A cache-aware performance prediction framework for GPGPU computations

Size: px
Start display at page:

Download "A cache-aware performance prediction framework for GPGPU computations"

Transcription

1 A cache-aware performance prediction framework for GPGPU computations The 8th Workshop on UnConventional High Performance Computing 215 Alexander Pöppl, Alexander Herz August 24th, 215 UCHPC 215, August 24th, 215 1

2 Agenda Introduction Motivation Contributions Example Model Execution Time Computation Memory Transfer Empty Kernels Workgroup Size Basic Operations Memory accesses Evaluation Qualitative Evaluation Quantitative Evaluation Further Work UCHPC 215, August 24th, 215 2

3 Introduction Motivation OpenCL is used for running heterogeneous HPC applications It is low level, fairly explicit, and has manual task management 1 Cédric Augonnet et al. StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. English. In: Euro-Par 29 Parallel Processing. Ed. by Henk Sips, Dick Epema, and Hai-Xiang Lin. Vol Lecture Notes in Computer Science. Springer Berlin Heidelberg, 29, pp ISBN: DOI: 1.17/ _8. URL: 2 Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: An Execution Model and Runtime for Heterogeneous Many Core Systems. In: Proceedings of the 17th International Symposium on High Performance Distributed Computing. HPDC 8. Boston, MA, USA: ACM, 28, pp ISBN: DOI: / URL: UCHPC 215, August 24th, 215 3

4 Introduction Motivation OpenCL is used for running heterogeneous HPC applications It is low level, fairly explicit, and has manual task management Hence runtime systems with schedulers, such as StarPU 1 or Harmony 2 have been developed These schedule tasks onto heterogeneous hardware based on expected runtime. High-quality estimations crucial for efficient schedules. 1 Cédric Augonnet et al. StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. English. In: Euro-Par 29 Parallel Processing. Ed. by Henk Sips, Dick Epema, and Hai-Xiang Lin. Vol Lecture Notes in Computer Science. Springer Berlin Heidelberg, 29, pp ISBN: DOI: 1.17/ _8. URL: 2 Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: An Execution Model and Runtime for Heterogeneous Many Core Systems. In: Proceedings of the 17th International Symposium on High Performance Distributed Computing. HPDC 8. Boston, MA, USA: ACM, 28, pp ISBN: DOI: / URL: UCHPC 215, August 24th, 215 3

5 Introduction Motivation Performance Prediction models already exist, and work well with earlier GPU architectures. Introduction of Caches complicate predictions. GPU memory Hierarchy needs to be considered. UCHPC 215, August 24th, 215 4

6 Introduction Contributions Categorization of memory accesses into classes with distinct performance characteristics. Fully static OpenCL computation prediction model. Evaluation using randomly generated OpenCL kernels shows that a cache-aware model improves predictions. UCHPC 215, August 24th, 215 5

7 Introduction Example Popular operation: Stencil operations Array of size: n m b(i, j) = a(i, j) 2 a(1, j) UCHPC 215, August 24th, 215 6

8 Introduction Example 1: n WI = m n 2: mem input GPU device.alloc(n WI s WI ) 3: mem output GPU device.alloc(n WI s WI ) 4: copydatatogpu( mem input GPU ) 5: device.kernel(n WI, n WG, m, n) id {,.., n WI }. sq mod(mem input 6: copydatafromgpu( mem output GPU ) GPU, memoutput GPU, m, n) UCHPC 215, August 24th, 215 7

9 Introduction Example kernel void sq mod ( global f l o a t matrix, global f l o a t res, unsigned i n t m, unsigned i n t n ) { s i z e t c u r r e n t p o s = g e t g l o b a l i d ( ) ; unsigned i n t c u r r e n t r o w = c u r r e n t p o s / n ; unsigned i n t c u r r e n t c o l = c u r r e n t p o s % n ; res [ c u r r e n t p o s ] = m a t r i x [ c u r r e n t r o w n + c u r r e n t c o l ] matrix [ c u r r e n t r o w n + c u r r e n t c o l ] matrix [ c u r r e n t c o l ] ; } UCHPC 215, August 24th, 215 8

10 Model Execution Time Computation Computation of the Runtime t(n WI, s WI, n WG ) = t Transfer (n WI, s WI ) + t Kernel (n WI, n WG ) t Kernel (n WI, n WG ) = t Base(n WI ) + Op Expr.-Types W Op(n Op )t Op (n WI ) U(n WG, n XU ) n WI n WG s WI n XU Number of work-items Number of work-items per work-group Size of a work-item in bytes Number of execution units on the GPU UCHPC 215, August 24th, 215 9

11 Model Memory Transfer GPUs have a dedicated portion of memory for their computations Time for memory transfer governed by two variables bw Bandwidth l prop Propagation latency UCHPC 215, August 24th, 215 1

12 Model Memory Transfer Time in ms # DWords 1 7 Figure: Memory Transfer times To GPU From GPU ttrans to (n WI) = bw 1 to n WI + l to ttrans from(n WI) = bw 1 from n WI + l from UCHPC 215, August 24th,

