between them are synchronous. This eliminates the need for the synchronizers and the single-bit change requirement for pointers, but the remaining logic is the same.

9

10 Is there an optimum FIFO size (W vs D) for a given problem that works in all environments? Does the environment have an affect on W vs D)? 1. Hmm. I would say that both are dependent upon the environments. In general, you want your FIFO wide enough so that each side can quickly access the FIFO. For example, if all of the write data becomes available in one clock cycle, then write all of it into one location. As for depth, that will depend on the relative rates of production and consumption. You want your FIFO deep enough that the producer never stalls for lack of space. 2. Hmm. I view the FIFO as simply an elastic buffer, or data conduit. It doesn t have any intelligence for searching. Now, if we want to investigate the Xilinx Content Addressable Memory core...

11 Binary pointers can not be passed between the two controllers in an asynchronous FIFO implementation, only pointers that satisfy the single-bit change between accesses. You are absolutely correct that if one side is super fast, then it will appear to the other side as if multiple bits change between counts, but that is simply because the slow side did not sample the intervening pointer values. The important point is that within the sampling window (setup + hold) of the receiver s clock, only one bit will be changing. It doesn t matter whether the first synchronizer FF resolves to the new value or returns to the previous value the receiver will always see a proper sequence of pointer values.

12 Note to self: Never offer to do this again. It takes forever!

CS 104 Computer Organization and Design

CS 104 Computer Organization and Design CS 104 Computer Organization and Design Exceptions and Interrupts CS104: Exceptions and Interrupts 1 Exceptions and Interrupts App App App System software Mem CPU I/O Interrupts: Notification of external

More information

EECS150 - Digital Design Lecture 17 Memory 2

EECS150 - Digital Design Lecture 17 Memory 2 EECS150 - Digital Design Lecture 17 Memory 2 October 22, 2002 John Wawrzynek Fall 2002 EECS150 Lec17-mem2 Page 1 SDRAM Recap General Characteristics Optimized for high density and therefore low cost/bit

More information

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS UNIT-I OVERVIEW & INSTRUCTIONS 1. What are the eight great ideas in computer architecture? The eight

More information

L2: Design Representations

L2: Design Representations CS250 VLSI Systems Design L2: Design Representations John Wawrzynek, Krste Asanovic, with John Lazzaro and Yunsup Lee (TA) Engineering Challenge Application Gap usually too large to bridge in one step,

More information

Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) Field Programmable Gate Array (FPGA) Lecturer: Krébesz, Tamas 1 FPGA in general Reprogrammable Si chip Invented in 1985 by Ross Freeman (Xilinx inc.) Combines the advantages of ASIC and uc-based systems

More information

Stanford University Computer Science Department CS 240 Quiz 2 with Answers Spring May 24, total

Stanford University Computer Science Department CS 240 Quiz 2 with Answers Spring May 24, total Stanford University Computer Science Department CS 240 Quiz 2 with Answers Spring 2004 May 24, 2004 This is an open-book exam. You have 50 minutes to answer eight out of ten questions. Write all of your

More information

Introduction to Embedded System I/O Architectures

Introduction to Embedded System I/O Architectures Introduction to Embedded System I/O Architectures 1 I/O terminology Synchronous / Iso-synchronous / Asynchronous Serial vs. Parallel Input/Output/Input-Output devices Full-duplex/ Half-duplex 2 Synchronous

More information

Chapter 3 - Top Level View of Computer Function

Chapter 3 - Top Level View of Computer Function Chapter 3 - Top Level View of Computer Function Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Top Level View 1 / 127 Table of Contents I 1 Introduction 2 Computer Components

More information

SEMICON Solutions. Bus Structure. Created by: Duong Dang Date: 20 th Oct,2010

SEMICON Solutions. Bus Structure. Created by: Duong Dang Date: 20 th Oct,2010 SEMICON Solutions Bus Structure Created by: Duong Dang Date: 20 th Oct,2010 Introduction Buses are the simplest and most widely used interconnection networks A number of modules is connected via a single

More information

William Stallings Computer Organization and Architecture 8th Edition. Cache Memory

William Stallings Computer Organization and Architecture 8th Edition. Cache Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 4 Cache Memory Characteristics Location Capacity Unit of transfer Access method Performance Physical type Physical characteristics

