CET360 S12 DEMO PROGRAM #1 (C)

Size: px
Start display at page:

Download "CET360 S12 DEMO PROGRAM #1 (C)"

Transcription

1 CET360 S12 DEMO PROGRAM #1 (C) / ONE.C HCS12 Demo Program for CET Feb-2009 jss This program is the C implementation of ONE.ASM, the demo program that sets up port T as all outputs & increments it like an 8-bit up counter. The following code demonstrates a number of high-level language embedded system programming techniques including 1) access of physical I/O locations using "pointer macros" 2) use of above pointer macros in C expressions & statements 3) use of "inline" assembly code Additionally, the linker parameter file "ONE.PRM" also demonstrates 4) assignment of object components (data, code, etc) to appropriate physical memory locations 5) initialization of processor reset/interrupt vectors To "try out" this demo, perform the following simple procedure 1) enter CodeWarrior CW12 & create a new project on your disk 2) copy this file (ONE.C) to your project folder (Sources subfolder) then add it to your project 3) make sure ONE.C is active instead of main.c 4) build the project using Project->Make (or F7) 5) you should now be ready Flash your code to the S12 and run it To see the effect of the compiler & fully understand its function, examine ONE.LST after compiling this program. To have the compiler generate this file, you must turn on the "Generate Listing File" option in the compiler. This is found under the Compiler/Options settings (Alt-F7), on the Output tab. To see the effect of the linker, examine ONE.MAP after linking. To have the linker generate this file, you must turn on the "Generate a map file" option. This is found under the Linker/Options settings, Output tab. / typedef unsigned char Byte; typedef unsigned int Word; // define some MCU I/O registers as "pointer macros" #define PORTA ((volatile Byte )(0x00)) // I/O port A #define DDRA (( Byte )(0x02)) // DDR A #define PEAR (( Byte )(0x0A)) // Port E Assignment Reg #define mpear_neclk 0x10 // No External E Clock bit (when 1) #define PTT ((volatile Byte )(0x240)) // I/O Port T #define DDRT (( Byte )(0x242)) // Data Direction Reg T Byte lp_ctr; // 1-byte variable used as loop counter // function "main" is the primary routine of any C program void main() { PEAR &= ~mpear_neclk; // output ECLK on PE4 PTT = 0; // set initial port T outputs all low DDRT = 0xFF; // make port T all outputs Top / Now we switch to "inline assembly" mode, because 1) this is a timing sensitive (using CPU cycles) sequence, and 2) it would've been very hard to replicate this exact sequence in C Also the BRNs have been replaced with NOPs since CodeWarrior's code optimizer tosses them away! A NOP is 1 cycle just like BRN. / asm { loop1 movb #100,lp_ctr // initialize delay loop ctr. loop2 nop // waste some cycles... nop dec lp_ctr // decrement loop ctr bne loop2 // repeat until zero }; PTT += 1; // bump port T's output by one goto Top; // 'real' embedded programs never end! / it would've been better to use a while(1) loop instead of a goto, but this is "purer" translation of one.asm / }

2 / ONE.PRM Linker Parameter File for ONE.C demo program / / NAMES section is filled-in by compiler automatically / NAMES END / SEGMENT entries define meaningful names to address ranges / SEGMENTS RAM = READ_WRITE 0x0800 TO 0x0FFF; / unbanked FLASH ROM / ROM_4000 = READ_ONLY 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY 0xC000 TO 0xFEFF; END / PLACEMENT entries define where objects get allocated in the memory map / PLACEMENT _PRESTART, / Used in HIWARE format jump to _Startup at code start / STARTUP, / startup data structures / ROM_VAR, / constant variables / STRINGS, / string literals / VIRTUAL_TABLE_SEGMENT, / C++ virtual table segment / DEFAULT_ROM, NON_BANKED, / runtime routines which must not be banked / OTHER_ROM, COPY / copy down information how to initialize variables / INTO ROM_C000; DEFAULT_RAM INTO RAM; END / define required size of stack / STACKSIZE 0x100 / define reset vector (minimally) and other interrupt vectors / //VECTOR 0 _Startup / reset vector this is the default entry point for a C/C++ application. / // but I prefer VECTOR ADDRESS 0xFFFE _Startup

3 ONE.PRE C Compiler Preprocessor Output Listing / FILE 'C\Metrowerks Projects\HC12\one-c\Sources\one-a.c' / / 1 / / 33 / / 34 / / 35 / typedef unsigned char Byte ; / 36 / typedef unsigned int Word ; / 37 / / 38 / / 39 / / 40 / / 41 / / 42 / / 43 / / 44 / / 45 / / 46 / / 47 / Byte lp_ctr ; / 48 / / 49 / / 50 / void main ( ) / 51 / { / 52 / ( ( Byte ) ( 0x0A ) ) &= ~ 0x10 ; / 53 / ( ( volatile Byte ) ( 0x240 ) ) = 0 ; / 54 / ( ( Byte ) ( 0x242 ) ) = 0xFF ; / 55 / Top / 56 / / 57 / / 58 / / 59 / / 60 / / 61 / / 62 / / 63 / / 64 / asm { / 65 / loop1 movb # 100, lp_ctr / 66 / loop2 nop / 67 / nop / 68 / dec lp_ctr / 69 / bne loop2 / 70 / } ; / 71 / ( ( volatile Byte ) ( 0x240 ) ) += 1 ; / 72 / goto Top ; / 73 / / 74 / / 75 / } / 76 / / 77 / / 78 /