13 Model Empty Kernels Time in ms.4.2 Empty Kernel Runtime n WI Figure: Execution times for empty kernels. t Base (n WI ) = c Base n WI + c fixed Base UCHPC 215, August 24th,

14 Model Workgroup Size Time in ms Observed Runtime Observed Runtime 5 1 Work-items per work-group (a) NVidia GT-65M 5 1 Work-items per work-group (b) Intel HD Graphics 4 Figure: Execution time for different work-group sizes. The kernel we used to evaluate this behavior performs one read from and write to the global memory, and one floating point division. UCHPC 215, August 24th,

15 Model Workgroup Size Modelling the behavior Periodic spikes in execution time. Especially visible on the HD 4. Influence of Work-Group size U(n WG, n XU ) = n WG n XU n + n WG mod n XU nwg n XU n WG n XU WG n XU n XU n WG n }{{} XU }{{} A B UCHPC 215, August 24th,

16 Model Basic Operations 6 Time in ms 4 2 / Float + Float Float Float Float Float Float n WI 1 7 n Ops (a) One operation per work-item (b) Multiple Operations per work-item Figure: Progression of the execution time for basic operations. UCHPC 215, August 24th,

17 Model Basic Operations W type op (n Ops ) = t type op { a n b Ops + c : n Ops nops sat a n Ops + c (n WI ) = c type op n WI : n Ops > n sat Ops a, a, b, c, c are obtained by fitting Wop type (n Ops ) to 4b c type op is obtained by fitting t type op (n WI ) to 4a. UCHPC 215, August 24th,

18 Model Memory accesses In OpenCL, 3 different kinds of memory accesses are available private: Used for local variables, parameters. local: Shared between work-items within a work-group global: Shared amongst all work-items Usually implemented using different kinds of memory. UCHPC 215, August 24th,

19 Model Memory accesses Time in ms Global Read Global Write Local Read Local Write Private Access.5 1 n WI 1 7 UCHPC 215, August 24th,

20 Model Memory accesses Coalesced Accesses 1 8 Coalesced Time in ms n WI 1 7 UCHPC 215, August 24th,

21 Model Memory accesses Constant Accesses 1 8 Coalesced Constant Time in ms n WI 1 7 UCHPC 215, August 24th, 215 2

22 Model Memory accesses Interval Accesses 1 8 Coalesced Interval Constant Time in ms n WI 1 7 UCHPC 215, August 24th,

23 Model Memory accesses Two Identical Accesses Time in ms Coalesced 2 Identical coalesced Interval Constant.5 1 n WI 1 7 UCHPC 215, August 24th,

24 Model Memory accesses Complex Accesses Time in ms Complex Coalesced 2 Identical coalesced Interval Constant.5 1 n WI 1 7 UCHPC 215, August 24th,

25 Evaluation Qualitative Evaluation Static prediction of the execution time given the following data: Kernel Source Code Data about GPU characteristics Number of work-items n WI UCHPC 215, August 24th,

26 Evaluation Qualitative Evaluation Static prediction of the execution time given the following data: Kernel Source Code Data about GPU characteristics Number of work-items n WI Cost Type # in Kernel Time in µs float float int int / int private access 1. interval global read access continuous global read access base cost work-group size final prediction 889 UCHPC 215, August 24th,

27 Evaluation Qualitative Evaluation 1 2 Our model Observation Time in s Number of Elements UCHPC 215, August 24th,

28 Evaluation Quantitative Evaluation Quantitative evaluation through generated OpenCL Kernels 2 Sets of kernels, Unrestricted and Realistic Unrestricted Set Little restrictions on complexity Complex memory access patterns possible ((xxx[((y + x) + 454) & x7f] / (matrix[x][y] * x)) - (matrix[x][y] + (matrix[x][y] + ((matrix[(4419 * (2 + x)) % HEIGHT][194 % WIDTH] - xxx[71632 & x7f]) - (( f * (x - y)) + ( f / (((((matrix[x][y] - matrix[x][y]) - xxx[(y * x) & x7f]) f) + matrix[x][y]) f))))))) + xxx[x & x7f] Realistic Set Complexity restricted, limited number of nodes in syntax tree No overly complex memory access patterns ((x / (xxx[x & x7f] / (matrix[1 % HEIGHT][361 % WIDTH] * matrix[x][y]))) * xxx[y & x7f]) f UCHPC 215, August 24th,

29 Evaluation Quantitative Evaluation GT-65M t prediction t result t prediction t result (a) Realistic Set (b) Unrestricted Set.7 < t prediction t result.7 < t prediction t result < 1.3 for 63% of all samples for the restricted set. < 1.3 for 5% of all samples for the unrestricted set. UCHPC 215, August 24th,

30 Evaluation Quantitative Evaluation Quadro K t prediction t result t prediction t result (c) Realistic Set (d) Unrestricted Set.7 < t prediction t result.7 < t prediction t result < 1.3 for 71% of all samples for the restricted set. < 1.3 for 43% of all samples for the unrestricted set. UCHPC 215, August 24th,