More information

Patrick Murray 4/17/2012 EEL4713 Assignment 5

Patrick Murray 4/17/2012 EEL4713 Assignment 5 Patrick Murray 4/17/2012 EEL4713 Assignment 5 Introduction For assignment 5 we were tasked with creating a fully functional pipelined MIPS processor. I used the code and general structure of assignment

More information

Bits and Bytes. Here is a sort of glossary of computer buzzwords you will encounter in computer use:

Bits and Bytes. Here is a sort of glossary of computer buzzwords you will encounter in computer use: Bits and Bytes Here is a sort of glossary of computer buzzwords you will encounter in computer use: Bit Computer processors can only tell if a wire is on or off. Luckily, they can look at lots of wires

More information

TABLES AND HASHING. Chapter 13

TABLES AND HASHING. Chapter 13 Data Structures Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computer and Information, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ TABLES AND HASHING Chapter 13

More information

Outline. Hardware Queues. Modular System Design. Flow Control. Example: Bursty Communication. Bursty Communication + Queue

Outline. Hardware Queues. Modular System Design. Flow Control. Example: Bursty Communication. Bursty Communication + Queue Outline Hardware Queues Eylon Caspi University of California, erkeley eylon@cs.berkeley.edu Why Queues? Queue Connected Systems Streaming Systems Queue Implemtations Stream Enabled Pipelining //5 //5 Eylon

More information

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a)

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a) DS799 March 1, 2011 LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a) Introduction The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP core for use with the Xilinx Embedded

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: Digital Design Using Verilog Hdl Class : ECE-II Group A (Short Answer Questions) UNIT-I 1 Define verilog HDL? 2 List levels of

More information

Techniques for Digital Systems Lab. Verilog HDL. Tajana Simunic Rosing. Source: Eric Crabill, Xilinx

Techniques for Digital Systems Lab. Verilog HDL. Tajana Simunic Rosing. Source: Eric Crabill, Xilinx CSE140L: Components and Design Techniques for Digital Systems Lab Verilog HDL Tajana Simunic Rosing Source: Eric Crabill, Xilinx 1 More complex behavioral model module life (n0, n1, n2, n3, n4, n5, n6,

More information

Chapter Operation Pinout Operation 35

Chapter Operation Pinout Operation 35 68000 Operation 35 Chapter 6 68000 Operation 6-1. 68000 Pinout We will do no construction in this chapter; instead, we will take a detailed look at the individual pins of the 68000 and what they do. Fig.

More information

Performance analysis basics

Performance analysis basics Performance analysis basics Christian Iwainsky Iwainsky@rz.rwth-aachen.de 25.3.2010 1 Overview 1. Motivation 2. Performance analysis basics 3. Measurement Techniques 2 Why bother with performance analysis

More information

Asynchronous FIFO Design

Asynchronous FIFO Design Asynchronous FIFO Design 2.1 Introduction: An Asynchronous FIFO Design refers to a FIFO Design where in the data values are written to the FIFO memory from one clock domain and the data values are read

More information

Ultra-Fast NoC Emulation on a Single FPGA

Ultra-Fast NoC Emulation on a Single FPGA The 25 th International Conference on Field-Programmable Logic and Applications (FPL 2015) September 3, 2015 Ultra-Fast NoC Emulation on a Single FPGA Thiem Van Chu, Shimpei Sato, and Kenji Kise Tokyo

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a)

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a) DS799 June 22, 2011 LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a) Introduction The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP core for use with the Xilinx Embedded

More information

COMP 273 Winter physical vs. virtual mem Mar. 15, 2012

COMP 273 Winter physical vs. virtual mem Mar. 15, 2012 Virtual Memory The model of MIPS Memory that we have been working with is as follows. There is your MIPS program, including various functions and data used by this program, and there are some kernel programs

More information

Novel Architecture for Designing Asynchronous First in First out (FIFO)

Novel Architecture for Designing Asynchronous First in First out (FIFO) I J C T A, 10(8), 2017, pp. 343-349 International Science Press ISSN: 0974-5572 Novel Architecture for Designing Asynchronous First in First out (FIFO) Avinash Yadlapati* and Hari Kishore Kakarla* ABSTRACT

More information

Buses. Maurizio Palesi. Maurizio Palesi 1

Buses. Maurizio Palesi. Maurizio Palesi 1 Buses Maurizio Palesi Maurizio Palesi 1 Introduction Buses are the simplest and most widely used interconnection networks A number of modules is connected via a single shared channel Microcontroller Microcontroller