4 ONE.LST C Compiler Output Listing ANSI-C/cC++ Compiler for HC12 V Build 4047, Feb / 2 ONE.C HCS12 Demo Program for CET Feb-2006 jss 4 33 / typedef unsigned char Byte; 36 typedef unsigned int Word; // define some MCU I/O registers as "pointer macros" #define PORTA ((volatile Byte )(0x00)) // I/O port A 41 #define DDRA (( Byte )(0x02)) // DDR A 42 #define PEAR (( Byte )(0x0A)) // Port E Assignment Reg 43 #define mpear_neclk 0x10 // No External E Clock bit(when 1) 44 #define PTT ((volatile Byte )(0x240)) // I/O Port T 45 #define DDRT (( Byte )(0x242)) // Data Direction Reg T Byte lp_ctr; // 1-byte variable used as loop counter // function "main" is the primary routine of any C program 50 void main() 51 { Function main Source C\Metrowerks Projects\HC12\one-c\Sources\one-a.c 52 PEAR &= ~mpear_neclk; // output ECLK on PE d0a10 BCLR 10,#16 53 PTT = 0; // set initial port T outputs all low CLR DDRT = 0xFF; // make port T all outputs 0006 c6ff LDAB # b0242 STAB Top 56 / 57 Now we switch to "inline assembly" mode, because 58 1) this is a timing sensitive (using CPU cycles) sequence, and 59 2) it would've been very hard to replicate this exact sequence in C Also the BRNs have been replaced with NOPs since CodeWarrior's 62 code optimizer tosses them away! A NOP is 1 cycle just like BRN. 63 / 64 asm { 65 loop1 movb #100,lp_ctr // initialize delay loop ctr. 000b 180b MOVB #100,lp_ctr 66 loop2 nop // waste some cycles a7 NOP 67 nop 0011 a7 NOP 68 dec lp_ctr // decrement loop ctr DEC lp_ctr 69 bne loop2 // repeat until zero f9 BNE -5 ;abs = }; 71 PTT += 1; // bump port T's output by one INC goto Top; // 'real' embedded programs never end! 001a 20ef BRA -15 ;abs = 000b 73 / it would've been better to use a while(1) loop instead of a goto, 74 but this is "purer" translation of one.asm / 75 } 76

5 ONE.MAP Linker Map File Output PROGRAM "C\Metrowerks Projects\HC12\one-c\bin\Simulator.abs" TARGET SECTION Processor Motorola HC12 Memory Model SMALL File Format ELF\Dwarf 2.0 Linker SmartLinker V Build 4047, Feb FILE SECTION one-a.c.o Model SMALL, Lang ANSI-C Start12.c.o Model SMALL, Lang ANSI-C STARTUP SECTION Entry point 0xC029 (_Startup) _startupdata is allocated at 0xC039 and uses 23 Bytes extern struct _tagstartup { unsigned flags 0 _PFunc main 0xC056 (main) long stackoffset 0x900 unsigned nofzeroout 1 _Range pzeroout 0x800 1 _Copy tocopydownbeg 0xC072 int noflibinits 0 _LibInit libinits 0xC054 int nofinitbodies 0 _Cpp initbodies 0xC056 int noffinibodies 0 _Cpp finibodies 0xC056 } _startupdata; SECTION-ALLOCATION SECTION Section Name Size Type From To Segment.init 57 R 0xC000 0xC038 ROM_C000.startData 29 R 0xC039 0xC055 ROM_C000.text 28 R 0xC056 0xC071 ROM_C000.copy 2 R 0xC072 0xC073 ROM_C000.common 1 R/W 0x800 0x800 RAM.stack 256 R/W 0x801 0x900 RAM.vectSeg223_vect 2 R 0xFFFE 0xFFFF.vectSeg223 Summary of section sizes per section type READ_ONLY (R) 76 (dec 118) READ_WRITE (R/W) 101 (dec 257) NO_INIT (N/I) 103 (dec 259) VECTOR-ALLOCATION SECTION Address InitValue InitFunction 0xFFFE 0xC029 _Startup OBJECT-ALLOCATION SECTION Name Module Addr hsize dsize Ref Section RLIB MODULE -- one-a.c.o -- - PROCEDURES main C056 1C 28 0.text - VARIABLES lp_ctr common MODULE -- Start12.c.o -- - PROCEDURES Init C init _Startup C init - VARIABLES _startupdata C startData

6 MODULE STATISTIC Name Data Code Const one-a.c.o Start12.c.o other SECTION USE IN OBJECT-ALLOCATION SECTION SECTION ".text" main SECTION ".init" Init _Startup SECTION ".common" lp_ctr OBJECT LIST SORTED BY ADDRESS Name Addr hsize dsize Ref Section RLIB lp_ctr common Init C init _Startup C init main C056 1C 28 0.text UNUSED-OBJECTS SECTION COPYDOWN SECTION OBJECT-DEPENDENCIES SECTION Init USES _startupdata _Startup USES _startupdata Init main USES lp_ctr DEPENDENCY TREE main and _Startup Group +- main +- _Startup +- Init STATISTIC SECTION ExeFile Number of blocks to be downloaded 4 Total size of all blocks to be downloaded 118