31 Evaluation Quantitative Evaluation Comparison t prediction t result (e) Cache-Aware Model t prediction t result (f) Simple Model.7 < t prediction t result.7 < t prediction t result < 1.3 for 71% of all samples for out model. < 1.3 for 61% of all samples for the simpler model. UCHPC 215, August 24th,

32 Further Work Improve predictions, expand onto more architectures Support more language constructs, e.g. if or for Support intrinsic operations, e.g. sin(), sqrt() UCHPC 215, August 24th, 215 3

33 Thank you for your attention Acknowledgements This work was partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre Invasive Computing (SFB/TR 89). UCHPC 215, August 24th,

Communication Library to Overlap Computation and Communication for OpenCL Application

Communication Library to Overlap Computation and Communication for OpenCL Application Communication Library to Overlap Computation and Communication for OpenCL Application Toshiya Komoda, Shinobu Miwa, Hiroshi Nakamura Univ.Tokyo What is today s talk about? Heterogeneous Computing System

More information

A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function

A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function Chen-Ting Chang, Yu-Sheng Chen, I-Wei Wu, and Jyh-Jiun Shann Dept. of Computer Science, National Chiao

More information

COMP 322: Fundamentals of Parallel Programming. Flynn s Taxonomy for Parallel Computers

COMP 322: Fundamentals of Parallel Programming. Flynn s Taxonomy for Parallel Computers COMP 322: Fundamentals of Parallel Programming Lecture 37: General-Purpose GPU (GPGPU) Computing Max Grossman, Vivek Sarkar Department of Computer Science, Rice University max.grossman@rice.edu, vsarkar@rice.edu

More information

Identifying Volatile Numeric Expressions in OpenCL Applications Miriam Leeser

Identifying Volatile Numeric Expressions in OpenCL Applications Miriam Leeser Identifying Volatile Numeric Expressions in OpenCL Applications Miriam Leeser mel@coe.neu.edu Mahsa Bayati, Brian Crafton Electrical and Computer Engineering Yijia Gu and Thomas Wahl College of Computer

More information

Red Fox: An Execution Environment for Relational Query Processing on GPUs

Red Fox: An Execution Environment for Relational Query Processing on GPUs Red Fox: An Execution Environment for Relational Query Processing on GPUs Georgia Institute of Technology: Haicheng Wu, Ifrah Saeed, Sudhakar Yalamanchili LogicBlox Inc.: Daniel Zinn, Martin Bravenboer,

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Overview of research activities Toward portability of performance

Overview of research activities Toward portability of performance Overview of research activities Toward portability of performance Do dynamically what can t be done statically Understand evolution of architectures Enable new programming models Put intelligence into

More information

OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors

OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors 1 Agenda OpenCL Overview of Platform, Execution and Memory models Mapping these models to AM57x Overview of OpenMP Offload Model Compare and contrast

More information

Parallel Alternating Direction Implicit Solver for the Two-Dimensional Heat Diffusion Problem on Graphics Processing Units

Parallel Alternating Direction Implicit Solver for the Two-Dimensional Heat Diffusion Problem on Graphics Processing Units Parallel Alternating Direction Implicit Solver for the Two-Dimensional Heat Diffusion Problem on Graphics Processing Units Khor Shu Heng Engineering Science Programme National University of Singapore Abstract

More information

Josef Pelikán, Jan Horáček CGG MFF UK Praha

Josef Pelikán, Jan Horáček CGG MFF UK Praha GPGPU and CUDA 2012-2018 Josef Pelikán, Jan Horáček CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 41 Content advances in hardware multi-core vs. many-core general computing

More information

The Heterogeneous Programming Jungle. Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest

The Heterogeneous Programming Jungle. Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest The Heterogeneous Programming Jungle Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest June 19, 2012 Outline 1. Introduction 2. Heterogeneous System Zoo 3. Similarities 4. Programming

More information

University of Bielefeld

University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Introduction to GPU Programming using CUDA Olaf Kaczmarek University of Bielefeld STRONGnet Summerschool 2011 ZIF Bielefeld

More information

Introduction to CUDA (1 of n*)

Introduction to CUDA (1 of n*) Administrivia Introduction to CUDA (1 of n*) Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Paper presentation due Wednesday, 02/23 Topics first come, first serve Assignment 4 handed today

More information

Red Fox: An Execution Environment for Relational Query Processing on GPUs

Red Fox: An Execution Environment for Relational Query Processing on GPUs Red Fox: An Execution Environment for Relational Query Processing on GPUs Haicheng Wu 1, Gregory Diamos 2, Tim Sheard 3, Molham Aref 4, Sean Baxter 2, Michael Garland 2, Sudhakar Yalamanchili 1 1. Georgia

More information

To Use or Not to Use: CPUs Cache Optimization Techniques on GPGPUs

To Use or Not to Use: CPUs Cache Optimization Techniques on GPGPUs To Use or Not to Use: CPUs Optimization Techniques on GPGPUs D.R.V.L.B. Thambawita Department of Computer Science and Technology Uva Wellassa University Badulla, Sri Lanka Email: vlbthambawita@gmail.com

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

gem5-gpu Extending gem5 for GPGPUs Jason Power, Marc Orr, Joel Hestness, Mark Hill, David Wood

gem5-gpu Extending gem5 for GPGPUs Jason Power, Marc Orr, Joel Hestness, Mark Hill, David Wood gem5-gpu Extending gem5 for GPGPUs Jason Power, Marc Orr, Joel Hestness, Mark Hill, David Wood (powerjg/morr)@cs.wisc.edu UW-Madison Computer Sciences 2012 gem5-gpu gem5 + GPGPU-Sim (v3.0.1) Flexible memory

More information

Postprint. This is the accepted version of a paper presented at MCC13, November 25 26, Halmstad, Sweden.