More information

Embedded Systems and Software. Serial Communication

Embedded Systems and Software. Serial Communication Embedded Systems and Software Serial Communication Slide 1 Using RESET Pin on AVRs Normally RESET, but can be configured via fuse setting to be general-purpose I/O Slide 2 Disabling RESET Pin on AVRs Normally

More information

Slide Set 9. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng

Slide Set 9. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng Slide Set 9 for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary March 2018 ENCM 369 Winter 2018 Section 01

More information

Parameterizable LocalLink FIFO Author: Wen Ying Wei, Dai Huang

Parameterizable LocalLink FIFO Author: Wen Ying Wei, Dai Huang Application Note: Virtex-II and Virtex-II Pro Families XAPP691 (v1.0.1) May 10, 2007 R Parameterizable LocalLink FIFO Author: Wen Ying Wei, Dai Huang Summary This application note describes the implementation

More information

Dr. Rafiq Zakaria Campus. Maulana Azad College of Arts, Science & Commerce, Aurangabad. Department of Computer Science. Academic Year

Dr. Rafiq Zakaria Campus. Maulana Azad College of Arts, Science & Commerce, Aurangabad. Department of Computer Science. Academic Year Dr. Rafiq Zakaria Campus Maulana Azad College of Arts, Science & Commerce, Aurangabad Department of Computer Science Academic Year 2015-16 MCQs on Operating System Sem.-II 1.What is operating system? a)

More information

Embedded Systems and Software

Embedded Systems and Software Embedded Systems and Software Serial Communication Serial Communication, Slide 1 Lab 5 Administrative Students should start working on this LCD issues Caution on using Reset Line on AVR Project Posted

More information

FIFO Generator v13.0

FIFO Generator v13.0 FIFO Generator v13.0 LogiCORE IP Product Guide Vivado Design Suite Table of Contents IP Facts Chapter 1: Overview Native Interface FIFOs.............................................................. 5

More information

Integrated Device Technology, Inc Stender Way, Santa Clara, CA Phone #: (408) Fax #: (408) Errata Notification

Integrated Device Technology, Inc Stender Way, Santa Clara, CA Phone #: (408) Fax #: (408) Errata Notification Integrated Device Technology, Inc. 2975 Stender Way, Santa Clara, CA - 95054 Phone #: (408) 727-6116 Fax #: (408) 727-2328 Errata Notification EN #: IEN01-02 Errata Revision #: 11/5/01 Issue Date: December

More information

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ...

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ... CHAPTER 6 1 Pipelining Instruction class Instruction memory ister read ALU Data memory ister write Total (in ps) Load word 200 100 200 200 100 800 Store word 200 100 200 200 700 R-format 200 100 200 100

More information

CS250 VLSI Systems Design Lecture 8: Introduction to Hardware Design Patterns

CS250 VLSI Systems Design Lecture 8: Introduction to Hardware Design Patterns CS250 VLSI Systems Design Lecture 8: Introduction to Hardware Design Patterns John Wawrzynek Chris Yarp (GSI) UC Berkeley Spring 2016 Slides from Krste Asanovic Lecture 8, Hardware Design Patterns A Difficult

More information

Suggested Readings! Recap: Pipelining improves throughput! Processor comparison! Lecture 17" Short Pipelining Review! ! Readings!

Suggested Readings! Recap: Pipelining improves throughput! Processor comparison! Lecture 17 Short Pipelining Review! ! Readings! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 4.5-4.7!! (Over the next 3-4 lectures)! Lecture 17" Short Pipelining Review! 3! Processor components! Multicore processors and programming! Recap: Pipelining

More information

HEAD HardwarE Accelerated Deduplication

HEAD HardwarE Accelerated Deduplication HEAD HardwarE Accelerated Deduplication Final Report CS710 Computing Acceleration with FPGA December 9, 2016 Insu Jang Seikwon Kim Seonyoung Lee Executive Summary A-Z development of deduplication SW version

More information

EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC

EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC April 12, 2012 John Wawrzynek Spring 2012 EECS150 - Lec24-hdl3 Page 1 Parallelism Parallelism is the act of doing more than one thing

More information

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM Memories Overview Memory Classification Read-Only Memory (ROM) Types of ROM PROM, EPROM, E 2 PROM Flash ROMs (Compact Flash, Secure Digital, Memory Stick) Random Access Memory (RAM) Types of RAM Static