Comparison of C and Assembly How to compile a C program using CodeWarrior

Comparison of C and Assembly How to compile a C program using CodeWarrior Comparison of C and Assembly How to compile a C program using CodeWarrior o Using pointers to access contents of specific addresses in C o Including and using derivative.h or hcs12.h to use in MC9S12 port

More information

Comparison of C and Assembly How to compile a C program using CodeWarrior

Comparison of C and Assembly How to compile a C program using CodeWarrior Comparison of C and Assembly How to compile a C program using CodeWarrior o Using pointers to access contents of specific addresses in C o Including and using derivative.h or hcs12.h to use in MC9S12 port

More information

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3. You will be able to use all of the Motorola data manuals on the exam.

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3. You will be able to use all of the Motorola data manuals on the exam. Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3 o Comparison of C and Assembly programs for the HC12 o How to compile a C program using the GNU-C compiler o Using pointers to access

More information

Technical Note TN 238

Technical Note TN 238 HCS12X Data Definition The present document describes how programmer can help the HCS12X compiler to generate the more optimal code for data access. It will cover following topics: Variables allocated

More information

ME 4447/ME Microprocessor Control of Manufacturing Systems/ Introduction to Mechatronics. Instructor: Professor Charles Ume

ME 4447/ME Microprocessor Control of Manufacturing Systems/ Introduction to Mechatronics. Instructor: Professor Charles Ume ME 4447/ME 6405 Microprocessor Control of Manufacturing Systems/ Introduction to Mechatronics Instructor: Professor Charles Ume Lecture on Codewarrior Integrated Development Environment Contents Overview

More information

Application Note. Introduction. The MC9S12DP256 Memory Map. AN2216/D Rev. 1, 12/2001. MC9S12DP256 Software Development Using Metrowerk s Codewarrior

Application Note. Introduction. The MC9S12DP256 Memory Map. AN2216/D Rev. 1, 12/2001. MC9S12DP256 Software Development Using Metrowerk s Codewarrior Application Note AN2216/D Rev. 1, 12/2001 MC9S12DP256 Software Development Using Metrowerk s Codewarrior by Stuart Robb Applications Engineer Motorola, East Kilbride Introduction Metrowerk s Codewarrior

More information

Introduction. Keywords: MAXQ, IAR, memory allocation, flash data, flash storage, SRAM

Introduction. Keywords: MAXQ, IAR, memory allocation, flash data, flash storage, SRAM Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 5262 Maxim > Design Support > Technical Documents > Application Notes > Optoelectronics > APP 5262 Maxim > Design

More information

Exam 1 Feb. 23, 25, 27?

Exam 1 Feb. 23, 25, 27? Exam 1 Feb. 23, 25, 27? You will be able to use all of the Motorola data manuals on the exam. No calculators will be allowed for the exam. Numbers Decimal to Hex (signed and unsigned) Hex to Decimal (signed

More information

Chapter 1. Solutions Solution 1.1. Most RAMs are volatile, meaning the information is lost if power is removed then restored.

Chapter 1. Solutions Solution 1.1. Most RAMs are volatile, meaning the information is lost if power is removed then restored. Chapter 1. Solutions Solution 1.1. Most RAMs are volatile, meaning the information is lost if power is removed then restored. Solution 1.2. The bus signals of the MC9S12C32 are AD15-0, R/W, LSTRB and E.

More information

EE475 Lab #3 Fall Memory Placement and Interrupts

EE475 Lab #3 Fall Memory Placement and Interrupts EE475 Lab #3 Fall 2005 Memory Placement and Interrupts In this lab you will investigate the way in which the CodeWarrior compiler and linker interact to place your compiled code and data in the memory

More information

ME 4447/6405 Introduction to Mechatronics Instructor: Professor Charles Ume

ME 4447/6405 Introduction to Mechatronics Instructor: Professor Charles Ume ME 4447/6405 Introduction to Mechatronics Instructor: Professor Charles Ume Lecture on Codewarrior Integrated Development Environment Contents Overview of C Compliers for HCS12 CodeWarrior Pointers Interrupts

More information

EE 308 Spring Lecture 28 March 30, 2012 Review for Exam 2. Introduction to the MC9S12 Expanded Mode

EE 308 Spring Lecture 28 March 30, 2012 Review for Exam 2. Introduction to the MC9S12 Expanded Mode Lecture 28 March 30, 2012 Review for Exam 2 Introduction to the MC9S12 Expanded Mode 1 Review for Exam 2 1. C Programming (a) Setting and clearing bits in registers PORTA = PORTA 0x02; PORTA = PORTA &

More information

Interrupts. How can we synchronize with a peripheral? Polling

Interrupts. How can we synchronize with a peripheral? Polling Interrupts How can we synchronize with a peripheral? Polling run a program loop continually checking status of the peripheral wait for it to be ready for us to communicate with it Then handle I/O with

More information

Computer Systems Lecture 9

Computer Systems Lecture 9 Computer Systems Lecture 9 CPU Registers in x86 CPU status flags EFLAG: The Flag register holds the CPU status flags The status flags are separate bits in EFLAG where information on important conditions

