Lecture No. 10. Reference Variables. 22-Nov-18. One should be careful about transient objects that are stored by. reference in data structures.

Size: px
Start display at page:

Download "Lecture No. 10. Reference Variables. 22-Nov-18. One should be careful about transient objects that are stored by. reference in data structures."

Transcription

1 Lecture No. Reference Variables One should be careful about transient objects that are stored by reference in data structures. Consider the following code that stores and retrieves objects in a queue.

2 Reference Variables void loadcustomer( Queue& q) { Customer c( irfan ); Customer c( sohail ; q.enqueue( c ); q.enqueue( c ); } Reference Variables void servicecustomer( Queue& q) { } Customer c = q.dequeue(); cout << c.getname() << endl; We got the reference but the object is gone! The objects were created on the call stack. They disappeared when the loadcustomer function returned.

3 Reference Variables void loadcustomer( Queue& q) { } Customer* c = new Customer( irfan ); Customer* c = new Customer( sohail ; q.enqueue( c ); // enqueue takes pointers q.enqueue( c ); The pointer variables c and c are on the call stack. They will go but their contents (addresses) are queued. The Customer objects are created in the heap. They will live until explicitly deleted. Memory Organization Process (browser) Process (word) Process (ourtest.exe) Process (dev-c++) Windows OS Code Static data Stack Heap

4 Reference Variables Call stack layout when q.enqueue(c) called in loadcustomer. elt c c loadcustomer 6 (6) (elt) 6 enqueue sp stack grows downwards Reference Variables Heap layout during call to loadcustomer. heap grows upwards c 68 c sohail Customer( sohail ) -> c 6 irfan Customer( irfan ) -> c 6

5 Reference Variables void servicecustomer( Queue& q) { Customer* c = q.dequeue(); cout << c->getname() << endl; delete c; // the object in heap dies } Must use the c-> syntax because we get a pointer from the queue. The object is still alive because it was created in the heap. The const Keyword The const keyword is often used in function signatures. The actual meaning depends on where it occurs but it generally means something is to held constant. Here are some common uses.

6 The const Keyword Use : The const keyword appears before a function parameter. E.g., in a chess program: int movepiece(const Piece& currentpiece) The parameter must remain constant for the life of the function. If you try to change the value, e.g., parameter appears on the left hand side of an assignment, the compiler will generate and error. The const Keyword This also means that if the parameter is passed to another function, that function must not change it either. Use of const with reference parameters is very common. This is puzzling; why are we passing something by reference and then make it constant, i.e., don t change it? Doesn t passing by reference mean we want to change it? 6

7 The const Keyword The answer is that, yes, we don t want the function to change the parameter, but neither do we want to use up time and memory creating and storing an entire copy of it. So, we make the original object available to the called function by using pass-by-reference. We also mark it constant so that the function will not alter it, even by mistake. The const Keyword Use : The const keyword appears at the end of class member s function signature: EType& findmin( ) const; Such a function cannot change or write to member variables of that class. This type of usage often appears in functions that are suppose to read and return member variables. 7

8 The const Keyword Use : The const keyword appears at the beginning of the return type in function signature: const EType& findmin( ) const; Means, whatever is returned is constant. The purpose is typically to protect a reference variable. This also avoids returning a copy of an object. Degenerate inary Search Tree ST for,,, 9, 7, 8,,, 6,,

9 Degenerate inary Search Tree ST for Degenerate inary Search Tree ST for Linked List!

10 alanced ST We should keep the tree balanced. One idea would be to have the left and right subtrees have the same height alanced ST Does not force the tree to be shallow.

11 alanced ST We could insist that every node must have left and right subtrees of same height. ut this requires that the tree be a complete binary tree To do this, there must have ( d+ ) data items, where d is the depth of the tree. This is too rigid a condition. AVL Tree AVL (Adelson-Velskii and Landis) tree. An AVL tree is identical to a ST except height of the left and right subtrees can differ by at most. height of an empty tree is defined to be ( ).

