Random Variables and Probability Distributions

Size: px
Start display at page:

Download "Random Variables and Probability Distributions"

Transcription

1 Random Varables and Probablty Dstrbutons Some Prelmnary Informaton Scales on Measurement IE231 - Lecture Notes 5 Mar 14, 2017 Nomnal scale: These are categorcal values that has no relatonshp of order or rank among them. (e.g. colors, speces) Ordnal scale: These are categorcal values that has relatonshp of order or rank among them (e.g. mltary ranks, competton results). Though the relatve order has no defned magntude (e.g. Champon can get 40 ponts, runner up 39 and thrd place 30). Interval scale: There s a numercal order but the dfference can only be defned n ntervals, snce there s no absolute mnmum. We cannot compare n relatve values. For nstance, we cannot say 10 degree celsus s twce as hot as 5 degree celsus; what about -5 vs +5? Rato scale: Scale wth an absolute mnmum. (e.g. If I have 50TL and my frend has 100TL, I can say that she has twce the money that I have.) Heght, weght, age are smlar examples. See more on Infnty The concept of nfnty s very broad. Currently, you just need to keep the dstncton of countable and uncountable nfntes n mnd. Countably nfnte: 1, 2, 3, 4,... (e.g. natural numbers, ntegers, ratonal numbers) Uncountably nfnte: 1, 1.01, 1.001, , ,... (e.g. real numbers) How many real numbers are there between 0 and 1? Descrptve Statstcs Here are bref descrptons of mean (expectaton), medan, mode, varance, standard devaton, quantle. Mean: X = N X Medan: Let s say X k are ordered from smallest to largest and there are n values n the sample. Medan(X)= X (n+1)/2 f n s odd and (usually) Medan(X)= X (n/2) + X (n/2+1). 2 Quantle: On an ordered lst of values for quantle (α) provdes the (α n) th smallest value of the lst. For nstance, f α = 70% = 0.7 quantle value s the 7th smallest value n a lst of 10 values. α = 1 means the maxmum. Quantle s an mportant parameter n especally statstcs. Mode: X k wth the hghest frequency n the sample. In a sample of (1, 2, 2, 3, 4, 5), 2 s the mode. N Varance: V (X) = (X X) 2 n 1 N Standard Devaton: σ(x) = (X X) 2 n 1 1

2 set.seed(231) #Let's pck 10 values from the numbers between 1 and 50. numbers <- sample(1:50,10,replace=true) #The sorted verson of the numbers sort(numbers) ## [1] #The mean values of the numbers sum(numbers)/10 ## [1] 19.9 #or n R mean(numbers) ## [1] 19.9 #Medan of the numbers medan(numbers) ## [1] 17 #Quantle 7/9 of the numbers quantle(numbers,7/9) ## % ## 31 #Quantle 0 of the numbers (also the mn) quantle(numbers,0) ## 0% ## 1 #Quantle 1 of the numbers (also the max) quantle(numbers,1) ## 100% ## 35 #No smple soluton for mode n R freq_table<-table(numbers) freq_table ## numbers ## ## names(freq_table[whch.max(freq_table)]) ## [1] "16" #Sample varance of numbers sum((numbers - mean(numbers))^2)/(10-1) ## [1] #For large values you can take n ~ n-1 #n R var(numbers) 2

3 ## [1] #Sample standard devaton of values sqrt(sum((numbers - mean(numbers))^2)/(10-1)) ## [1] #n R sd(numbers) ## [1] Random Varables Random varables are the abstractons of uncertan events so that we can generalze events n formal functons nstead of explctly enumeratng the outcomes. For nstance, assume X s the number of tals n 2 con tosses. X can take values 0, 1 and 2. X s a dscrete random varable. P (X = 0) = P ({H, H}) = 1/4 (1) P (X = 1) = P ({H, T }, {T, H}) = 2/4 (2) P (X = 2) = P ({T, T }) = 1/4 (3) There are also the contnuous random varables. Contnuous random varables are usually defned n ntervals nstead of ndvdual values. For nstance, defne Y as any real number between 0 and 1 and and all values wthn the nterval are equally probable (.e. unform dstrbuton). (4) P (Y 0.25) = 1/4 (5) P (X 0.5) = 2/4 (6) P (X 0.75) = 3/4 (7) (8) Fundamental Concepts There are several fundamental concepts to keep n mnd. Probablty Mass Functon (pmf): pmf s the pont probablty for dscrete dstrbutons (.e. f(x) = P (X = x)). For nstance P (X = H) = 1/2, P (X = T ) = 1/2. n f(x ) = 1 Probablty Densty Functon (pdf): pdf s the nterval probablty for contnuous dstrbutons (.e. f(x) = P (a < X < b) = b f(x)dx). Snce almost all pont probabltes n contnuous dstrbutons a are 0 (due to nfnty), ntervals. f(x)dx = 1 3