More information

Chapter 10. Programming in C

Chapter 10. Programming in C Chapter 10 Programming in C Lesson 05 Functions in C C program Consists of three parts preprocessor directives macros main function functions 3 Function Each has a name (for identity ID) May have the arguments

More information

EE319 K Lecture 3. Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator. University of Texas ECE

EE319 K Lecture 3. Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator. University of Texas ECE EE319 K Lecture 3 Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator University of Texas ECE Introduction (von Neumann architecture) processor Bus Memory Mapped I/O System Input Devices

More information

Debugger Flash Programming

Debugger Flash Programming Debugger Flash Programming Revised 07/17/2003 Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks Corp. in the US and/or other countries. All other tradenames and trademarks

More information

Technical Note (8 & 16-bits) TN 98

Technical Note (8 & 16-bits) TN 98 Using Development Tools Kit with WinIDEA Configuring WinIDEA for the Metrowerks Development Tools Some configurations are required in order to make an efficient use from the development Tools within WinIDEA.

More information

RL78 Development Environment Migration Guide

RL78 Development Environment Migration Guide RL78 Development Environment Migration Guide Migration between RL78 family (IDE ed.) (CA78K0R to CC-RL) December 28, 2016 R20UT3415EJ0102 Software Business Division Renesas System Design Co., Ltd 2016

More information

Program SoC using C Language

Program SoC using C Language Program SoC using C Language 1 Module Overview General understanding of C, program compilation, program image, data storage, data type, and how to access peripherals using C language; Program SoC using

More information

Migrating from Keil µvision for 8051 to IAR Embedded Workbench for 8051

Migrating from Keil µvision for 8051 to IAR Embedded Workbench for 8051 Migration guide Migrating from Keil µvision for 8051 to for 8051 Use this guide as a guideline when converting project files from the µvision IDE and source code written for Keil toolchains for 8051 to

More information

Migrating from Keil µvision for 8051 to IAR Embedded Workbench for 8051

Migrating from Keil µvision for 8051 to IAR Embedded Workbench for 8051 Migration guide Migrating from Keil µvision for 8051 to for 8051 Use this guide as a guideline when converting project files from the µvision IDE and source code written for Keil toolchains for 8051 to

More information

AN1745. Interfacing the HC705C8A to an LCD Module By Mark Glenewinkel Consumer Systems Group Austin, Texas. Introduction

AN1745. Interfacing the HC705C8A to an LCD Module By Mark Glenewinkel Consumer Systems Group Austin, Texas. Introduction Order this document by /D Interfacing the HC705C8A to an LCD Module By Mark Glenewinkel Consumer Systems Group Austin, Texas Introduction More and more applications are requiring liquid crystal displays

More information

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3 Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3 o Comparison of C and Assembly programs for the HC12 o How to compile a C program using the GNU-C compiler o Using pointers to access

More information

How to use CodeWarrior ASM with Adapt9S12 and Serial Monitor.doc

How to use CodeWarrior ASM with Adapt9S12 and Serial Monitor.doc How to use CodeWarrior ASM with Adapt9S12 and Serial Monitor.doc This document assumes that CW is already been installed. It further assumes that the user has all the necessary hardware and just need assistance

More information

ARM PROGRAMMING. When use assembly

ARM PROGRAMMING. When use assembly ARM PROGRAMMING Bùi Quốc Bảo When use assembly Functions that cannot be implemented in C, such as special register accesses and exclusive accesses Timing-critical routines Tight memory requirements, causing

More information

Kinetis Bootloader to Update Multiple Devices in a Field Bus Network

Kinetis Bootloader to Update Multiple Devices in a Field Bus Network Freescale Semiconductor, Inc. Document Number: AN5204 Application Note Rev. 0, 01/2016 Kinetis Bootloader to Update Multiple Devices in a Field Bus Network 1. Introduction This application note describes

More information

538 Lecture Notes Week 7

538 Lecture Notes Week 7 538 Lecture Notes Week 7 (October 14, 2013) 1/12 538 Lecture Notes Week 7 Answers to last week's questions 1. Embedded System Programming in C C, developed to write UNIX (by the people who invented UNIX),

More information

AN Kbyte Addressing with the M68HC11. Overview

AN Kbyte Addressing with the M68HC11. Overview Order this document by /D 128-Kbyte Addressing with the M68HC11 By Ross Mitchell MCU Applications Engineering Freescale Ltd. East Kilbride, Scotland Overview The maximum direct addressing capability of

More information

EE 308 Spring A software delay. To enter a software delay, put in a nested loop, just like in assembly.

EE 308 Spring A software delay. To enter a software delay, put in a nested loop, just like in assembly. More on Programming the 9S12 in C Huang Sections 5.2 through 5.4 Introduction to the MC9S12 Hardware Subsystems Huang Sections 8.2-8.6 ECT_16B8C Block User Guide A summary of MC9S12 hardware subsystems

More information

Introduction to the MC9S12 Hardware Subsystems

Introduction to the MC9S12 Hardware Subsystems Setting and clearing bits in C Using pointers in C o Program to count the number of negative numbers in an area of memory Introduction to the MC9S12 Hardware Subsystems o The MC9S12 timer subsystem Operators

More information

ECE372 CodeWarrior Simulator Andreou/Michaelides

ECE372 CodeWarrior Simulator Andreou/Michaelides CodeWarrior simulator demo The code can be written in C language (higher level) as well as in Assembly language (lower level). General C commands are applied across microcontroller families as opposed

More information

This simulated machine consists of four registers that will be represented in your software with four global variables.