Postprint.   This is the accepted version of a paper presented at MCC13, November 25 26, Halmstad, Sweden. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at MCC13, November 25 26, Halmstad, Sweden. Citation for the original published paper: Ceballos, G., Black-Schaffer,

More information

GPU programming. Dr. Bernhard Kainz

GPU programming. Dr. Bernhard Kainz GPU programming Dr. Bernhard Kainz Overview About myself Motivation GPU hardware and system architecture GPU programming languages GPU programming paradigms Pitfalls and best practice Reduction and tiling

More information

Lecture: Manycore GPU Architectures and Programming, Part 4 -- Introducing OpenMP and HOMP for Accelerators

Lecture: Manycore GPU Architectures and Programming, Part 4 -- Introducing OpenMP and HOMP for Accelerators Lecture: Manycore GPU Architectures and Programming, Part 4 -- Introducing OpenMP and HOMP for Accelerators CSCE 569 Parallel Computing Department of Computer Science and Engineering Yonghong Yan yanyh@cse.sc.edu

More information

GPU GPU CPU. Raymond Namyst 3 Samuel Thibault 3 Olivier Aumage 3

GPU GPU CPU. Raymond Namyst 3 Samuel Thibault 3 Olivier Aumage 3 /CPU,a),2,2 2,2 Raymond Namyst 3 Samuel Thibault 3 Olivier Aumage 3 XMP XMP-dev CPU XMP-dev/StarPU XMP-dev XMP CPU StarPU CPU /CPU XMP-dev/StarPU N /CPU CPU. Graphics Processing Unit GP General-Purpose

More information

Parallel Processing of Multimedia Data in a Heterogeneous Computing Environment

Parallel Processing of Multimedia Data in a Heterogeneous Computing Environment Parallel Processing of Multimedia Data in a Heterogeneous Computing Environment Heegon Kim, Sungju Lee, Yongwha Chung, Daihee Park, and Taewoong Jeon Dept. of Computer and Information Science, Korea University,

More information

Parallel H.264/AVC Motion Compensation for GPUs using OpenCL

Parallel H.264/AVC Motion Compensation for GPUs using OpenCL Parallel H.264/AVC Motion Compensation for GPUs using OpenCL Biao Wang, Mauricio Alvarez-Mesa, Chi Ching Chi, Ben Juurlink Embedded Systems Architecture Technische Universität Berlin Berlin, Germany January

More information

Kampala August, Agner Fog

Kampala August, Agner Fog Advanced microprocessor optimization Kampala August, 2007 Agner Fog www.agner.org Agenda Intel and AMD microprocessors Out Of Order execution Branch prediction Platform, 32 or 64 bits Choice of compiler

More information

GPU Programming Using NVIDIA CUDA

GPU Programming Using NVIDIA CUDA GPU Programming Using NVIDIA CUDA Siddhante Nangla 1, Professor Chetna Achar 2 1, 2 MET s Institute of Computer Science, Bandra Mumbai University Abstract: GPGPU or General-Purpose Computing on Graphics

More information

General Purpose GPU Programming (1) Advanced Operating Systems Lecture 14

General Purpose GPU Programming (1) Advanced Operating Systems Lecture 14 General Purpose GPU Programming (1) Advanced Operating Systems Lecture 14 Lecture Outline Heterogenous multi-core systems and general purpose GPU programming Programming models Heterogenous multi-kernels

More information

GPGPU, 4th Meeting Mordechai Butrashvily, CEO GASS Company for Advanced Supercomputing Solutions

GPGPU, 4th Meeting Mordechai Butrashvily, CEO GASS Company for Advanced Supercomputing Solutions GPGPU, 4th Meeting Mordechai Butrashvily, CEO moti@gass-ltd.co.il GASS Company for Advanced Supercomputing Solutions Agenda 3rd meeting 4th meeting Future meetings Activities All rights reserved (c) 2008

More information

How to Optimize Geometric Multigrid Methods on GPUs

How to Optimize Geometric Multigrid Methods on GPUs How to Optimize Geometric Multigrid Methods on GPUs Markus Stürmer, Harald Köstler, Ulrich Rüde System Simulation Group University Erlangen March 31st 2011 at Copper Schedule motivation imaging in gradient

More information

Evaluation Of The Performance Of GPU Global Memory Coalescing

Evaluation Of The Performance Of GPU Global Memory Coalescing Evaluation Of The Performance Of GPU Global Memory Coalescing Dae-Hwan Kim Department of Computer and Information, Suwon Science College, 288 Seja-ro, Jeongnam-myun, Hwaseong-si, Gyeonggi-do, Rep. of Korea