4 Fgure 1: Fgure 2: 4

5 Cumulatve Dstrbuton Functon (cdf): cdf s the cumulatve probablty for all values smaller than x (.e. F (x) = P (X x)). For the con toss an example cdf would be two or less tals (P (X 2)). Man relatonshp between cdf and pdf s (F (X a) = a f(x)dx). Expected Value (E[X]): Expected value of a probablty dstrbuton s calculated as follows. for dscrete dstrbutons. µ = E[X] = n x f(x ) µ = E[X] = for contnuous dstrbutons. xf(x)dx Example: Calculate the expected value of number of tals n two con tosses. n E[X] = x f(x ) = 0 P (X = 0) + 1 P (X = 1) + 2 P (X = 2) (9) = 0 1/ / /4 (10) = 1 (11) Varance (V (X)): Varance s calculated as follows for dscrete dstrbutons. V (X) = E[(X µ) 2 ] = n (x µ) 2 f(x ) V (X) = E[(X µ) 2 ] = for dscrete dstrbutons. Varance can also be calculated as V (X) = E[X 2 ] (E[X]) 2. (x µ) 2 f(x)dx Some Dscrete Dstrbutons Bernoull Dstrbuton It can also be called sngle con toss dstrbuton. For a sngle event wth probablty of success p and falure q = 1 p, the dstrbuton s called Bernoull. pmf: f(x = 0; p) = q, f(x = 1) = p E[X] = 0 (1 p) + 1 p = p V [X] = pq Example: Con Toss p = 0.5, q = 1 p = 0.5 pmf: f(x = 0) = 0.5, f(x = 1) = 0.5 5

6 E[X] = 0 (1 0.5) = 0.5 V (X) = = 0.25 Bnomal Dstrbuton Thnk of multple Bernoull trals (e.g. several con tosses). pmf: f(x; p, n) = ( ) n x p x q (n x) E[X] = np V (X) = npq cdf: F (X x) = n =0 f() Example: Multple Con Tosses (x5 cons, p = 0.5) pmf: f(x = 3; n = 5) = ( 5 3) (0.5) 3 (1 0.5) (5 3) = #R way #(d)ensty(bnom)al dbnom(x=3,sze=5,prob=0.5) ## [1] E[X] = = 2.5 V (X) = = 1.25 cdf: F (X 3; n = 5) = 5 =0 f() = #R way pbnom(q=3,sze=5,prob=0.5) ## [1] Multnomal Dstrbuton Now suppose there s not one probablty (p) but there are many probabltes (p 1, p 2,..., p k ). pmf: f(x 1,..., x k ; p 1,..., p k ; n) = ( ) n x 1,...,x k p x 1 1 px k k where ( ) n n! x 1,...,x k = x 1!... x k!, k x = n and k p = 1. Example: Customers of a coffee shop prefer Turksh coffee wth probablty 0.4, espresso 0.25 and flter coffee What s the probablty that out of the frst 10 customers, 3 wll prefer Turksh coffee, 5 wll prefer espresso and 2 wll prefer flter coffee? f(3, 5, 2; 0.4, 0.25, 0.35; 10) = ( 10 3,5,2) = = #Explct form factoral(10)/(factoral(3)*factoral(5)*factoral(2))*0.4^3 * 0.25^5 * 0.35^2 ## [1] #Densty multnomal dmultnom(x=c(3,5,2),prob=c(0.4,0.25,0.35)) ## [1] Bnomal dstrbuton s a specal case of multnomal dstrbuton. 6

7 Hypergeometrc Dstrbuton Hypergeometrc dstrbuton can be used n case the sample s dvded n two such as defectve/nondefectve, whte/black, Ankara/Istanbul. Suppose there are a total of N tems, k of them are from group 1 and N k of them are from group 2. We want to know the probablty of gettng x tems from group 1 and n k tems from group 2. ( k N k ) x)( pmf: f(x, n; k, N) = E[X] = nk N n x ( N n) V [X] = N n N 1 n k N (1 k N ) Example: Suppose we have a group of 20 people, 12 from Istanbul and 8 from Ankara. If we randomly select 5 people from t what s the probablty that 1 of them s from Ankara and 4 of them from Istanbul. ( ) 1)( f(1, 5; 8, 20) = 5 1 ( 20 5 ) = #Explct form x=1 n=5 k=8 N=20 (choose(k,x)*choose(n-k,n-x))/choose(n,n) ## [1] #Densty hypergeometrc, see?dhyper for explanatons dhyper(x=1,m=8,n=12,k=5) ## [1] Negatve Bnomal Dstrbuton Negatve Bnomal dstrbuton answers the queston What s the probablty that k-th success occurs n n trals?. Dfferently from the bnomal case, we fx the last attempt as success. pmf: f(x; p, n) = ( ) n 1 x 1 p x q (n x) Example: Suppose I m repeatedly tossng cons. What s the probablty that 3rd Heads come n the 5th toss? f(3; 0.5, 5) = ( ) (5 3) = #Explct form choose(5-1,3-1)*0.5^3*0.5^(5-3) ## [1] #Bnomal way dbnom(3-1,5-1,0.5)*0.5 ## [1] #Negatve bnomal way dnbnom(x=5-3,sze=3,prob=0.5) ## [1]