12 AVL Tree An AVL Tree level 8 7 AVL Tree Not an AVL tree 6 level 8

13 alanced inary Tree The height of a binary tree is the maximum level of its leaves (also called the depth). The balance of a node in a binary tree is defined as the height of its left subtree minus height of its right subtree. Here, for example, is a balanced tree. Each node has an indicated balance of,, or. alanced inary Tree - -

14 alanced inary Tree Insertions and effect on balance - - U U U U U U 6 U 7 U 8 U 9 U U U alanced inary Tree Tree becomes unbalanced only if the newly inserted node is a left descendant of a node that previously had a balance of (U to U 8 ), or is a descendant of a node that previously had a balance of (U 9 to U )

15 alanced inary Tree Insertions and effect on balance - - U U U U U U 6 U 7 U 8 U 9 U U U alanced inary Tree Consider the case of node that was previously - - U U U U U U 6 U 7 U 8 U 9 U U U

16 Inserting New Node in AVL Tree A T T T Inserting New Node in AVL Tree A T T T new 6

17 Inserting New Node in AVL Tree A A T T T T T T new new Inorder: T T A T Inorder: T T A T AVL Tree uilding Example Let us work through an example that inserts numbers in a balanced search tree. We will check the balance after each insert and rebalance if necessary using rotations. 7

18 AVL Tree uilding Example Insert() AVL Tree uilding Example Insert() 8

19 AVL Tree uilding Example Insert() single left rotation - AVL Tree uilding Example Insert() single left rotation - 9

20 AVL Tree uilding Example Insert() AVL Tree uilding Example Insert()

21 AVL Tree uilding Example Insert() - AVL Tree uilding Example Insert()

22 AVL Tree uilding Example Insert(6) - 6 AVL Tree uilding Example Insert(6) 6

23 AVL Tree uilding Example Insert(7) AVL Tree uilding Example Insert(7) 6 7 6

24 AVL Tree uilding Example Insert(6) AVL Tree uilding Example Insert()

25 AVL Tree uilding Example Insert() Cases for Rotation Single rotation does not seem to restore the balance. The problem is the node is in an inner subtree that is too deep. Let us revisit the rotations.

26 Cases for Rotation Let us call the node that must be rebalanced. Since any node has at most two children, and a height imbalance requires that s two subtrees differ by two (or ), the violation will occur in four cases: Cases for Rotation. An insertion into left subtree of the left child of.. An insertion into right subtree of the left child of.. An insertion into left subtree of the right child of.. An insertion into right subtree of the right child of. 6

27 Cases for Rotation The insertion occurs on the outside (i.e., left-left or rightright) in cases and Single rotation can fix the balance in cases and. Insertion occurs on the inside in cases and which single rotation cannot fix. Cases for Rotation Single right rotation to fix case. k k k Z Level n- X k X Y Level n- Y Z new Level n new 7

28 Cases for Rotation Single left rotation to fix case. k k X k Level n- k Y Level n- X Y Z Z Level n Cases for Rotation Single right rotation fails to fix case. k k k Z Level n- X k X Y Level n- Y Z new Level n new 6 8

Algorithms. AVL Tree

Algorithms. AVL Tree Algorithms AVL Tree Balanced binary tree The disadvantage of a binary search tree is that its height can be as large as N-1 This means that the time needed to perform insertion and deletion and many other

More information

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap DATA STRUCTURES AND ALGORITHMS Hierarchical data structures: AVL tree, Bayer tree, Heap Summary of the previous lecture TREE is hierarchical (non linear) data structure Binary trees Definitions Full tree,

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

COMP171. AVL-Trees (Part 1)

COMP171. AVL-Trees (Part 1) COMP11 AVL-Trees (Part 1) AVL Trees / Slide 2 Data, a set of elements Data structure, a structured set of elements, linear, tree, graph, Linear: a sequence of elements, array, linked lists Tree: nested

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 21, 2018 Outline Outline 1 C++ Supplement 1.3: Balanced Binary Search Trees Balanced Binary Search Trees Outline

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Spring 2009-2010 Outline BST Trees (contd.) 1 BST Trees (contd.) Outline BST Trees (contd.) 1 BST Trees (contd.) The bad news about BSTs... Problem with BSTs is that there

More information

ECE250: Algorithms and Data Structures AVL Trees (Part A)

ECE250: Algorithms and Data Structures AVL Trees (Part A) ECE250: Algorithms and Data Structures AVL Trees (Part A) Ladan Tahvildari, PEng, SMIEEE Associate Professor Software Technologies Applied Research (STAR) Group Dept. of Elect. & Comp. Eng. University