More information

Understanding Outstanding Memory Request Handling Resources in GPGPUs

Understanding Outstanding Memory Request Handling Resources in GPGPUs Understanding Outstanding Memory Request Handling Resources in GPGPUs Ahmad Lashgar ECE Department University of Victoria lashgar@uvic.ca Ebad Salehi ECE Department University of Victoria ebads67@uvic.ca

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Synchronization 3 Automatic Parallelization and OpenMP 4 GPGPU 5 Q& A 2 Multithreaded

More information

JCudaMP: OpenMP/Java on CUDA

JCudaMP: OpenMP/Java on CUDA JCudaMP: OpenMP/Java on CUDA Georg Dotzler, Ronald Veldema, Michael Klemm Programming Systems Group Martensstraße 3 91058 Erlangen Motivation Write once, run anywhere - Java Slogan created by Sun Microsystems

More information

GPUs have enormous power that is enormously difficult to use

GPUs have enormous power that is enormously difficult to use 524 GPUs GPUs have enormous power that is enormously difficult to use Nvidia GP100-5.3TFlops of double precision This is equivalent to the fastest super computer in the world in 2001; put a single rack

More information

Why memory hierarchy? Memory hierarchy. Memory hierarchy goals. CS2410: Computer Architecture. L1 cache design. Sangyeun Cho

Why memory hierarchy? Memory hierarchy. Memory hierarchy goals. CS2410: Computer Architecture. L1 cache design. Sangyeun Cho Why memory hierarchy? L1 cache design Sangyeun Cho Computer Science Department Memory hierarchy Memory hierarchy goals Smaller Faster More expensive per byte CPU Regs L1 cache L2 cache SRAM SRAM To provide

More information

Introduction to GPGPU and GPU-architectures

Introduction to GPGPU and GPU-architectures Introduction to GPGPU and GPU-architectures Henk Corporaal Gert-Jan van den Braak http://www.es.ele.tue.nl/ Contents 1. What is a GPU 2. Programming a GPU 3. GPU thread scheduling 4. GPU performance bottlenecks

More information

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Juan C. Pichel Centro de Investigación en Tecnoloxías da Información (CITIUS) Universidade de Santiago de Compostela, Spain

More information

Advanced CUDA Optimizations

Advanced CUDA Optimizations Advanced CUDA Optimizations General Audience Assumptions General working knowledge of CUDA Want kernels to perform better Profiling Before optimizing, make sure you are spending effort in correct location

More information

Expressing Heterogeneous Parallelism in C++ with Intel Threading Building Blocks A full-day tutorial proposal for SC17

Expressing Heterogeneous Parallelism in C++ with Intel Threading Building Blocks A full-day tutorial proposal for SC17 Expressing Heterogeneous Parallelism in C++ with Intel Threading Building Blocks A full-day tutorial proposal for SC17 Tutorial Instructors [James Reinders, Michael J. Voss, Pablo Reble, Rafael Asenjo]

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Automatic Parallelization and OpenMP 3 GPGPU 2 Multithreaded Programming

More information

OpenCL Overview. Shanghai March Neil Trevett Vice President Mobile Content, NVIDIA President, The Khronos Group

OpenCL Overview. Shanghai March Neil Trevett Vice President Mobile Content, NVIDIA President, The Khronos Group Copyright Khronos Group, 2012 - Page 1 OpenCL Overview Shanghai March 2012 Neil Trevett Vice President Mobile Content, NVIDIA President, The Khronos Group Copyright Khronos Group, 2012 - Page 2 Processor

More information

Automatic Intra-Application Load Balancing for Heterogeneous Systems

Automatic Intra-Application Load Balancing for Heterogeneous Systems Automatic Intra-Application Load Balancing for Heterogeneous Systems Michael Boyer, Shuai Che, and Kevin Skadron Department of Computer Science University of Virginia Jayanth Gummaraju and Nuwan Jayasena

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 30: GP-GPU Programming. Lecturer: Alan Christopher

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 30: GP-GPU Programming. Lecturer: Alan Christopher CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 30: GP-GPU Programming Lecturer: Alan Christopher Overview GP-GPU: What and why OpenCL, CUDA, and programming GPUs GPU Performance

More information

Automatic Pruning of Autotuning Parameter Space for OpenCL Applications

Automatic Pruning of Autotuning Parameter Space for OpenCL Applications Automatic Pruning of Autotuning Parameter Space for OpenCL Applications Ahmet Erdem, Gianluca Palermo 6, and Cristina Silvano 6 Department of Electronics, Information and Bioengineering Politecnico di

More information

Dense Linear Algebra. HPC - Algorithms and Applications

Dense Linear Algebra. HPC - Algorithms and Applications Dense Linear Algebra HPC - Algorithms and Applications Alexander Pöppl Technical University of Munich Chair of Scientific Computing November 6 th 2017 Last Tutorial CUDA Architecture thread hierarchy:

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

A Large-Scale Cross-Architecture Evaluation of Thread-Coarsening. Alberto Magni, Christophe Dubach, Michael O'Boyle