8 Geometrc Dstrbuton Geometrc dstrbuton answers What s the probablty that frst success comes n the n-th tral? pmf: f(x; p, n) = q (n 1) p E[X] = 1/p V [X] = 1 p p 2 8

Lecture 5: Probability Distributions. Random Variables

Lecture 5: Probability Distributions. Random Variables Lecture 5: Probablty Dstrbutons Random Varables Probablty Dstrbutons Dscrete Random Varables Contnuous Random Varables and ther Dstrbutons Dscrete Jont Dstrbutons Contnuous Jont Dstrbutons Independent

More information

Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications 14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of Bozen-Bolzano Faculty of Computer Scence Academc Year 011-01 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information

Wishing you all a Total Quality New Year!

Wishing you all a Total Quality New Year! Total Qualty Management and Sx Sgma Post Graduate Program 214-15 Sesson 4 Vnay Kumar Kalakband Assstant Professor Operatons & Systems Area 1 Wshng you all a Total Qualty New Year! Hope you acheve Sx sgma

More information

Complex Filtering and Integration via Sampling

Complex Filtering and Integration via Sampling Overvew Complex Flterng and Integraton va Samplng Sgnal processng Sample then flter (remove alases) then resample onunform samplng: jtterng and Posson dsk Statstcs Monte Carlo ntegraton and probablty theory

More information

C2 Training: June 8 9, Combining effect sizes across studies. Create a set of independent effect sizes. Introduction to meta-analysis

C2 Training: June 8 9, Combining effect sizes across studies. Create a set of independent effect sizes. Introduction to meta-analysis C2 Tranng: June 8 9, 2010 Introducton to meta-analyss The Campbell Collaboraton www.campbellcollaboraton.org Combnng effect szes across studes Compute effect szes wthn each study Create a set of ndependent

More information

Some Advanced SPC Tools 1. Cumulative Sum Control (Cusum) Chart For the data shown in Table 9-1, the x chart can be generated.

Some Advanced SPC Tools 1. Cumulative Sum Control (Cusum) Chart For the data shown in Table 9-1, the x chart can be generated. Some Advanced SP Tools 1. umulatve Sum ontrol (usum) hart For the data shown n Table 9-1, the x chart can be generated. However, the shft taken place at sample #21 s not apparent. 92 For ths set samples,

More information

Monte Carlo 1: Integration

Monte Carlo 1: Integration Monte Carlo : Integraton Prevous lecture: Analytcal llumnaton formula Ths lecture: Monte Carlo Integraton Revew random varables and probablty Samplng from dstrbutons Samplng from shapes Numercal calculaton

More information

X- Chart Using ANOM Approach

X- Chart Using ANOM Approach ISSN 1684-8403 Journal of Statstcs Volume 17, 010, pp. 3-3 Abstract X- Chart Usng ANOM Approach Gullapall Chakravarth 1 and Chaluvad Venkateswara Rao Control lmts for ndvdual measurements (X) chart are

More information

Monte Carlo 1: Integration

Monte Carlo 1: Integration Monte Carlo : Integraton Prevous lecture: Analytcal llumnaton formula Ths lecture: Monte Carlo Integraton Revew random varables and probablty Samplng from dstrbutons Samplng from shapes Numercal calculaton

More information

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following. Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

More information

Monte Carlo Integration

Monte Carlo Integration Introducton Monte Carlo Integraton Dgtal Image Synthess Yung-Yu Chuang 11/9/005 The ntegral equatons generally don t have analytc solutons, so we must turn to numercal methods. L ( o p,ωo) = L e ( p,ωo)

More information

Biostatistics 615/815

Biostatistics 615/815 The E-M Algorthm Bostatstcs 615/815 Lecture 17 Last Lecture: The Smplex Method General method for optmzaton Makes few assumptons about functon Crawls towards mnmum Some recommendatons Multple startng ponts

More information

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data Malaysan Journal of Mathematcal Scences 11(S) Aprl : 35 46 (2017) Specal Issue: The 2nd Internatonal Conference and Workshop on Mathematcal Analyss (ICWOMA 2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

More information

USING GRAPHING SKILLS

USING GRAPHING SKILLS Name: BOLOGY: Date: _ Class: USNG GRAPHNG SKLLS NTRODUCTON: Recorded data can be plotted on a graph. A graph s a pctoral representaton of nformaton recorded n a data table. t s used to show a relatonshp