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 10: AVL Trees. 10/1/015 Daniel Bauer Balanced BSTs Balance condition: Guarantee that the BST is always close to a complete binary tree (every node has exactly two or zero

More information

AVL Trees / Slide 2. AVL Trees / Slide 4. Let N h be the minimum number of nodes in an AVL tree of height h. AVL Trees / Slide 6

AVL Trees / Slide 2. AVL Trees / Slide 4. Let N h be the minimum number of nodes in an AVL tree of height h. AVL Trees / Slide 6 COMP11 Spring 008 AVL Trees / Slide Balanced Binary Search Tree AVL-Trees Worst case height of binary search tree: N-1 Insertion, deletion can be O(N) in the worst case We want a binary search tree with

More information

CPSC 223 Algorithms & Data Abstract Structures

CPSC 223 Algorithms & Data Abstract Structures PS 223 lgorithms & ata bstract Structures Lecture 17: Self-alancing inary Search Trees * Material adapted from. arrano, K. Yerion, and K. ant Today Quiz alanced inary Search Trees (STs) Quick review of

More information

Queues. ADT description Implementations. October 03, 2017 Cinda Heeren / Geoffrey Tien 1

Queues. ADT description Implementations. October 03, 2017 Cinda Heeren / Geoffrey Tien 1 Queues ADT description Implementations Cinda Heeren / Geoffrey Tien 1 Queues Assume that we want to store data for a print queue for a student printer Student ID Time File name The printer is to be assigned

More information

LECTURE 18 AVL TREES

LECTURE 18 AVL TREES DATA STRUCTURES AND ALGORITHMS LECTURE 18 AVL TREES IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD PROTOTYPICAL EXAMPLES These two examples demonstrate how we can correct for imbalances: starting

More information

AVL Trees. Version of September 6, AVL Trees Version of September 6, / 22

AVL Trees. Version of September 6, AVL Trees Version of September 6, / 22 VL Trees Version of September 6, 6 VL Trees Version of September 6, 6 / inary Search Trees x 8 4 4 < x > x 7 9 3 inary-search-tree property For every node x ll eys in its left subtree are smaller than

More information

3137 Data Structures and Algorithms in C++

3137 Data Structures and Algorithms in C++ 3137 Data Structures and Algorithms in C++ Lecture 4 July 17 2006 Shlomo Hershkop 1 Announcements please make sure to keep up with the course, it is sometimes fast paced for extra office hours, please

More information

Data Structures Lesson 7

Data Structures Lesson 7 Data Structures Lesson 7 BSc in Computer Science University of New York, Tirana Assoc. Prof. Dr. Marenglen Biba 1-1 Binary Search Trees For large amounts of input, the linear access time of linked lists

More information

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology Introduction Chapter 4 Trees for large input, even linear access time may be prohibitive we need data structures that exhibit average running times closer to O(log N) binary search tree 2 Terminology recursive

More information

Balanced Binary Search Trees

Balanced Binary Search Trees Balanced Binary Search Trees Why is our balance assumption so important? Lets look at what happens if we insert the following numbers in order without rebalancing the tree: 3 5 9 12 18 20 1-45 2010 Pearson

More information

CS350: Data Structures AVL Trees

CS350: Data Structures AVL Trees S35: Data Structures VL Trees James Moscola Department of Engineering & omputer Science York ollege of Pennsylvania S35: Data Structures James Moscola Balanced Search Trees Binary search trees are not

More information

Hierarchical data structures. Announcements. Motivation for trees. Tree overview

Hierarchical data structures. Announcements. Motivation for trees. Tree overview Announcements Midterm exam 2, Thursday, May 18 Closed book/notes but one sheet of paper allowed Covers up to stacks and queues Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps

More information

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree Chapter 4 Trees 2 Introduction for large input, even access time may be prohibitive we need data structures that exhibit running times closer to O(log N) binary search tree 3 Terminology recursive definition

More information

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am Announcements Midterm exam 2, Thursday, May 18 Closed book/notes but one sheet of paper allowed Covers up to stacks and queues Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps

More information

CP2 Revision. theme: dynamic datatypes & data structures

CP2 Revision. theme: dynamic datatypes & data structures CP2 Revision theme: dynamic datatypes & data structures structs can hold any combination of datatypes handled as single entity struct { }; ;