This simulated machine consists of four registers that will be represented in your software with four global variables. CSCI 4717 Computer Architecture Project 1: Two-Stage Instuction Decoder Due: Monday, September 21, 26 at 11:59 PM What to submit: You will be submitting a text file containing two C functions, fetchnextinstruction()

More information

CMPE-013/L. Introduction to C Programming

CMPE-013/L. Introduction to C Programming CMPE-013/L Introduction to C Programming Bryant Wenborg Mairs Spring 2014 What we will cover in 13/L Embedded C on a microcontroller Specific issues with microcontrollers Peripheral usage Reading documentation

More information

MPLAB C1X Quick Reference Card

MPLAB C1X Quick Reference Card MPLAB C1X Quick Reference Card 34 MPLAB C17 Quick Reference MPLAB C17 Command Switches Command Description /?, /h Display help screen /D[=] Define a macro /FO= Set object file name /FE=

More information

EE345L Spring 2006 May 10, 2006, 2-5pm Page 1 of 8

EE345L Spring 2006 May 10, 2006, 2-5pm Page 1 of 8 EE345L Spring 2006 May 10, 2006, 2-5pm Page 1 of 8 Jonathan W. Valvano You can use the textbook, but no other materials. You must put your answers in the boxes on the answer pages. You have 3 hours, so

More information

real-time kernel documentation

real-time kernel documentation version 1.1 real-time kernel documentation Introduction This document explains the inner workings of the Helium real-time kernel. It is not meant to be a user s guide. Instead, this document explains overall

More information

MCO556 Practice Test 2

MCO556 Practice Test 2 Question 1 : MCO556 For the program shell on the following page, fill in the blanks and add the code required to create a program which flashes LEDs. The LED flashing must be controlled from the keypad

More information

AN2093. Motorola Semiconductor Application Note. Creating Efficient C Code for the MC68HC08. Freescale Semiconductor, I.

AN2093. Motorola Semiconductor Application Note. Creating Efficient C Code for the MC68HC08. Freescale Semiconductor, I. nc. Motorola Semiconductor Application Note Order this document by /D Creating Efficient C Code for the MC68HC08 by Stuart Robb East Kilbride, Scotland 1 Introduction The C programming language is a powerful,

More information

MC68705P3 Bootstrap ROM

MC68705P3 Bootstrap ROM MC68705P3 Bootstrap ROM ;This is a listing of the Bootstrap ROM which resides in Motorola's MC68705P3 single chip ;micros. Its sole purpose is to program its own EPROM by copying the data from an external

More information

ECE331 Handout 3- ASM Instructions, Address Modes and Directives

ECE331 Handout 3- ASM Instructions, Address Modes and Directives ECE331 Handout 3- ASM Instructions, Address Modes and Directives ASM Instructions Functional Instruction Groups Data Transfer/Manipulation Arithmetic Logic & Bit Operations Data Test Branch Function Call

More information

How to set Keil compiler environment v1.0

How to set Keil compiler environment v1.0 Application Note AN0008 - Revised 28, April 2013 How to set Keil compiler environment v1.0 1. Introduction This application note describes the Keil 8051 compiler environment setting for ABOV 8051 MCU when

More information

MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes. Summary of HCS12 addressing modes ADDRESSING MODES

MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes. Summary of HCS12 addressing modes ADDRESSING MODES MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes o Review of Addressing Modes o Which branch instruction to use (signed vs unsigned) o Using X and Y registers

More information

Pragma intrinsic and more

Pragma intrinsic and more Pragma intrinsic and more C Language Extensions: This section gives a brief overview of the C language extensions available in the MSP430 IAR C/C++ Compiler. The compiler provides a wide set of extensions,

More information

HC11 Instruction Set Architecture

HC11 Instruction Set Architecture HC11 Instruction Set Architecture High-level HC11 architecture Interrupt logic MEMORY Timer and counter M8601 CPU core Serial I/O A/D converter Port A Port B Port C Port D Port E CMPE12 Summer 2009 16-2

More information

Page 1. Last Time. Today. Embedded Compilers. Compiler Requirements. What We Get. What We Want

Page 1. Last Time. Today. Embedded Compilers. Compiler Requirements. What We Get. What We Want Last Time Today Low-level parts of the toolchain for embedded systems Linkers Programmers Booting an embedded CPU Debuggers JTAG Any weak link in the toolchain will hinder development Compilers: Expectations

More information

C Language Programming, Interrupts and Timer Hardware

C Language Programming, Interrupts and Timer Hardware C Language Programming, Interrupts and Timer Hardware In this sequence of three labs, you will learn how to write simple C language programs for the MC9S12 microcontroller, and how to use interrupts and

More information

HC11 Instruction Set Architecture

HC11 Instruction Set Architecture HC11 Instruction Set Architecture Summer 2008 High-level HC11 architecture Interrupt logic MEMORY Timer and counter M8601 CPU core Serial I/O A/D converter Port A Port B Port C Port D Port E CMPE12 Summer