More information

Distribution Analysis

Distribution Analysis Chapter II Dstrbuton Analyss D... (Absolute and Relatve Frequences) Let X be a characterstc possessng the attrbutesa, =,,..., k. The absolute frequency of the attrbutea, =,,..., k s defned as follows:

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Helsinki University Of Technology, Systems Analysis Laboratory Mat Independent research projects in applied mathematics (3 cr)

Helsinki University Of Technology, Systems Analysis Laboratory Mat Independent research projects in applied mathematics (3 cr) Helsnk Unversty Of Technology, Systems Analyss Laboratory Mat-2.08 Independent research projects n appled mathematcs (3 cr) "! #$&% Antt Laukkanen 506 R ajlaukka@cc.hut.f 2 Introducton...3 2 Multattrbute

More information

y and the total sum of

y and the total sum of Lnear regresson Testng for non-lnearty In analytcal chemstry, lnear regresson s commonly used n the constructon of calbraton functons requred for analytcal technques such as gas chromatography, atomc absorpton

More information

NGPM -- A NSGA-II Program in Matlab

NGPM -- A NSGA-II Program in Matlab Verson 1.4 LIN Song Aerospace Structural Dynamcs Research Laboratory College of Astronautcs, Northwestern Polytechncal Unversty, Chna Emal: lsssswc@163.com 2011-07-26 Contents Contents... 1. Introducton...

More information

Why visualisation? IRDS: Visualization. Univariate data. Visualisations that we won t be interested in. Graphics provide little additional information

Why visualisation? IRDS: Visualization. Univariate data. Visualisations that we won t be interested in. Graphics provide little additional information Why vsualsaton? IRDS: Vsualzaton Charles Sutton Unversty of Ednburgh Goal : Have a data set that I want to understand. Ths s called exploratory data analyss. Today s lecture. Goal II: Want to dsplay data

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervsed Learnng and Clusterng Why consder unlabeled samples?. Collectng and labelng large set of samples s costly Gettng recorded speech s free, labelng s tme consumng 2. Classfer could be desgned

More information

Active Contours/Snakes

Active Contours/Snakes Actve Contours/Snakes Erkut Erdem Acknowledgement: The sldes are adapted from the sldes prepared by K. Grauman of Unversty of Texas at Austn Fttng: Edges vs. boundares Edges useful sgnal to ndcate occludng

More information

Monte Carlo Rendering

Monte Carlo Rendering Monte Carlo Renderng Last Tme? Modern Graphcs Hardware Cg Programmng Language Gouraud Shadng vs. Phong Normal Interpolaton Bump, Dsplacement, & Envronment Mappng Cg Examples G P R T F P D Today Does Ray

More information

EXST7034 Regression Techniques Geaghan Logistic regression Diagnostics Page 1

EXST7034 Regression Techniques Geaghan Logistic regression Diagnostics Page 1 Logstc regresson Dagnostcs Page 1 1 **********************************************************; 2 *** Logstc Regresson - Dsease outbreak example ***; 3 *** NKNW table 14.3 (Appendx C3) ***; 4 *** Study

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

Design of Structure Optimization with APDL

Design of Structure Optimization with APDL Desgn of Structure Optmzaton wth APDL Yanyun School of Cvl Engneerng and Archtecture, East Chna Jaotong Unversty Nanchang 330013 Chna Abstract In ths paper, the desgn process of structure optmzaton wth

More information

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematcs 56 a course n dfferental equatons for engneerng students Chapter 5. More effcent methods of numercal soluton Euler s method s qute neffcent. Because the error s essentally proportonal to the

More information

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization Problem efntons and Evaluaton Crtera for Computatonal Expensve Optmzaton B. Lu 1, Q. Chen and Q. Zhang 3, J. J. Lang 4, P. N. Suganthan, B. Y. Qu 6 1 epartment of Computng, Glyndwr Unversty, UK Faclty

More information

Phd Program in Transportation. Transport Demand Modeling. Session 7

Phd Program in Transportation. Transport Demand Modeling. Session 7 Phd Program n Transportaton Transport Demand Modelng Lus Martínez (based on the Lessons of Anabela Rbero TDM2010) Sesson 7 Generalzed Lnear Models Phd n Transportaton / Transport Demand Modellng 1/48 Outlne

More information

Intro. Iterators. 1. Access

Intro. Iterators. 1. Access Intro Ths mornng I d lke to talk a lttle bt about s and s. We wll start out wth smlartes and dfferences, then we wll see how to draw them n envronment dagrams, and we wll fnsh wth some examples. Happy