More information

CPU Pipelining Issues

CPU Pipelining Issues CPU Pipelining Issues What have you been beating your head against? This pipe stuff makes my head hurt! L17 Pipeline Issues & Memory 1 Pipelining Improve performance by increasing instruction throughput

More information

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Processor Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Moore s Law Gordon Moore @ Intel (1965) 2 Computer Architecture Trends (1)

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences. Spring 2010 May 10, 2010

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences. Spring 2010 May 10, 2010 University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS150 J. Wawrzynek Spring 2010 May 10, 2010 Final Exam Name: ID number: This is

More information

EECS150 - Digital Design Lecture 11 SRAM (II), Caches. Announcements

EECS150 - Digital Design Lecture 11 SRAM (II), Caches. Announcements EECS15 - Digital Design Lecture 11 SRAM (II), Caches September 29, 211 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http//www-inst.eecs.berkeley.edu/~cs15 Fall

More information

Lecture 24: Sequential Logic Design. Let s refresh our memory.

Lecture 24: Sequential Logic Design. Let s refresh our memory. 18 100 Lecture 24: equential Logic esign 15 L24 1 James C. Hoe ept of ECE, CMU April 21, 2015 Today s Goal: tart thinking about stateful stuff Announcements: Read Rizzoni 12.6 HW 9 due Exam 3 on April

More information

EECS 151/251 FPGA Project Report

EECS 151/251 FPGA Project Report EECS 151/251 FPGA Project Report GSI: Vighnesh Iyer Team Number: 6 Partners: Ashwinlal Sreelal and Zhixin Alice Ye Due Date: Dec 9, 2016 Part I: Project Description The aims of this project were to develop

More information

Lecture 17 Introduction to Memory Hierarchies" Why it s important " Fundamental lesson(s)" Suggested reading:" (HP Chapter

Lecture 17 Introduction to Memory Hierarchies Why it s important  Fundamental lesson(s) Suggested reading: (HP Chapter Processor components" Multicore processors and programming" Processor comparison" vs." Lecture 17 Introduction to Memory Hierarchies" CSE 30321" Suggested reading:" (HP Chapter 5.1-5.2)" Writing more "

More information

3 Nonlocal Exit. Quiz Program Revisited

3 Nonlocal Exit. Quiz Program Revisited 3 Nonlocal Exit This chapter is about the commands catch and throw. These commands work together as a kind of super-stop command, which you can use to stop several levels of procedure invocation at once.

More information

COMP 273 Winter asynchronous I/O April 5, 2012

COMP 273 Winter asynchronous I/O April 5, 2012 All the I/O examples we have discussed use the system bus to send data between the CPU, main memory, and I/O controllers. The system bus runs at a slower clock speed than the CPU because of greater distances

More information

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1.2 ALGORITHMS ALGORITHM An Algorithm is a procedure or formula for solving a problem. It is a step-by-step set of operations to be performed. It is almost

More information

Processor Architecture

Processor Architecture Processor Architecture Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis Interfacing Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures Vahid, Givargis Introduction Embedded system functionality aspects Processing Transformation of data Implemented

More information

Introduction to Pipelining. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

Introduction to Pipelining. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Introduction to Pipelining Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L15-1 Performance Measures Two metrics of interest when designing a system: 1. Latency: The delay

More information

Tasks. Task Implementation and management

Tasks. Task Implementation and management Tasks Task Implementation and management Tasks Vocab Absolute time - real world time Relative time - time referenced to some event Interval - any slice of time characterized by start & end times Duration

More information

08 - Address Generator Unit (AGU)

08 - Address Generator Unit (AGU) October 2, 2014 Todays lecture Memory subsystem Address Generator Unit (AGU) Schedule change A new lecture has been entered into the schedule (to compensate for the lost lecture last week) Memory subsystem

More information

Relaxed Memory-Consistency Models

Relaxed Memory-Consistency Models Relaxed Memory-Consistency Models [ 9.1] In small multiprocessors, sequential consistency can be implemented relatively easily. However, this is not true for large multiprocessors. Why? This is not the

More information

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics Chapter 4 Objectives Learn the components common to every modern computer system. Chapter 4 MARIE: An Introduction to a Simple Computer Be able to explain how each component contributes to program execution.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATIONS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATIONS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATIONS ENGINEERING QUESTION BANK Course Name : DIGITAL DESIGN USING VERILOG HDL Course Code : A00 Class : II - B.