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

Some Search Structures. Balanced Search Trees. Binary Search Trees. A Binary Search Tree. Review Binary Search Trees

Some Search Structures. Balanced Search Trees. Binary Search Trees. A Binary Search Tree. Review Binary Search Trees Some Search Structures Balanced Search Trees Lecture 8 CS Fall Sorted Arrays Advantages Search in O(log n) time (binary search) Disadvantages Need to know size in advance Insertion, deletion O(n) need

More information

Part 2: Balanced Trees

Part 2: Balanced Trees Part 2: Balanced Trees 1 AVL Trees We could dene a perfectly balanced binary search tree with N nodes to be a complete binary search tree, one in which every level except the last is completely full. A

More information

Fundamental Algorithms

Fundamental Algorithms WS 2007/2008 Fundamental Algorithms Dmytro Chibisov, Jens Ernst Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2007ws/fa-cse/ Fall Semester 2007 1. AVL Trees As we saw in the previous

More information

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya CS62: Foundations of Algorithm Design and Machine Learning Sourangshu Bhattacharya Binary Search Tree - Best Time All BST operations are O(d), where d is tree depth minimum d is d = ëlog for a binary tree

More information

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya CS62: Foundations of Algorithm Design and Machine Learning Sourangshu Bhattacharya Balanced search trees Balanced search tree: A search-tree data structure for which a height of O(lg n) is guaranteed when

More information

COMP : Trees. COMP20012 Trees 219

COMP : Trees. COMP20012 Trees 219 COMP20012 3: Trees COMP20012 Trees 219 Trees Seen lots of examples. Parse Trees Decision Trees Search Trees Family Trees Hierarchical Structures Management Directories COMP20012 Trees 220 Trees have natural

More information

Analysis of Algorithms

Analysis of Algorithms Analysis of Algorithms Trees-I Prof. Muhammad Saeed Tree Representation.. Analysis Of Algorithms 2 .. Tree Representation Analysis Of Algorithms 3 Nomenclature Nodes (13) Size (13) Degree of a node Depth

More information

Lecture 13: AVL Trees and Binary Heaps

Lecture 13: AVL Trees and Binary Heaps Data Structures Brett Bernstein Lecture 13: AVL Trees and Binary Heaps Review Exercises 1. ( ) Interview question: Given an array show how to shue it randomly so that any possible reordering is equally

More information

CPSC 223 Algorithms & Data Abstract Structures

CPSC 223 Algorithms & Data Abstract Structures PS 223 lgorithms & Data bstract Structures Lecture 18: VL Trees (cont.) Today In-place mergesort Midterm overview VL Trees (cont.) [h 12: pp. 681-686] Heapsort exercise 1 Midterm Overview Midterm There

More information

Section 4 SOLUTION: AVL Trees & B-Trees

Section 4 SOLUTION: AVL Trees & B-Trees Section 4 SOLUTION: AVL Trees & B-Trees 1. What 3 properties must an AVL tree have? a. Be a binary tree b. Have Binary Search Tree ordering property (left children < parent, right children > parent) c.

More information

COSC160: Data Structures Balanced Trees. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Balanced Trees. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Balanced Trees Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Balanced Trees I. AVL Trees I. Balance Constraint II. Examples III. Searching IV. Insertions V. Removals

More information

Trees. A tree is a directed graph with the property

Trees. A tree is a directed graph with the property 2: Trees Trees A tree is a directed graph with the property There is one node (the root) from which all other nodes can be reached by exactly one path. Seen lots of examples. Parse Trees Decision Trees

More information

Advanced Tree Data Structures

Advanced Tree Data Structures Advanced Tree Data Structures Fawzi Emad Chau-Wen Tseng Department of Computer Science University of Maryland, College Park Binary trees Traversal order Balance Rotation Multi-way trees Search Insert Overview

More information

Balanced Search Trees. CS 3110 Fall 2010

Balanced Search Trees. CS 3110 Fall 2010 Balanced Search Trees CS 3110 Fall 2010 Some Search Structures Sorted Arrays Advantages Search in O(log n) time (binary search) Disadvantages Need to know size in advance Insertion, deletion O(n) need

More information

AVL Trees. (AVL Trees) Data Structures and Programming Spring / 17

AVL Trees. (AVL Trees) Data Structures and Programming Spring / 17 AVL Trees (AVL Trees) Data Structures and Programming Spring 2017 1 / 17 Balanced Binary Tree The disadvantage of a binary search tree is that its height can be as large as N-1 This means that the time