More information

Performance Evaluation of Information Retrieval Systems

Performance Evaluation of Information Retrieval Systems Why System Evaluaton? Performance Evaluaton of Informaton Retreval Systems Many sldes n ths secton are adapted from Prof. Joydeep Ghosh (UT ECE) who n turn adapted them from Prof. Dk Lee (Unv. of Scence

More information

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp Lfe Tables (Tmes) Summary... 1 Data Input... 2 Analyss Summary... 3 Survval Functon... 5 Log Survval Functon... 6 Cumulatve Hazard Functon... 7 Percentles... 7 Group Comparsons... 8 Summary The Lfe Tables

More information

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes SPH3UW Unt 7.3 Sphercal Concave Mrrors Page 1 of 1 Notes Physcs Tool box Concave Mrror If the reflectng surface takes place on the nner surface of the sphercal shape so that the centre of the mrror bulges

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

Summarizing Data using Bottom-k Sketches

Summarizing Data using Bottom-k Sketches Summarzng Data usng Bottom-k Sketches Edth Cohen AT&T Labs Research 8 Park Avenue Florham Park, NJ 7932, USA edth@research.att.com Ham Kaplan School of Computer Scence Tel Avv Unversty Tel Avv, Israel

More information

Mixed Linear System Estimation and Identification

Mixed Linear System Estimation and Identification 48th IEEE Conference on Decson and Control, Shangha, Chna, December 2009 Mxed Lnear System Estmaton and Identfcaton A. Zymns S. Boyd D. Gornevsky Abstract We consder a mxed lnear system model, wth both

More information

Synthesizer 1.0. User s Guide. A Varying Coefficient Meta. nalytic Tool. Z. Krizan Employing Microsoft Excel 2007

Synthesizer 1.0. User s Guide. A Varying Coefficient Meta. nalytic Tool. Z. Krizan Employing Microsoft Excel 2007 Syntheszer 1.0 A Varyng Coeffcent Meta Meta-Analytc nalytc Tool Employng Mcrosoft Excel 007.38.17.5 User s Gude Z. Krzan 009 Table of Contents 1. Introducton and Acknowledgments 3. Operatonal Functons

More information

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Proceedngs of the Wnter Smulaton Conference M E Kuhl, N M Steger, F B Armstrong, and J A Jones, eds A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Mark W Brantley Chun-Hung

More information

Algorithm To Convert A Decimal To A Fraction

Algorithm To Convert A Decimal To A Fraction Algorthm To Convert A ecmal To A Fracton by John Kennedy Mathematcs epartment Santa Monca College 1900 Pco Blvd. Santa Monca, CA 90405 jrkennedy6@gmal.com Except for ths comment explanng that t s blank

More information

An Entropy-Based Approach to Integrated Information Needs Assessment

An Entropy-Based Approach to Integrated Information Needs Assessment Dstrbuton Statement A: Approved for publc release; dstrbuton s unlmted. An Entropy-Based Approach to ntegrated nformaton Needs Assessment June 8, 2004 Wllam J. Farrell Lockheed Martn Advanced Technology

More information

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example Unversty of Brtsh Columba CPSC, Intro to Computaton Jan-Apr Tamara Munzner News Assgnment correctons to ASCIIArtste.java posted defntely read WebCT bboards Arrays Lecture, Tue Feb based on sldes by Kurt

More information

Data Foundations: Data Types and Data Preprocessing. Introduction. Data, tasks and simple visualizations. Data sets. Some key data factors?

Data Foundations: Data Types and Data Preprocessing. Introduction. Data, tasks and simple visualizations. Data sets. Some key data factors? Insttute for Vsualzaton and Percepton Research Insttute for Vsualzaton and Percepton Research Data Foundatons: Data Types and Data Preprocessng Lecture 2 - Data Foundatons September 8, 2010 Georges Grnsten,

More information

Implementation Naïve Bayes Algorithm for Student Classification Based on Graduation Status

Implementation Naïve Bayes Algorithm for Student Classification Based on Graduation Status Internatonal Journal of Appled Busness and Informaton Systems ISSN: 2597-8993 Vol 1, No 2, September 2017, pp. 6-12 6 Implementaton Naïve Bayes Algorthm for Student Classfcaton Based on Graduaton Status

More information

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005 Exercses (Part 4) Introducton to R UCLA/CCPR John Fox, February 2005 1. A challengng problem: Iterated weghted least squares (IWLS) s a standard method of fttng generalzed lnear models to data. As descrbed

More information

Automatic selection of reference velocities for recursive depth migration

Automatic selection of reference velocities for recursive depth migration Automatc selecton of mgraton veloctes Automatc selecton of reference veloctes for recursve depth mgraton Hugh D. Geger and Gary F. Margrave ABSTRACT Wave equaton depth mgraton methods such as phase-shft