More information

Lecture 4: More Lab 1

Lecture 4: More Lab 1 Overview Lecture 4: More Lab 1 David Black-Schaffer davidbbs@stanford.edu EE183 Spring 2003 Hardware vs. Software Think about how many adders you are creating Hierarchical design is good for both scalability

More information

CHECKPOINT 3 Wireless Transceiver

CHECKPOINT 3 Wireless Transceiver UNIVERSITY OF CALIFORNIA AT BERKELEY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE CHECKPOINT 3 Wireless Transceiver 1.0 MOTIVATION The wireless, radio-frequency (RF)

More information

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS UNIT I

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS UNIT I KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS YEAR / SEM: III / V UNIT I NUMBER SYSTEM & BOOLEAN ALGEBRA

More information

Architectural Support for Operating Systems

Architectural Support for Operating Systems Architectural Support for Operating Systems Today Computer system overview Next time OS components & structure Computer architecture and OS OS is intimately tied to the hardware it runs on The OS design

More information

A 3-D CPU-FPGA-DRAM Hybrid Architecture for Low-Power Computation

A 3-D CPU-FPGA-DRAM Hybrid Architecture for Low-Power Computation A 3-D CPU-FPGA-DRAM Hybrid Architecture for Low-Power Computation Abstract: The power budget is expected to limit the portion of the chip that we can power ON at the upcoming technology nodes. This problem,

More information

To Everyone... iii To Educators... v To Students... vi Acknowledgments... vii Final Words... ix References... x. 1 ADialogueontheBook 1

To Everyone... iii To Educators... v To Students... vi Acknowledgments... vii Final Words... ix References... x. 1 ADialogueontheBook 1 Contents To Everyone.............................. iii To Educators.............................. v To Students............................... vi Acknowledgments........................... vii Final Words..............................

More information

Ten Reasons to Optimize a Processor

Ten Reasons to Optimize a Processor By Neil Robinson SoC designs today require application-specific logic that meets exacting design requirements, yet is flexible enough to adjust to evolving industry standards. Optimizing your processor

More information

-Device. -Physical or virtual thing that does something -Software + hardware to operate a device (Controller runs port, Bus, device)

-Device. -Physical or virtual thing that does something -Software + hardware to operate a device (Controller runs port, Bus, device) Devices -Host -CPU -Device -Controller device) +memory +OS -Physical or virtual thing that does something -Software + hardware to operate a device (Controller runs port, Bus, Communication -Registers -Control

More information

INPUT-OUTPUT ORGANIZATION

INPUT-OUTPUT ORGANIZATION INPUT-OUTPUT ORGANIZATION Peripheral Devices: The Input / output organization of computer depends upon the size of computer and the peripherals connected to it. The I/O Subsystem of the computer, provides

More information

Design of Asynchronous Interconnect Network for SoC

Design of Asynchronous Interconnect Network for SoC Final Report for ECE 6770 Project Design of Asynchronous Interconnect Network for SoC Hosuk Han 1 han@ece.utah.edu Junbok You jyou@ece.utah.edu May 12, 2007 1 Team leader Contents 1 Introduction 1 2 Project

More information

MLR Institute of Technology

MLR Institute of Technology MLR Institute of Technology Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad 500 043 Course Name Course Code Class Branch ELECTRONICS AND COMMUNICATIONS ENGINEERING QUESTION BANK : DIGITAL DESIGN

More information

Virtual Memory. ICS332 Operating Systems

Virtual Memory. ICS332 Operating Systems Virtual Memory ICS332 Operating Systems Virtual Memory Allow a process to execute while not completely in memory Part of the address space is kept on disk So far, we have assumed that the full address

More information

Job Posting (Aug. 19) ECE 425. ARM7 Block Diagram. ARM Programming. Assembly Language Programming. ARM Architecture 9/7/2017. Microprocessor Systems

Job Posting (Aug. 19) ECE 425. ARM7 Block Diagram. ARM Programming. Assembly Language Programming. ARM Architecture 9/7/2017. Microprocessor Systems Job Posting (Aug. 19) ECE 425 Microprocessor Systems TECHNICAL SKILLS: Use software development tools for microcontrollers. Must have experience with verification test languages such as Vera, Specman,