More information

MIDTERM EXAMINATION Spring 2010 CS301- Data Structures

MIDTERM EXAMINATION Spring 2010 CS301- Data Structures MIDTERM EXAMINATION Spring 2010 CS301- Data Structures Question No: 1 Which one of the following statement is NOT correct. In linked list the elements are necessarily to be contiguous In linked list the

More information

Trees. Reading: Weiss, Chapter 4. Cpt S 223, Fall 2007 Copyright: Washington State University

Trees. Reading: Weiss, Chapter 4. Cpt S 223, Fall 2007 Copyright: Washington State University Trees Reading: Weiss, Chapter 4 1 Generic Rooted Trees 2 Terms Node, Edge Internal node Root Leaf Child Sibling Descendant Ancestor 3 Tree Representations n-ary trees Each internal node can have at most

More information

Binary search trees (chapters )

Binary search trees (chapters ) Binary search trees (chapters 18.1 18.3) Binary search trees In a binary search tree (BST), every node is greater than all its left descendants, and less than all its right descendants (recall that this

More information

CS 261 Data Structures. AVL Trees

CS 261 Data Structures. AVL Trees CS 261 Data Structures AVL Trees 1 Binary Search Tree Complexity of BST operations: proportional to the length of the path from a node to the root Unbalanced tree: operations may be O(n) E.g.: adding elements

More information

Chapter 2: Basic Data Structures

Chapter 2: Basic Data Structures Chapter 2: Basic Data Structures Basic Data Structures Stacks Queues Vectors, Linked Lists Trees (Including Balanced Trees) Priority Queues and Heaps Dictionaries and Hash Tables Spring 2014 CS 315 2 Two

More information

CSCI 136 Data Structures & Advanced Programming. Lecture 25 Fall 2018 Instructor: B 2

CSCI 136 Data Structures & Advanced Programming. Lecture 25 Fall 2018 Instructor: B 2 CSCI 136 Data Structures & Advanced Programming Lecture 25 Fall 2018 Instructor: B 2 Last Time Binary search trees (Ch 14) The locate method Further Implementation 2 Today s Outline Binary search trees

More information

Trees. Eric McCreath

Trees. Eric McCreath Trees Eric McCreath 2 Overview In this lecture we will explore: general trees, binary trees, binary search trees, and AVL and B-Trees. 3 Trees Trees are recursive data structures. They are useful for:

More information

10/23/2013. AVL Trees. Height of an AVL Tree. Height of an AVL Tree. AVL Trees

10/23/2013. AVL Trees. Height of an AVL Tree. Height of an AVL Tree. AVL Trees // AVL Trees AVL Trees An AVL tree is a binary search tree with a balance condition. AVL is named for its inventors: Adel son-vel skii and Landis AVL tree approximates the ideal tree (completely balanced

More information

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers?

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers? Review for Final (Chapter 6 13, 15) 6. Template functions & classes 1) What is the primary purpose of template functions? A. To allow a single function to be used with varying types of arguments B. To

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

Advanced Set Representation Methods

Advanced Set Representation Methods Advanced Set Representation Methods AVL trees. 2-3(-4) Trees. Union-Find Set ADT DSA - lecture 4 - T.U.Cluj-Napoca - M. Joldos 1 Advanced Set Representation. AVL Trees Problem with BSTs: worst case operation

More information

ADVANCED DATA STRUCTURES STUDY NOTES. The left subtree of each node contains values that are smaller than the value in the given node.

ADVANCED DATA STRUCTURES STUDY NOTES. The left subtree of each node contains values that are smaller than the value in the given node. UNIT 2 TREE STRUCTURES ADVANCED DATA STRUCTURES STUDY NOTES Binary Search Trees- AVL Trees- Red-Black Trees- B-Trees-Splay Trees. HEAP STRUCTURES: Min/Max heaps- Leftist Heaps- Binomial Heaps- Fibonacci

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS LECTURE 13 Babeş - Bolyai University Computer Science and Mathematics Faculty 2017-2018 In Lecture 12... Binary Search Trees Binary Tree Traversals Huffman coding Binary Search Tree Today Binary Search

More information

Binary search trees (chapters )