More information

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices Steps for Computng the Dssmlarty, Entropy, Herfndahl-Hrschman and Accessblty (Gravty wth Competton) Indces I. Dssmlarty Index Measurement: The followng formula can be used to measure the evenness between

More information

Unsupervised Learning

Unsupervised Learning Pattern Recognton Lecture 8 Outlne Introducton Unsupervsed Learnng Parametrc VS Non-Parametrc Approach Mxture of Denstes Maxmum-Lkelhood Estmates Clusterng Prof. Danel Yeung School of Computer Scence and

More information

EXTENDED BIC CRITERION FOR MODEL SELECTION

EXTENDED BIC CRITERION FOR MODEL SELECTION IDIAP RESEARCH REPORT EXTEDED BIC CRITERIO FOR ODEL SELECTIO Itshak Lapdot Andrew orrs IDIAP-RR-0-4 Dalle olle Insttute for Perceptual Artfcal Intellgence P.O.Box 59 artgny Valas Swtzerland phone +4 7

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

Data Representation in Digital Design, a Single Conversion Equation and a Formal Languages Approach

Data Representation in Digital Design, a Single Conversion Equation and a Formal Languages Approach Data Representaton n Dgtal Desgn, a Sngle Converson Equaton and a Formal Languages Approach Hassan Farhat Unversty of Nebraska at Omaha Abstract- In the study of data representaton n dgtal desgn and computer

More information

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

An Iterative Solution Approach to Process Plant Layout using Mixed Integer Optimisation

An Iterative Solution Approach to Process Plant Layout using Mixed Integer Optimisation 17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 An Iteratve Soluton Approach to Process Plant Layout usng Mxed

More information

Simulation: Solving Dynamic Models ABE 5646 Week 11 Chapter 2, Spring 2010

Simulation: Solving Dynamic Models ABE 5646 Week 11 Chapter 2, Spring 2010 Smulaton: Solvng Dynamc Models ABE 5646 Week Chapter 2, Sprng 200 Week Descrpton Readng Materal Mar 5- Mar 9 Evaluatng [Crop] Models Comparng a model wth data - Graphcal, errors - Measures of agreement

More information

Multilevel Analysis with Informative Weights

Multilevel Analysis with Informative Weights Secton on Survey Research Methods JSM 2008 Multlevel Analyss wth Informatve Weghts Frank Jenkns Westat, 650 Research Blvd., Rockvlle, MD 20850 Abstract Multlevel modelng has become common n large scale

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

Report on On-line Graph Coloring

Report on On-line Graph Coloring 2003 Fall Semester Comp 670K Onlne Algorthm Report on LO Yuet Me (00086365) cndylo@ust.hk Abstract Onlne algorthm deals wth data that has no future nformaton. Lots of examples demonstrate that onlne algorthm

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

Statistical Data Set Comparison for Continuous, Dependent Data by T. C. Smith

Statistical Data Set Comparison for Continuous, Dependent Data by T. C. Smith Sesson 3 Operatonal and Specal Issues Statstcal Data Set Comparson for Contnuous, Dependent Data by T. C. Smth Tmothy C. Smth Davd Taylor Model Basn (NSWC/CD) ABSTRACT Classcal statstcal methods exst for

More information

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array Inserton Sort Dvde and Conquer Sortng CSE 6 Data Structures Lecture 18 What f frst k elements of array are already sorted? 4, 7, 1, 5, 1, 16 We can shft the tal of the sorted elements lst down and then

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

Fitting: Deformable contours April 26 th, 2018

Fitting: Deformable contours April 26 th, 2018 4/6/08 Fttng: Deformable contours Aprl 6 th, 08 Yong Jae Lee UC Davs Recap so far: Groupng and Fttng Goal: move from array of pxel values (or flter outputs) to a collecton of regons, objects, and shapes.

More information

11. HARMS How To: CSV Import

11. HARMS How To: CSV Import and Rsk System 11. How To: CSV Import Preparng the spreadsheet for CSV Import Refer to the spreadsheet template to ad algnng spreadsheet columns wth Data Felds. The spreadsheet s shown n the Appendx, an

More information

Anonymisation of Public Use Data Sets

Anonymisation of Public Use Data Sets Anonymsaton of Publc Use Data Sets Methods for Reducng Dsclosure Rsk and the Analyss of Perturbed Data Harvey Goldsten Unversty of Brstol and Unversty College London and Natale Shlomo Unversty of Manchester

More information

IMPROVING AND EXTENDING THE INFORMATION ON PRINCIPAL COMPONENT ANALYSIS FOR LOCAL NEIGHBORHOODS IN 3D POINT CLOUDS

IMPROVING AND EXTENDING THE INFORMATION ON PRINCIPAL COMPONENT ANALYSIS FOR LOCAL NEIGHBORHOODS IN 3D POINT CLOUDS IMPROVING AND EXTENDING THE INFORMATION ON PRINCIPAL COMPONENT ANALYSIS FOR LOCAL NEIGHBORHOODS IN 3D POINT CLOUDS Davd Belton Cooperatve Research Centre for Spatal Informaton (CRC-SI) The Insttute for