More information

CS 136: Advanced Architecture. Review of Caches

CS 136: Advanced Architecture. Review of Caches 1 / 30 CS 136: Advanced Architecture Review of Caches 2 / 30 Why Caches? Introduction Basic goal: Size of cheapest memory... At speed of most expensive Locality makes it work Temporal locality: If you

More information

Quick Introduction to SystemVerilog: Sequental Logic

Quick Introduction to SystemVerilog: Sequental Logic ! Quick Introduction to SystemVerilog: Sequental Logic Lecture L3 8-545 Advanced Digital Design ECE Department Many elements Don Thomas, 24, used with permission with credit to G. Larson Today Quick synopsis

More information

(Refer Slide Time: 01:25)

(Refer Slide Time: 01:25) Computer Architecture Prof. Anshul Kumar Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 32 Memory Hierarchy: Virtual Memory (contd.) We have discussed virtual

More information

Practice Problems (Con t) The ALU performs operation x and puts the result in the RR The ALU operand Register B is loaded with the contents of Rx

Practice Problems (Con t) The ALU performs operation x and puts the result in the RR The ALU operand Register B is loaded with the contents of Rx Microprogram Control Practice Problems (Con t) The following microinstructions are supported by each CW in the CS: RR ALU opx RA Rx RB Rx RB IR(adr) Rx RR Rx MDR MDR RR MDR Rx MAR IR(adr) MAR Rx PC IR(adr)

More information

Input Output (IO) Management

Input Output (IO) Management Input Output (IO) Management Prof. P.C.P. Bhatt P.C.P Bhatt OS/M5/V1/2004 1 Introduction Humans interact with machines by providing information through IO devices. Manyon-line services are availed through

More information

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15 Introduction to Real-Time Communications Real-Time and Embedded Systems (M) Lecture 15 Lecture Outline Modelling real-time communications Traffic and network models Properties of networks Throughput, delay

More information

CARDBUS INTERFACE USER MANUAL

CARDBUS INTERFACE USER MANUAL CARDBUS INTERFACE USER MANUAL 1 Scope The COM-13xx ComBlock modules are PC cards which support communication with a host computer through a standard CardBus interface. These ComBlock modules can be used

More information

CS 2506 Computer Organization II Test 2. Do not start the test until instructed to do so! printed

CS 2506 Computer Organization II Test 2. Do not start the test until instructed to do so! printed Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted fact sheet, with a restriction: 1) one 8.5x11 sheet, both sides, handwritten

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

FPGA for Software Engineers

FPGA for Software Engineers FPGA for Software Engineers Course Description This course closes the gap between hardware and software engineers by providing the software engineer all the necessary FPGA concepts and terms. The course

More information

V. Primary & Secondary Memory!

V. Primary & Secondary Memory! V. Primary & Secondary Memory! Computer Architecture and Operating Systems & Operating Systems: 725G84 Ahmed Rezine 1 Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM)

More information

Amrita Vishwa Vidyapeetham. EC429 VLSI System Design Answer Key

Amrita Vishwa Vidyapeetham. EC429 VLSI System Design Answer Key Time: Two Hours Amrita Vishwa Vidyapeetham B.Tech Second Assessment March 2013 Eighth Semester Electrical and Electronics Engineering EC429 VLSI System Design Answer Key Answer all Questions Roll No: Maximum:

More information

(Refer Slide Time: 00:01:53)

(Refer Slide Time: 00:01:53) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 36 Design of Circuits using MSI Sequential Blocks (Refer Slide Time:

More information

Course Administration

Course Administration Spring 207 EE 363: Computer Organization Chapter 5: Large and Fast: Exploiting Memory Hierarchy - Avinash Kodi Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 4570

More information

Unit 5. Memory and I/O System

Unit 5. Memory and I/O System Unit 5 Memory and I/O System 1 Input/Output Organization 2 Overview Computer has ability to exchange data with other devices. Human-computer communication Computer-computer communication Computer-device

More information

Definitions. Key Objectives

Definitions. Key Objectives CHAPTER 2 Definitions Key Objectives & Types of models & & Black box versus white box Definition of a test Functional verification requires that several elements are in place. It relies on the ability

More information

Contents Slide Set 9. Final Notes on Textbook Chapter 7. Outline of Slide Set 9. More about skipped sections in Chapter 7. Outline of Slide Set 9