Binary search trees (chapters ) Binary search trees (chapters 18.1 18.3) Binary search trees In a binary search tree (BST), every node is greater than all its left descendants, and less than all its right descendants (recall that this

More information

AVL Trees. See Section 19.4of the text, p

AVL Trees. See Section 19.4of the text, p AVL Trees See Section 19.4of the text, p. 706-714. AVL trees are self-balancing Binary Search Trees. When you either insert or remove a node the tree adjusts its structure so that the remains a logarithm

More information

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL MINUTIAE Feedback for P1p1 should have gone out before class Grades on canvas tonight Emails went to the student who submitted the assignment If you did not receive

More information

AVL Trees (10.2) AVL Trees

AVL Trees (10.2) AVL Trees AVL Trees (0.) CSE 0 Winter 0 8 February 0 AVL Trees AVL trees are balanced. An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by

More information

AVL Trees Goodrich, Tamassia, Goldwasser AVL Trees 1

AVL Trees Goodrich, Tamassia, Goldwasser AVL Trees 1 AVL Trees v 6 3 8 z 20 Goodrich, Tamassia, Goldwasser AVL Trees AVL Tree Definition Adelson-Velsky and Landis binary search tree balanced each internal node v the heights of the children of v can 2 3 7

More information

MID TERM MEGA FILE SOLVED BY VU HELPER Which one of the following statement is NOT correct.

MID TERM MEGA FILE SOLVED BY VU HELPER Which one of the following statement is NOT correct. MID TERM MEGA FILE SOLVED BY VU HELPER Which one of the following statement is NOT correct. In linked list the elements are necessarily to be contiguous In linked list the elements may locate at far positions

More information

Trees. R. J. Renka 10/14/2011. Department of Computer Science & Engineering University of North Texas. R. J. Renka Trees

Trees. R. J. Renka 10/14/2011. Department of Computer Science & Engineering University of North Texas. R. J. Renka Trees Trees R. J. Renka Department of Computer Science & Engineering University of North Texas 10/14/2011 4.1 Preliminaries Defn: A (rooted) tree is a directed graph (set of nodes and edges) with a particular

More information

Recall: Properties of B-Trees

Recall: Properties of B-Trees CSE 326 Lecture 10: B-Trees and Heaps It s lunch time what s cookin? B-Trees Insert/Delete Examples and Run Time Analysis Summary of Search Trees Introduction to Heaps and Priority Queues Covered in Chapters

More information

CHAPTER 10 AVL TREES. 3 8 z 4

CHAPTER 10 AVL TREES. 3 8 z 4 CHAPTER 10 AVL TREES v 6 3 8 z 4 ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY

More information

More Binary Search Trees AVL Trees. CS300 Data Structures (Fall 2013)

More Binary Search Trees AVL Trees. CS300 Data Structures (Fall 2013) More Binary Search Trees AVL Trees bstdelete if (key not found) return else if (either subtree is empty) { delete the node replacing the parents link with the ptr to the nonempty subtree or NULL if both

More information

Why Do We Need Trees?

Why Do We Need Trees? CSE 373 Lecture 6: Trees Today s agenda: Trees: Definition and terminology Traversing trees Binary search trees Inserting into and deleting from trees Covered in Chapter 4 of the text Why Do We Need Trees?

More information

CS Transform-and-Conquer

CS Transform-and-Conquer CS483-11 Transform-and-Conquer Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments lifei@cs.gmu.edu with subject: CS483 http://www.cs.gmu.edu/ lifei/teaching/cs483_fall07/

More information

1. Stack overflow & underflow 2. Implementation: partially filled array & linked list 3. Applications: reverse string, backtracking

1. Stack overflow & underflow 2. Implementation: partially filled array & linked list 3. Applications: reverse string, backtracking Review for Test 2 (Chapter 6-10) Chapter 6: Template functions & classes 1) What is the primary purpose of template functions? A. To allow a single function to be used with varying types of arguments B.