A Large-Scale Cross-Architecture Evaluation of Thread-Coarsening. Alberto Magni, Christophe Dubach, Michael O'Boyle A Large-Scale Cross-Architecture Evaluation of Thread-Coarsening Alberto Magni, Christophe Dubach, Michael O'Boyle Introduction Wide adoption of GPGPU for HPC Many GPU devices from many of vendors AMD

More information

Compile-time GPU memory access optimizations

Compile-time GPU memory access optimizations Compile-time GPU memory access optimizations Braak, van den, G.J.W.; Mesman, B.; Corporaal, H. Published in: Proceedings of the 2010 International Conference on Embedded Computer Systems (SAMOS), 19-22

More information

Lecture 27: Multiprocessors. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs

Lecture 27: Multiprocessors. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Lecture 27: Multiprocessors Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs 1 Shared-Memory Vs. Message-Passing Shared-memory: Well-understood programming model

More information

Martin Kruliš, v

Martin Kruliš, v Martin Kruliš 1 GPGPU History Current GPU Architecture OpenCL Framework Example Optimizing Previous Example Alternative Architectures 2 1996: 3Dfx Voodoo 1 First graphical (3D) accelerator for desktop

More information

GPU. Study of Automatic GPU Offloading Technology for Open IoT

GPU. Study of Automatic GPU Offloading Technology for Open IoT THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. SC2018-10 (2018-06) IoT GPU NTT 3-9-11 E-mail: yamato.yoji@lab.ntt.co.jp IoT IoT IoT Tacit Computing Tacit

More information

Performance Tools for Technical Computing

Performance Tools for Technical Computing Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University Intel Software Conference 2010 April 13th, Barcelona, Spain Agenda o Motivation and Methodology

More information

Performance Modeling of Pipelined Linear Algebra Architectures on FPGAs

Performance Modeling of Pipelined Linear Algebra Architectures on FPGAs Performance Modeling of Pipelined Linear Algebra Architectures on FPGAs Sam Skalicky, Sonia López, Marcin Łukowiak, James Letendre, and Matthew Ryan Rochester Institute of Technology, Rochester NY 14623,

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform

Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform J Supercomput (2013) 63:710 721 DOI 10.1007/s11227-011-0626-0 Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform Shiming Xu Wei Xue Hai Xiang Lin Published

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka USE OF FOR Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Mini workshop on advanced numerical methods

More information

CS 179: GPU Programming

CS 179: GPU Programming CS 179: GPU Programming Lecture 1: Introduction Images: http://en.wikipedia.org http://www.pcper.com http://northdallasradiationoncology.com/ GPU Gems (Nvidia) Administration Covered topics: (GP)GPU computing/parallelization

More information

OpenACC. Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer

OpenACC. Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer OpenACC Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer 3 WAYS TO ACCELERATE APPLICATIONS Applications Libraries Compiler Directives Programming Languages Easy to use Most Performance

More information

OpenMP for next generation heterogeneous clusters

OpenMP for next generation heterogeneous clusters OpenMP for next generation heterogeneous clusters Jens Breitbart Research Group Programming Languages / Methodologies, Universität Kassel, jbreitbart@uni-kassel.de Abstract The last years have seen great

More information

GPU Implementation of a Multiobjective Search Algorithm

GPU Implementation of a Multiobjective Search Algorithm Department Informatik Technical Reports / ISSN 29-58 Steffen Limmer, Dietmar Fey, Johannes Jahn GPU Implementation of a Multiobjective Search Algorithm Technical Report CS-2-3 April 2 Please cite as: Steffen

More information

Introduction to CUDA Programming

Introduction to CUDA Programming Introduction to CUDA Programming Steve Lantz Cornell University Center for Advanced Computing October 30, 2013 Based on materials developed by CAC and TACC Outline Motivation for GPUs and CUDA Overview

More information

B. Tech. Project Second Stage Report on

B. Tech. Project Second Stage Report on B. Tech. Project Second Stage Report on GPU Based Active Contours Submitted by Sumit Shekhar (05007028) Under the guidance of Prof Subhasis Chaudhuri Table of Contents 1. Introduction... 1 1.1 Graphic

More information

GPU Programming with Ateji PX June 8 th Ateji All rights reserved.

GPU Programming with Ateji PX June 8 th Ateji All rights reserved. GPU Programming with Ateji PX June 8 th 2010 Ateji All rights reserved. Goals Write once, run everywhere, even on a GPU Target heterogeneous architectures from Java GPU accelerators OpenCL standard Get

More information

Parallelizing Inline Data Reduction Operations for Primary Storage Systems

Parallelizing Inline Data Reduction Operations for Primary Storage Systems Parallelizing Inline Data Reduction Operations for Primary Storage Systems Jeonghyeon Ma ( ) and Chanik Park Department of Computer Science and Engineering, POSTECH, Pohang, South Korea {doitnow0415,cipark}@postech.ac.kr

More information

Lecture 11: OpenCL and Altera OpenCL. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 11: OpenCL and Altera OpenCL. James C. Hoe Department of ECE Carnegie Mellon University 18 643 Lecture 11: OpenCL and Altera OpenCL James C. Hoe Department of ECE Carnegie Mellon University 18 643 F17 L11 S1, James C. Hoe, CMU/ECE/CALCM, 2017 Housekeeping Your goal today: understand Altera