More information

COSC345 Software Engineering. Basic Computer Architecture and The Stack

COSC345 Software Engineering. Basic Computer Architecture and The Stack COSC345 Software Engineering Basic Computer Architecture and The Stack Outline Architectural models A little about the 68HC11 Memory map Registers A little bit of assembly (never did us any harm) The program

More information

HC11 Instruction Set

HC11 Instruction Set HC11 Instruction Set Instruction classes 1. Accumulator and Memory 2. Stack and Index Register 3. Condition Code Register 4. Program control instructions CMPE12 Summer 2009 19-2 1 Accumulator and memory

More information

ensures that the assembler generates instructions for the C167 (as opposed to XC167) Memory models The system startup file

ensures that the assembler generates instructions for the C167 (as opposed to XC167) Memory models The system startup file System Startup Detailed -1 week lecture Topics 4 System Startup Detailed - ( TASKING) Macro definitions, configuration registers and stack frames - and memory maps - Memory type specifiers - Object classes

More information

SOFTWARE RELEASE GUIDE FOR THE MOTOROLA "MCUez SDI FOR HC12" SOFTWARE APPLICATION PACKAGE

SOFTWARE RELEASE GUIDE FOR THE MOTOROLA MCUez SDI FOR HC12 SOFTWARE APPLICATION PACKAGE M68MCUezSW/D FEBRUARY 1998 SOFTWARE RELEASE GUIDE FOR THE MOTOROLA "MCUez SDI FOR HC12" SOFTWARE APPLICATION PACKAGE Important Notice to Users MOTOROLA Inc., 1997-1998 All Rights Reserved While every effort

More information

Lecture #6 Embedded Language Use Embedded System Engineering Philip Koopman Monday, 1-Feb-2016

Lecture #6 Embedded Language Use Embedded System Engineering Philip Koopman Monday, 1-Feb-2016 Lecture #6 Embedded Language Use 18-348 Embedded System Engineering Philip Koopman Monday, 1-Feb-2016 Electrical& Computer ENGINEERING Copyright 2006-2016, Philip Koopman, All Rights Reserved Household

More information

C compiler. Memory map. Program in RAM

C compiler. Memory map. Program in RAM C compiler. Memory map. Program in RAM Sections:.text: Program code. Read only 0x40001fff stack.rodata: constants (constmodifier) and strings. Read only.data: Initialized global and static variables (startup

More information

MSP430F149 P3.4/UTXD0 P3.5/URXD0 P1.5 P1.6 P1.7 MSP430F149 P1.0 P5.4 P5.3 P5.2 P5.1. Figure B-1. BSL Replicator Block Diagram

MSP430F149 P3.4/UTXD0 P3.5/URXD0 P1.5 P1.6 P1.7 MSP430F149 P1.0 P5.4 P5.3 P5.2 P5.1. Figure B-1. BSL Replicator Block Diagram Appendix B Appendix B MSP430 BSL Replicator Author: Greg Morton, MSP430 Applications B.1 BSL Replicator Overview The BSL Replicator application, executing on a host MSP430F149 device, uses the BSL protocol

More information

CodeWarrior. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

CodeWarrior. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff CodeWarrior 1 Assembler An assembler is a program that translates assembly language into machine code. Machine code are the numbers that the CPU recognizes as instructions. $B6 $10 $00 Assembly language

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

HOW TO DIVIDE BOOT AND FLASH AREAS

HOW TO DIVIDE BOOT AND FLASH AREAS HOW TO DIVIDE BOOT AND FLASH AREAS CC-RL C COMPILER FOR RL78 FAMILY Oct 10, 2016 Rev. 2.00 Software Product Marketing Department, Software Business Division Renesas System Design Co., Ltd. R20UT3475EJ0200

More information

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University What is Assembly Language? Assembly language is a programming language

More information

F2MC-8FX EEPROM LIBRARY

F2MC-8FX EEPROM LIBRARY Fujitsu Semiconductor (Shanghai) Co., Ltd. Application Note MCU-AN-500019-E-29 F²MC-8FX FAMILY 8-BIT MICROCONTROLLER NEW 8FX SERIES F2MC-8FX EEPROM LIBRARY APPLICATION NOTE Revision History Revision History

More information

Programming. A. Assembly Language Programming. A.1 Machine Code. Machine Code Example: Motorola ADD

Programming. A. Assembly Language Programming. A.1 Machine Code. Machine Code Example: Motorola ADD A. Assembly Language Programming Programming of a computer system: Machine code direct execution Assembly language tool: assembler High level programming language tool: interpreter tool: compiler Programming

More information

Implementing In-Application Programming on the ADuC702x

Implementing In-Application Programming on the ADuC702x Implementing In-Application Programming on the ADuC702x By Johnson Jiao [Johnson.Jiao@analog.com] and Raven Xue [Raven.Xue@analog.com] Background The ADuC702x Precision Analog Microcontroller provides

More information

C Language Programming, Interrupts and Timer Hardware

C Language Programming, Interrupts and Timer Hardware C Language Programming, Interrupts and Timer Hardware In this sequence of three labs, you will learn how to write simple C language programs for the MC9S12 microcontroller, and how to use interrupts and

More information

Instuction set

Instuction set Instuction set http://www.piclist.com/images/www/hobby_elec/e_pic3_1.htm#1 In PIC16 series, RISC(Reduced Instruction Set Computer) is adopted and the number of the instructions to use is 35 kinds. When