More information

More BSTs & AVL Trees bstdelete

More BSTs & AVL Trees bstdelete More BSTs & AVL Trees bstdelete if (key not found) return else if (either subtree is empty) { delete the node replacing the parents link with the ptr to the nonempty subtree or NULL if both subtrees are

More information

AVL Tree Definition. An example of an AVL tree where the heights are shown next to the nodes. Adelson-Velsky and Landis

AVL Tree Definition. An example of an AVL tree where the heights are shown next to the nodes. Adelson-Velsky and Landis Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 0 AVL Trees v 6 3 8 z 0 Goodrich, Tamassia, Goldwasser

More information

AVL trees and rotations

AVL trees and rotations AVL trees and rotations Part of written assignment 5 Examine the Code of Ethics of the ACM Focus on property rights Write a short reaction (up to 1 page single-spaced) Details are in the assignment Operations

More information

CS102 Binary Search Trees

CS102 Binary Search Trees CS102 Binary Search Trees Prof Tejada 1 To speed up insertion, removal and search, modify the idea of a Binary Tree to create a Binary Search Tree (BST) Binary Search Trees Binary Search Trees have one

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

CS350: Data Structures Red-Black Trees

CS350: Data Structures Red-Black Trees Red-Black Trees James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Red-Black Tree An alternative to AVL trees Insertion can be done in a bottom-up or

More information

A dictionary interface.

A dictionary interface. A dictionary interface. interface Dictionary { public Data search(key k); public void insert(key k, Data d); public void delete(key k); A dictionary behaves like a many-to-one function. The search method

More information

Unit III - Tree TREES

Unit III - Tree TREES TREES Unit III - Tree Consider a scenario where you are required to represent the directory structure of your operating system. The directory structure contains various folders and files. A folder may

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI Section E01 AVL Trees AVL Property While BST structures have average performance of Θ(log(n))

More information

Trees. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

Trees. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University Trees CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Overview Tree data structure Binary search trees Support O(log 2

More information

Copyright 1998 by Addison-Wesley Publishing Company 147. Chapter 15. Stacks and Queues

Copyright 1998 by Addison-Wesley Publishing Company 147. Chapter 15. Stacks and Queues Copyright 1998 by Addison-Wesley Publishing Company 147 Chapter 15 Stacks and Queues Copyright 1998 by Addison-Wesley Publishing Company 148 tos (-1) B tos (1) A tos (0) A A tos (0) How the stack routines

More information

Tutorial AVL TREES. arra[5] = {1,2,3,4,5} arrb[8] = {20,30,80,40,10,60,50,70} FIGURE 1 Equivalent Binary Search and AVL Trees. arra = {1, 2, 3, 4, 5}

Tutorial AVL TREES. arra[5] = {1,2,3,4,5} arrb[8] = {20,30,80,40,10,60,50,70} FIGURE 1 Equivalent Binary Search and AVL Trees. arra = {1, 2, 3, 4, 5} 1 Tutorial AVL TREES Binary search trees are designed for efficient access to data. In some cases, however, a binary search tree is degenerate or "almost degenerate" with most of the n elements descending

More information

double d0, d1, d2, d3; double * dp = new double[4]; double da[4];

double d0, d1, d2, d3; double * dp = new double[4]; double da[4]; All multiple choice questions are equally weighted. You can generally assume that code shown in the questions is intended to be syntactically correct, unless something in the question or one of the answers

More information

The smallest element is the first one removed. (You could also define a largest-first-out priority queue)

The smallest element is the first one removed. (You could also define a largest-first-out priority queue) Priority Queues Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-first-out The smallest element is the first one removed (You could also define a largest-first-out

More information

Lecture Notes on Priority Queues

Lecture Notes on Priority Queues Lecture Notes on Priority Queues 15-122: Principles of Imperative Computation Frank Pfenning Lecture 16 October 18, 2012 1 Introduction In this lecture we will look at priority queues as an abstract type

More information

Lecture 9: Balanced Binary Search Trees, Priority Queues, Heaps, Binary Trees for Compression, General Trees

Lecture 9: Balanced Binary Search Trees, Priority Queues, Heaps, Binary Trees for Compression, General Trees Lecture 9: Balanced Binary Search Trees, Priority Queues, Heaps, Binary Trees for Compression, General Trees Reading materials Dale, Joyce, Weems: 9.1, 9.2, 8.8 Liang: 26 (comprehensive edition) OpenDSA:

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

Search Structures. Kyungran Kang

Search Structures. Kyungran Kang Search Structures Kyungran Kang (korykang@ajou.ac.kr) Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of Data Structures in C, 2nd Edition, Silicon Press, 2007. Contents Binary Search