More information

Lecture 9. Outline. CUDA : a General-Purpose Parallel Computing Architecture. CUDA Device and Threads CUDA. CUDA Architecture CUDA (I)

Lecture 9. Outline. CUDA : a General-Purpose Parallel Computing Architecture. CUDA Device and Threads CUDA. CUDA Architecture CUDA (I) Lecture 9 CUDA CUDA (I) Compute Unified Device Architecture 1 2 Outline CUDA Architecture CUDA Architecture CUDA programming model CUDA-C 3 4 CUDA : a General-Purpose Parallel Computing Architecture CUDA

More information

Auto-tunable GPU BLAS

Auto-tunable GPU BLAS Auto-tunable GPU BLAS Jarle Erdal Steinsland Master of Science in Computer Science Submission date: June 2011 Supervisor: Anne Cathrine Elster, IDI Norwegian University of Science and Technology Department

More information

The ECM (Execution-Cache-Memory) Performance Model

The ECM (Execution-Cache-Memory) Performance Model The ECM (Execution-Cache-Memory) Performance Model J. Treibig and G. Hager: Introducing a Performance Model for Bandwidth-Limited Loop Kernels. Proceedings of the Workshop Memory issues on Multi- and Manycore

More information

Sparse Matrix-Vector Multiplication with Wide SIMD Units: Performance Models and a Unified Storage Format

Sparse Matrix-Vector Multiplication with Wide SIMD Units: Performance Models and a Unified Storage Format ERLANGEN REGIONAL COMPUTING CENTER Sparse Matrix-Vector Multiplication with Wide SIMD Units: Performance Models and a Unified Storage Format Moritz Kreutzer, Georg Hager, Gerhard Wellein SIAM PP14 MS53

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM I5 AND I7 PROCESSORS Juan M. Cebrián 1 Lasse Natvig 1 Jan Christian Meyer 2 1 Depart. of Computer and Information

More information

Multi-Processors and GPU

Multi-Processors and GPU Multi-Processors and GPU Philipp Koehn 7 December 2016 Predicted CPU Clock Speed 1 Clock speed 1971: 740 khz, 2016: 28.7 GHz Source: Horowitz "The Singularity is Near" (2005) Actual CPU Clock Speed 2 Clock

More information

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction 1/8 GPU Implementation of Elliptic Solvers in Numerical Weather- and Climate- Prediction Eike Hermann Müller, Robert Scheichl Department of Mathematical Sciences EHM, Xu Guo, Sinan Shi and RS: http://arxiv.org/abs/1302.7193

More information

Profiling-Based L1 Data Cache Bypassing to Improve GPU Performance and Energy Efficiency

Profiling-Based L1 Data Cache Bypassing to Improve GPU Performance and Energy Efficiency Profiling-Based L1 Data Cache Bypassing to Improve GPU Performance and Energy Efficiency Yijie Huangfu and Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University {huangfuy2,wzhang4}@vcu.edu

More information

Review on ichat: Inter Cache Hardware Assistant Data Transfer for Heterogeneous Chip Multiprocessors. By: Anvesh Polepalli Raj Muchhala

Review on ichat: Inter Cache Hardware Assistant Data Transfer for Heterogeneous Chip Multiprocessors. By: Anvesh Polepalli Raj Muchhala Review on ichat: Inter Cache Hardware Assistant Data Transfer for Heterogeneous Chip Multiprocessors By: Anvesh Polepalli Raj Muchhala Introduction Integrating CPU and GPU into a single chip for performance

More information

Parallel Programming Concepts. GPU Computing with OpenCL

Parallel Programming Concepts. GPU Computing with OpenCL Parallel Programming Concepts GPU Computing with OpenCL Frank Feinbube Operating Systems and Middleware Prof. Dr. Andreas Polze Agenda / Quicklinks 2 Recapitulation Motivation History of GPU Computing

More information

Breaking the Memory Barrier for Finite Difference Algorithms

Breaking the Memory Barrier for Finite Difference Algorithms Breaking the Memory Barrier for Finite Difference Algorithms Gerhard Zumbusch Institut für Angewandte Mathematik Friedrich-Schiller Universität Jena GTC 2013, S3096 Model problem Finite Difference Stencil

More information

"On the Capability and Achievable Performance of FPGAs for HPC Applications"

On the Capability and Achievable Performance of FPGAs for HPC Applications "On the Capability and Achievable Performance of FPGAs for HPC Applications" Wim Vanderbauwhede School of Computing Science, University of Glasgow, UK Or in other words "How Fast Can Those FPGA Thingies

More information

NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems

NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems NUMA-Aware Data-Transfer Measurements for Power/NVLink Multi-GPU Systems Carl Pearson 1, I-Hsin Chung 2, Zehra Sura 2, Wen-Mei Hwu 1, and Jinjun Xiong 2 1 University of Illinois Urbana-Champaign, Urbana