Contents Slide Set 9. Final Notes on Textbook Chapter 7. Outline of Slide Set 9. More about skipped sections in Chapter 7. Outline of Slide Set 9 slide 2/41 Contents Slide Set 9 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014

More information

CMSC 341 Lecture 16/17 Hashing, Parts 1 & 2

CMSC 341 Lecture 16/17 Hashing, Parts 1 & 2 CMSC 341 Lecture 16/17 Hashing, Parts 1 & 2 Prof. John Park Based on slides from previous iterations of this course Today s Topics Overview Uses and motivations of hash tables Major concerns with hash

More information

CS 2506 Computer Organization II Test 2. Do not start the test until instructed to do so! printed

CS 2506 Computer Organization II Test 2. Do not start the test until instructed to do so! printed Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted fact sheet, with a restriction: 1) one 8.5x11 sheet, both sides, handwritten

More information

Department of Electrical and Computer Engineering Introduction to Computer Engineering I (ECSE-221) Assignment 3: Sequential Logic

Department of Electrical and Computer Engineering Introduction to Computer Engineering I (ECSE-221) Assignment 3: Sequential Logic Available: February 16, 2009 Due: March 9, 2009 Department of Electrical and Computer Engineering (ECSE-221) Assignment 3: Sequential Logic Information regarding submission and final deposition time can

More information

THE OPTIUM MICROPROCESSOR AN FPGA-BASED IMPLEMENTATION

THE OPTIUM MICROPROCESSOR AN FPGA-BASED IMPLEMENTATION THE OPTIUM MICROPROCESSOR AN FPGA-BASED IMPLEMENTATION Radu Balaban Computer Science student, Technical University of Cluj Napoca, Romania horizon3d@yahoo.com Horea Hopârtean Computer Science student,

More information

CS 2506 Computer Organization II Test 2. Do not start the test until instructed to do so! printed

CS 2506 Computer Organization II Test 2. Do not start the test until instructed to do so! printed Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted fact sheet, with a restriction: 1) one 8.5x11 sheet, both sides, handwritten

More information

Characteristics of Memory Location wrt Motherboard. CSCI 4717 Computer Architecture. Characteristics of Memory Capacity Addressable Units

Characteristics of Memory Location wrt Motherboard. CSCI 4717 Computer Architecture. Characteristics of Memory Capacity Addressable Units CSCI 4717/5717 Computer Architecture Topic: Cache Memory Reading: Stallings, Chapter 4 Characteristics of Memory Location wrt Motherboard Inside CPU temporary memory or registers Motherboard main memory

More information

CompuScope bit, 100 MHz digital input card for the PCI bus

CompuScope bit, 100 MHz digital input card for the PCI bus CompuScope 3200 32 bit, 100 MHz digital input card for the PCI bus Fast and versatile digital capture card with logic analyzer characteristics for electronic test applications. FEATURES Capture 32 bits

More information

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v2.00.a)

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v2.00.a) DS799 December 14, 2010 LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v2.00.a) Introduction The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP core for use with the Xilinx

More information

Where Does The Cpu Store The Address Of The

Where Does The Cpu Store The Address Of The Where Does The Cpu Store The Address Of The Next Instruction To Be Fetched The three most important buses are the address, the data, and the control buses. The CPU always knows where to find the next instruction

More information

! Program logic functions, interconnect using SRAM. ! Advantages: ! Re-programmable; ! dynamically reconfigurable; ! uses standard processes.

! Program logic functions, interconnect using SRAM. ! Advantages: ! Re-programmable; ! dynamically reconfigurable; ! uses standard processes. Topics! SRAM-based FPGA fabrics:! Xilinx.! Altera. SRAM-based FPGAs! Program logic functions, using SRAM.! Advantages:! Re-programmable;! dynamically reconfigurable;! uses standard processes.! isadvantages:!

More information

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today.

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today. Overview This set of notes introduces many of the features available in the FPGAs of today. The majority use SRAM based configuration cells, which allows fast reconfiguation. Allows new design ideas to

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to

More information

CPSC 313, 04w Term 2 Midterm Exam 2 Solutions

CPSC 313, 04w Term 2 Midterm Exam 2 Solutions 1. (10 marks) Short answers. CPSC 313, 04w Term 2 Midterm Exam 2 Solutions Date: March 11, 2005; Instructor: Mike Feeley 1a. Give an example of one important CISC feature that is normally not part of a

More information