More information

AVL Trees Heaps And Complexity

AVL Trees Heaps And Complexity AVL Trees Heaps And Complexity D. Thiebaut CSC212 Fall 14 Some material taken from http://cseweb.ucsd.edu/~kube/cls/0/lectures/lec4.avl/lec4.pdf Complexity Of BST Operations or "Why Should We Use BST Data

More information

Chapter 22 Splay Trees

Chapter 22 Splay Trees Chapter 22 Splay Trees Introduction Splay trees support all the operations of binary trees. But they do not guarantee Ο(log N) worst-case performance. Instead, its bounds are amortized, meaning that although

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

Ch04 Balanced Search Trees

Ch04 Balanced Search Trees Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 05 Ch0 Balanced Search Trees v 3 8 z Why care about advanced implementations? Same entries,

More information

CMPE 160: Introduction to Object Oriented Programming

CMPE 160: Introduction to Object Oriented Programming CMPE 6: Introduction to Object Oriented Programming General Tree Concepts Binary Trees Trees Definitions Representation Binary trees Traversals Expression trees These are the slides of the textbook by

More information

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage:

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage: Discussion 2C Notes (Week 8, February 25) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs32 Trees Definitions Yet another data structure -- trees. Just like a linked

More information

ITEC2620 Introduction to Data Structures

ITEC2620 Introduction to Data Structures T2620 ntroduction to ata Structures Lecture 4a inary Trees Review of Linked Lists Linked-Lists dynamic length arbitrary memory locations access by following links an only traverse link in forward direction

More information

Search Trees - 1 Venkatanatha Sarma Y

Search Trees - 1 Venkatanatha Sarma Y Search Trees - 1 Lecture delivered by: Venkatanatha Sarma Y Assistant Professor MSRSAS-Bangalore 11 Objectives To introduce, discuss and analyse the different ways to realise balanced Binary Search Trees

More information

Self-Balancing Search Trees. Chapter 11

Self-Balancing Search Trees. Chapter 11 Self-Balancing Search Trees Chapter 11 Chapter Objectives To understand the impact that balance has on the performance of binary search trees To learn about the AVL tree for storing and maintaining a binary

More information

The questions will be short answer, similar to the problems you have done on the homework

The questions will be short answer, similar to the problems you have done on the homework Introduction The following highlights are provided to give you an indication of the topics that you should be knowledgeable about for the midterm. This sheet is not a substitute for the homework and the

More information

CSI33 Data Structures

CSI33 Data Structures Department of Mathematics and Computer Science Bronx Community College Section 13.3: Outline 1 Section 13.3: Section 13.3: Improving The Worst-Case Performance for BSTs The Worst Case Scenario In the worst

More information

Algorithms. Deleting from Red-Black Trees B-Trees

Algorithms. Deleting from Red-Black Trees B-Trees Algorithms Deleting from Red-Black Trees B-Trees Recall the rules for BST deletion 1. If vertex to be deleted is a leaf, just delete it. 2. If vertex to be deleted has just one child, replace it with that

More information

Cpt S 122 Data Structures. Course Review Midterm Exam # 1

Cpt S 122 Data Structures. Course Review Midterm Exam # 1 Cpt S 122 Data Structures Course Review Midterm Exam # 1 Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Midterm Exam 1 When: Friday (09/28) 12:10-1pm Where:

More information

Recall from Last Time: AVL Trees

Recall from Last Time: AVL Trees CSE 326 Lecture 8: Getting to now AVL Trees Today s Topics: Balanced Search Trees AVL Trees and Rotations Splay trees Covered in Chapter 4 of the text Recall from Last Time: AVL Trees AVL trees are height-balanced

More information

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs Algorithms in Systems Engineering ISE 172 Lecture 16 Dr. Ted Ralphs ISE 172 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam December 16, 2011 Section I A COMPUTER SCIENCE NO books, notes, or calculators may be used, and you must work entirely on your own. Name: PID: Question # Max Pts Category

More information

CISC 235: Topic 4. Balanced Binary Search Trees

CISC 235: Topic 4. Balanced Binary Search Trees CISC 235: Topic 4 Balanced Binary Search Trees Outline Rationale and definitions Rotations AVL Trees, Red-Black, and AA-Trees Algorithms for searching, insertion, and deletion Analysis of complexity CISC

More information