More information

Parallel Numerics. 1 Preconditioning & Iterative Solvers (From 2016)

Parallel Numerics. 1 Preconditioning & Iterative Solvers (From 2016) Technsche Unverstät München WSe 6/7 Insttut für Informatk Prof. Dr. Thomas Huckle Dpl.-Math. Benjamn Uekermann Parallel Numercs Exercse : Prevous Exam Questons Precondtonng & Iteratve Solvers (From 6)

More information

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1)

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1) Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A

More information

Associative Based Classification Algorithm For Diabetes Disease Prediction

Associative Based Classification Algorithm For Diabetes Disease Prediction Internatonal Journal of Engneerng Trends and Technology (IJETT) Volume-41 Number-3 - November 016 Assocatve Based Classfcaton Algorthm For Dabetes Dsease Predcton 1 N. Gnana Deepka, Y.surekha, 3 G.Laltha

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

On the diameter of random planar graphs

On the diameter of random planar graphs On the dameter of random planar graphs Gullaume Chapuy, CNRS & LIAFA, Pars jont work wth Érc Fusy, Pars, Omer Gménez, ex-barcelona, Marc Noy, Barcelona. Probablty and Graphs, Eurandom, Endhoven, 04. Planar

More information

Dynamic Camera Assignment and Handoff

Dynamic Camera Assignment and Handoff 12 Dynamc Camera Assgnment and Handoff Br Bhanu and Ymng L 12.1 Introducton...338 12.2 Techncal Approach...339 12.2.1 Motvaton and Problem Formulaton...339 12.2.2 Game Theoretc Framework...339 12.2.2.1

More information

Pass by Reference vs. Pass by Value

Pass by Reference vs. Pass by Value Pass by Reference vs. Pass by Value Most methods are passed arguments when they are called. An argument may be a constant or a varable. For example, n the expresson Math.sqrt(33) the constant 33 s passed

More information

OPL: a modelling language

OPL: a modelling language OPL: a modellng language Carlo Mannno (from OPL reference manual) Unversty of Oslo, INF-MAT60 - Autumn 00 (Mathematcal optmzaton) ILOG Optmzaton Programmng Language OPL s an Optmzaton Programmng Language

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15 CS434a/541a: Pattern Recognton Prof. Olga Veksler Lecture 15 Today New Topc: Unsupervsed Learnng Supervsed vs. unsupervsed learnng Unsupervsed learnng Net Tme: parametrc unsupervsed learnng Today: nonparametrc

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

Outline. Midterm Review. Declaring Variables. Main Variable Data Types. Symbolic Constants. Arithmetic Operators. Midterm Review March 24, 2014

Outline. Midterm Review. Declaring Variables. Main Variable Data Types. Symbolic Constants. Arithmetic Operators. Midterm Review March 24, 2014 Mdterm Revew March 4, 4 Mdterm Revew Larry Caretto Mechancal Engneerng 9 Numercal Analyss of Engneerng Systems March 4, 4 Outlne VBA and MATLAB codng Varable types Control structures (Loopng and Choce)

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like: Self-Organzng Maps (SOM) Turgay İBRİKÇİ, PhD. Outlne Introducton Structures of SOM SOM Archtecture Neghborhoods SOM Algorthm Examples Summary 1 2 Unsupervsed Hebban Learnng US Hebban Learnng, Cntd 3 A

More information

CSCI 5417 Information Retrieval Systems Jim Martin!

CSCI 5417 Information Retrieval Systems Jim Martin! CSCI 5417 Informaton Retreval Systems Jm Martn! Lecture 11 9/29/2011 Today 9/29 Classfcaton Naïve Bayes classfcaton Ungram LM 1 Where we are... Bascs of ad hoc retreval Indexng Term weghtng/scorng Cosne

More information

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc.

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc. [Type text] [Type text] [Type text] ISSN : 0974-74 Volume 0 Issue BoTechnology 04 An Indan Journal FULL PAPER BTAIJ 0() 04 [684-689] Revew on Chna s sports ndustry fnancng market based on market -orented

More information

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics Introducton G10 NAG Fortran Lbrary Chapter Introducton G10 Smoothng n Statstcs Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Smoothng Methods... 2 2.2 Smoothng Splnes and Regresson

More information

A Flexible Architecture for Creating Scheduling Algorithms as used in STK Scheduler

A Flexible Architecture for Creating Scheduling Algorithms as used in STK Scheduler A Flexble Archtecture for Creatng Schedulng Algorthms as used n STK Scheduler W. A. Fsher and Ella Herz Optwse Corporaton and Orbt Logc Incorporated fsher@optwse.com and ella.herz@orbtlogc.com Abstract