More information

Introduction to Embedded Systems and Chapter 1: Introduction to HCS12/MC9S12. EE383: Introduction to Embedded Systems University of Kentucky

Introduction to Embedded Systems and Chapter 1: Introduction to HCS12/MC9S12. EE383: Introduction to Embedded Systems University of Kentucky Introduction to Embedded Systems and Chapter 1: Introduction to HCS12/MC9S12 EE383: Introduction to Embedded Systems University of Kentucky Samir Rawashdeh With slides based on material by H. Huang Delmar

More information

Technical Note (8 & 16-bits) TN 234

Technical Note (8 & 16-bits) TN 234 Porting Applications from Cosmic to CodeWarrior Introduction This application node describes how to port HC08 and HC12 applications written for Cosmic compiler to CodeWarrior. Strict ANSI-C/C++ code can

More information

Programming Fundamentals (CS 302 ) Dr. Ihsan Ullah. Lecturer Department of Computer Science & IT University of Balochistan

Programming Fundamentals (CS 302 ) Dr. Ihsan Ullah. Lecturer Department of Computer Science & IT University of Balochistan Programming Fundamentals (CS 302 ) Dr. Ihsan Ullah Lecturer Department of Computer Science & IT University of Balochistan 1 Outline p Introduction p Program development p C language and beginning with

More information

EL6483: Brief Overview of C Programming Language

EL6483: Brief Overview of C Programming Language EL6483: Brief Overview of C Programming Language EL6483 Spring 2016 EL6483 EL6483: Brief Overview of C Programming Language Spring 2016 1 / 30 Preprocessor macros, Syntax for comments Macro definitions

More information

Programming the Motorola MC68HC11 Microcontroller

Programming the Motorola MC68HC11 Microcontroller Programming the Motorola MC68HC11 Microcontroller COMMON PROGRAM INSTRUCTIONS WITH EXAMPLES aba Add register B to register A Similar commands are abx aby aba add the value in register B to the value in

More information

C programming for embedded microcontroller systems.

C programming for embedded microcontroller systems. C programming for embedded microcontroller systems. Assumes experience with assembly language programming. Outline Program organization and microcontroller memory Data types, constants, variables Microcontroller

More information

Coe538 Final Study Guide 2016 (Questions & Answers)

Coe538 Final Study Guide 2016 (Questions & Answers) Coe538 Study Guide 1 of 8 Coe538 Final Study Guide 2016 (Questions & Answers) This version contains questions AND answers. This study guide is meant to help you review coe538 and prepare for the final.

More information

COMP 7860 Embedded Real- Time Systems: Threads

COMP 7860 Embedded Real- Time Systems: Threads COMP 7860 Embedded Real- Time Systems: Threads Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada R3T 2N2 Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky http://aalab.cs.umanitoba.ca

More information

ELEG3924 Microprocessor

ELEG3924 Microprocessor Department of Electrical Engineering University of Arkansas ELEG3924 Microprocessor Ch.2 Assembly Language Programming Dr. Jing Yang jingyang@uark.edu 1 OUTLINE Inside 8051 Introduction to assembly programming

More information

ECE254 Lab3 Tutorial. Introduction to Keil LPC1768 Hardware and Programmers Model. Irene Huang

ECE254 Lab3 Tutorial. Introduction to Keil LPC1768 Hardware and Programmers Model. Irene Huang ECE254 Lab3 Tutorial Introduction to Keil LPC1768 Hardware and Programmers Model Irene Huang Lab3 Part A Requirements (1) A function to obtain the task information OS_RESULT os_tsk_get(os_tid task_id,

More information

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт.

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт. SECOND шт. Assembly and С Programming forthefreescalehcs12 Microcontroller Fredrick M. Cady Department of Electrical and Computer Engineering Montana State University New York Oxford Oxford University

More information

Short Notes of CS201

Short Notes of CS201 #includes: Short Notes of CS201 The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with < and > if the file is a system

More information

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14. LAB 2: Developing and Debugging C Programs in MDK-ARM for the STM32L100RC Microcontroller

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14. LAB 2: Developing and Debugging C Programs in MDK-ARM for the STM32L100RC Microcontroller LAB 2: Developing and Debugging C Programs in MDK-ARM for the STM32L100RC Microcontroller The objective of this laboratory session is to become more familiar with the process for creating, executing and

More information

ELEG3923 Microprocessor Ch.2 Assembly Language Programming

ELEG3923 Microprocessor Ch.2 Assembly Language Programming Department of Electrical Engineering University of Arkansas ELEG3923 Microprocessor Ch.2 Assembly Language Programming Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Inside 8051 Introduction to assembly programming

More information

Embedded Controller Programming 2

Embedded Controller Programming 2 Embedded Controller Programming 2 Section 3: C Language for Embedded Systems - Ken Arnold ecp2@hte.com Copyright 2006 Ken Arnold Overview Structures Unions Scope of Variables Pointers Operators and Precedence

More information

C Programming Language. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

C Programming Language. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff C Programming Language 1 C C is better to use than assembly for embedded systems programming. You can program at a higher level of logic than in assembly, so programs are shorter and easier to understand.