More information

Profiling of Data-Parallel Processors

Profiling of Data-Parallel Processors Profiling of Data-Parallel Processors Daniel Kruck 09/02/2014 09/02/2014 Profiling Daniel Kruck 1 / 41 Outline 1 Motivation 2 Background - GPUs 3 Profiler NVIDIA Tools Lynx 4 Optimizations 5 Conclusion

More information

Sparse Linear Algebra in CUDA

Sparse Linear Algebra in CUDA Sparse Linear Algebra in CUDA HPC - Algorithms and Applications Alexander Pöppl Technical University of Munich Chair of Scientific Computing November 22 nd 2017 Table of Contents Homework - Worksheet 2

More information

Lecture 11: GPU programming

Lecture 11: GPU programming Lecture 11: GPU programming David Bindel 4 Oct 2011 Logistics Matrix multiply results are ready Summary on assignments page My version (and writeup) on CMS HW 2 due Thursday Still working on project 2!

More information

Lecture 27: Pot-Pourri. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability

Lecture 27: Pot-Pourri. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability Lecture 27: Pot-Pourri Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability 1 Shared-Memory Vs. Message-Passing Shared-memory: Well-understood

More information

CSE 599 I Accelerated Computing - Programming GPUS. Memory performance

CSE 599 I Accelerated Computing - Programming GPUS. Memory performance CSE 599 I Accelerated Computing - Programming GPUS Memory performance GPU Teaching Kit Accelerated Computing Module 6.1 Memory Access Performance DRAM Bandwidth Objective To learn that memory bandwidth

More information

2/17/10. Administrative. L7: Memory Hierarchy Optimization IV, Bandwidth Optimization and Case Studies. Administrative, cont.

2/17/10. Administrative. L7: Memory Hierarchy Optimization IV, Bandwidth Optimization and Case Studies. Administrative, cont. Administrative L7: Memory Hierarchy Optimization IV, Bandwidth Optimization and Case Studies Next assignment on the website Description at end of class Due Wednesday, Feb. 17, 5PM Use handin program on

More information

A TALENTED CPU-TO-GPU MEMORY MAPPING TECHNIQUE

A TALENTED CPU-TO-GPU MEMORY MAPPING TECHNIQUE A TALENTED CPU-TO-GPU MEMORY MAPPING TECHNIQUE Abu Asaduzzaman, Deepthi Gummadi, and Chok M. Yip Department of Electrical Engineering and Computer Science Wichita State University Wichita, Kansas, USA

More information

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Scalable Multi Agent Simulation on the GPU Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Reasoning Explicit State machine, serial Implicit Compute intensive Fits SIMT well Collision avoidance Motivation

More information

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions.

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions. Schedule CUDA Digging further into the programming manual Application Programming Interface (API) text only part, sorry Image utilities (simple CUDA examples) Performace considerations Matrix multiplication

More information

XPDL: Extensible Platform Description Language to Support Energy Modeling and Optimization

XPDL: Extensible Platform Description Language to Support Energy Modeling and Optimization 1 / 25 XPDL: Extensible Platform Description Language to Support Energy Modeling and Optimization Christoph Kessler, Lu Li, Aras Atalar and Alin Dobre christoph.kessler@liu.se, lu.li@liu.se 2 / 25 Agenda

More information

Addressing the Memory Wall

Addressing the Memory Wall Lecture 26: Addressing the Memory Wall Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Tunes Cage the Elephant Back Against the Wall (Cage the Elephant) This song is for the

More information

Programmer's View of Execution Teminology Summary

Programmer's View of Execution Teminology Summary CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: GP-GPU Programming GPUs Hardware specialized for graphics calculations Originally developed to facilitate the use of CAD programs

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

Runtime Adaptation of Application Execution under Thermal and Power Constraints in Massively Parallel Processor Arrays

Runtime Adaptation of Application Execution under Thermal and Power Constraints in Massively Parallel Processor Arrays Runtime Adaptation of Application Execution under Thermal and Power Constraints in Massively Parallel Processor Arrays Éricles Sousa 1, Frank Hannig 1, Jürgen Teich 1, Qingqing Chen 2, and Ulf Schlichtmann

More information

GPU for HPC. October 2010

GPU for HPC. October 2010 GPU for HPC Simone Melchionna Jonas Latt Francis Lapique October 2010 EPFL/ EDMX EPFL/EDMX EPFL/DIT simone.melchionna@epfl.ch jonas.latt@epfl.ch francis.lapique@epfl.ch 1 Moore s law: in the old days,

More information

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum GPU & High Performance Computing (by NVIDIA) CUDA Compute Unified Device Architecture 29.02.2008 Florian Schornbaum GPU Computing Performance In the last few years the GPU has evolved into an absolute

More information

AMath 483/583, Lecture 24, May 20, Notes: Notes: What s a GPU? Notes: Some GPU application areas

AMath 483/583, Lecture 24, May 20, Notes: Notes: What s a GPU? Notes: Some GPU application areas AMath 483/583 Lecture 24 May 20, 2011 Today: The Graphical Processing Unit (GPU) GPU Programming Today s lecture developed and presented by Grady Lemoine References: Andreas Kloeckner s High Performance

More information