More information

CS221: Algorithms and Data Structures. Priority Queues and Heaps. Alan J. Hu (Borrowing slides from Steve Wolfman)

CS221: Algorithms and Data Structures. Priority Queues and Heaps. Alan J. Hu (Borrowing slides from Steve Wolfman) CS: Algorthms and Data Structures Prorty Queues and Heaps Alan J. Hu (Borrowng sldes from Steve Wolfman) Learnng Goals After ths unt, you should be able to: Provde examples of approprate applcatons for

More information

Context-Specific Bayesian Clustering for Gene Expression Data

Context-Specific Bayesian Clustering for Gene Expression Data Context-Specfc Bayesan Clusterng for Gene Expresson Data Yoseph Barash School of Computer Scence & Engneerng Hebrew Unversty, Jerusalem, 91904, Israel hoan@cs.huj.ac.l Nr Fredman School of Computer Scence

More information

A Robust Method for Estimating the Fundamental Matrix

A Robust Method for Estimating the Fundamental Matrix Proc. VIIth Dgtal Image Computng: Technques and Applcatons, Sun C., Talbot H., Ourseln S. and Adraansen T. (Eds.), 0- Dec. 003, Sydney A Robust Method for Estmatng the Fundamental Matrx C.L. Feng and Y.S.

More information

5 The Primal-Dual Method

5 The Primal-Dual Method 5 The Prmal-Dual Method Orgnally desgned as a method for solvng lnear programs, where t reduces weghted optmzaton problems to smpler combnatoral ones, the prmal-dual method (PDM) has receved much attenton

More information

S1 Note. Basis functions.

S1 Note. Basis functions. S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 B-splne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type

More information

Cache Performance 3/28/17. Agenda. Cache Abstraction and Metrics. Direct-Mapped Cache: Placement and Access

Cache Performance 3/28/17. Agenda. Cache Abstraction and Metrics. Direct-Mapped Cache: Placement and Access Agenda Cache Performance Samra Khan March 28, 217 Revew from last lecture Cache access Assocatvty Replacement Cache Performance Cache Abstracton and Metrcs Address Tag Store (s the address n the cache?

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Decson surface s a hyperplane (lne n 2D) n feature space (smlar to the Perceptron) Arguably, the most mportant recent dscovery n machne learnng In a nutshell: map the data to a predetermned

More information

Stata data file Log file (explained below) ASCII (text) file

Stata data file Log file (explained below) ASCII (text) file Usng Stata Welcome to Stata, one of the most un-user frendly programs ever created. Although later versons have some features to make t easer to use, they more than make up for t by not beng 00% compatble

More information

A DATA ANALYSIS CODE FOR MCNP MESH AND STANDARD TALLIES

A DATA ANALYSIS CODE FOR MCNP MESH AND STANDARD TALLIES Supercomputng n uclear Applcatons (M&C + SA 007) Monterey, Calforna, Aprl 15-19, 007, on CD-ROM, Amercan uclear Socety, LaGrange Par, IL (007) A DATA AALYSIS CODE FOR MCP MESH AD STADARD TALLIES Kenneth

More information

CS1100 Introduction to Programming

CS1100 Introduction to Programming Factoral (n) Recursve Program fact(n) = n*fact(n-) CS00 Introducton to Programmng Recurson and Sortng Madhu Mutyam Department of Computer Scence and Engneerng Indan Insttute of Technology Madras nt fact

More information

Centroid Density of Interval Type-2 Fuzzy Sets: Comparing Stochastic and Deterministic Defuzzification

Centroid Density of Interval Type-2 Fuzzy Sets: Comparing Stochastic and Deterministic Defuzzification Centrod Densty of Interval Type-2 Fuzzy Sets: Comparng Stochastc and Determnstc Defuzzfcaton Ondrej Lnda, Mlos Manc Unversty of Idaho Idaho Falls, ID, US olnda@udaho.edu, msko@eee.org bstract Recently,

More information

(1) The control processes are too complex to analyze by conventional quantitative techniques.

(1) The control processes are too complex to analyze by conventional quantitative techniques. Chapter 0 Fuzzy Control and Fuzzy Expert Systems The fuzzy logc controller (FLC) s ntroduced n ths chapter. After ntroducng the archtecture of the FLC, we study ts components step by step and suggest a

More information

Mutual Information between Discrete and Continuous Data Sets

Mutual Information between Discrete and Continuous Data Sets Mutual Informaton between Dscrete and Contnuous Data Sets Bran C. Ross* Department of Physcs, Unversty of Washngton, Seattle, Washngton, Unted States of Amerca Abstract Mutual nformaton (MI) s a powerful

More information