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data Von Neumann Architecture The von Neumann architecture is a computer design model that uses a processing unit and a separate storage to hold both instructions and data To run a machine, program and data

More information

CS201 - Introduction to Programming Glossary By

CS201 - Introduction to Programming Glossary By CS201 - Introduction to Programming Glossary By #include : The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with

More information

Lectures 5-6: Introduction to C

Lectures 5-6: Introduction to C Lectures 5-6: Introduction to C Motivation: C is both a high and a low-level language Very useful for systems programming Faster than Java This intro assumes knowledge of Java Focus is on differences Most

More information

It translates (converts) assembly language to machine code.

It translates (converts) assembly language to machine code. Assemblers 1 It translates (converts) assembly language to machine code. Example: LDAA $0180 Uses an instruction set manual: Tests/Final Exam. B6 01 80 Use software: Like the IDE in the Lab. 2 Assembler:

More information

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7 ME4447/6405 Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics Instructor: Professor Charles Ume LECTURE 7 Reading Assignments Reading assignments for this week and next

More information

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco CS 326 Operating Systems C Programming Greg Benson Department of Computer Science University of San Francisco Why C? Fast (good optimizing compilers) Not too high-level (Java, Python, Lisp) Not too low-level

More information

Advanced Operating Systems Embedded from Scratch: System boot and hardware access. Federico Terraneo

Advanced Operating Systems Embedded from Scratch: System boot and hardware access. Federico Terraneo Embedded from Scratch: System boot and hardware access federico.terraneo@polimi.it Outline 2/28 Bare metal programming HW architecture overview Linker script Boot process High level programming languages

More information

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING CHAPTER 2 8051 ASSEMBLY LANGUAGE PROGRAMMING Registers Register are used to store information temporarily: A byte of data to be processed An address pointing to the data to be fetched The vast majority

More information

EE 308 Spring A software delay

EE 308 Spring A software delay A software delay To enter a software delay, put in a nested loop, just like in assembly. Write a function delay(num) which will delay for num milliseconds void delay(unsigned int num) volatile unsigned

More information

The component base of C language. Nguyễn Dũng Faculty of IT Hue College of Science

The component base of C language. Nguyễn Dũng Faculty of IT Hue College of Science The component base of C language Nguyễn Dũng Faculty of IT Hue College of Science Content A brief history of C Standard of C Characteristics of C The C compilation model Character set and keyword Data

More information

EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5

EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5 First Name: Last Name: April 21, 2017, 10:00 to 10:50am Open book, open notes, calculator (no laptops, phones, devices with screens larger than a

More information

CS/ECE 5780/6780: Embedded System Design

CS/ECE 5780/6780: Embedded System Design CS/ECE 5780/6780: Embedded System Design John Regehr Lecture 2: 68HC12 Architecture & Lab 1 Introduction Duff s Device void foo (int x, int *y, int *z) { switch (x % 8) { case 0: do { *y++ = *z++; case

More information

MODERN OPERATING SYSTEMS. Chapter 3 Memory Management

MODERN OPERATING SYSTEMS. Chapter 3 Memory Management MODERN OPERATING SYSTEMS Chapter 3 Memory Management No Memory Abstraction Figure 3-1. Three simple ways of organizing memory with an operating system and one user process. Base and Limit Registers Figure

More information

HEXit Manual 4 FFL Page 1 e-h4x49

HEXit Manual 4 FFL Page 1 e-h4x49 FFL 2011.02 Page 1 e-h4x49 Manual as of Version 4.x We wish you success in your work with HEXit The Team at hse electronics You will find information about the terms of use for HEXit on page 30. 2011.02

More information

History of the Microprocessor. ECE/CS 5780/6780: Embedded System Design. Microcontrollers. First Microprocessors. MC9S12C32 Block Diagram

History of the Microprocessor. ECE/CS 5780/6780: Embedded System Design. Microcontrollers. First Microprocessors. MC9S12C32 Block Diagram History of the Microprocessor ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 1: 68HC12 In 1968, Bob Noyce and Gordon Moore left Fairchild Semiconductor and formed Integrated Electronics

More information

OEM-Product Catalogue

OEM-Product Catalogue OEM-Product Catalogue Content of this document: 1 Memory map... 2 1.1 BIM M 130, BIM M 135 and Chipset 184/01... 2 1.2 BIM M 131 and Chipset 184/11... 3 1.3 BIM M 132 and Chipset 184/21... 4 2 Task switch

More information

A Fast Review of C Essentials Part I

A Fast Review of C Essentials Part I A Fast Review of C Essentials Part I Structural Programming by Z. Cihan TAYSI Outline Program development C Essentials Functions Variables & constants Names Formatting Comments Preprocessor Data types

More information

Freescale Semiconductor, I

Freescale Semiconductor, I nc. 11/2003 I 2 C Slave on the HC908QT/QY Family MCU By Stanislav Arendarik Freescale Czech System Application Laboratory Roznov pod Radhostem, Czech Republic Introduction I 2 C Overview The I 2 C (inter-integrated

More information

x86 architecture et similia

x86 architecture et similia x86 architecture et similia 1 FREELY INSPIRED FROM CLASS 6.828, MIT A full PC has: PC architecture 2 an x86 CPU with registers, execution unit, and memory management CPU chip pins include address and data

More information