LINPACK Benchmark Optimizations on a Virtual Processor Grid

Size: px
Start display at page:

Download "LINPACK Benchmark Optimizations on a Virtual Processor Grid"

Transcription

1 Ed Anderson Maynard Brandt (retired) Chao Yang

2 Outline Organization of the Cray LINPACK Benchmark code Kernel optimizations on the CRAY X The virtual processor grid

3 Solve a linear system Ax = b The LINPACK benchmark using Gaussian elimination with partial pivoting. The problem size and implementation are not specified. The algorithm factors A = L U and solves y = L - b; x = U - y Performance results are specified in Gflop/s (billions of floating-point operations per second) or Tflop/s (trillions of floating-point operations per second)

4 Right-looking algorithm: Block LU factorization I II III I. Factor block column into A = LU II. III. Exchange rows and update block row Update the rest of the matrix using matrix multiplication

5 Optimizing the panel factorization Sub- blocking or recursion is used within the block column so that more work is done in the optimized MM kernel.

6 Software choices HPL (High Performance LINPACK) Block-cyclic distribution Column-wise storage of blocks MPI communication Cray s LINPACK Benchmark code Block-cyclic distribution Row-wise storage of blocks MPI or SHMEM communications 6

7 7 -D block cyclic data distribution Example on a x processor grid:

8 Local view: ScaLAPACK/HPL Blocks stored by columns, on processor : A, A, A,7 A, A, A,7 A(mb*nrblks, *ncblks) A, A, A,7 A 7, A 7, A 7,7 Advantage: With abstraction of BLAS and LAPACK routines, we can maintain much of the LAPACK design. Disadvantage: As matrix size gets large, distribution blocks get spread out through memory. 8

9 Local view: Cray LBM code Blocks stored by rows, processor : A, A, A,7 A(mb,,ncblks,) A, A, A,7 A(mb,,ncblks,) A, A, A,7 A(mb,,ncblks,) A 7, A 7, A 7,7 A(mb,,ncblks,) Advantage: Distribution blocks and block rows are contiguous. Disadvantage: More indexing with the -D array. 9

10 Main computation kernel After communication of the column and row blocks, each processor performs a matrix-matrix multiplication of the form: = - x In ScaLAPACK/HPL, one call to SGEMM is required for this operation.

11 Optimizing data layout for SGEMM With row-wise storage of blocks, one call to SGEMM is needed to update each local block row. = - = - = - x x x (all the same block)

12 Internals of SGEMM on TE Basic operation: -by- matrix times -by-n matrix n n x = A B C Innermost kernel: matrix-vector multiply, -element result The -by- block of A is used repeatedly and will reside in cache. The columns of B are streams (if LDB=, B is one long stream). The result vector is held in registers until combined into C.

13 Transition of SGEMM: TE X n n x = A B C TE: Result vector was elements long X: Result vector can be VL elements long (to 6)

14 Transition of SGEMM: TE X n n x = A B C TE: x block constrained by size of set of Scache (96W = 6x6) X: x block needs to fit in MB cache (6KW = x)

15 Transition of SGEMM: TE X n n x = A B C TE: Compute one column of C at a time

16 Transition of SGEMM: TE X n n x = A B C TE: Compute one column of C at a time X: Compute columns of C at a time 6

17 Transition of SGEMM: TE X n n x = A B C TE: Compute x matrix-vector multiply in innermost kernel 7

18 Transition of SGEMM: TE X n n x = A B C TE: Compute x matrix-vector multiply in innermost kernel X: Each SSP computes a 6 x matrix-vector multiply concurrently 8

19 Internals of SGEMM on X Basic operation: -by- matrix times -by-n matrix SSP SSP SSP SSP n n x = A B C The -by- block of A is used repeatedly and will reside in cache. B is read columns at a time and is shared by the SSPs. The result vector is held in registers until combined into C. 9

20 Prototype matrix multiply code subroutine sgemmnn( m, n, k, alpha, a, inra, b, inrb, & beta, c, inrc ) integer m, n, k, inra, inrb, inrc real alpha, beta, a(inra,*), b(inrb,*), c(inrc,*) integer i, js, m cdir$ SSP_PRIVATE dmmnn m = (m+)/ do i =, js = min( m, max( m-i*m, ) ) call dmmnn( js, n, k, alpha, a(+i*m,), inra, & b, inrb, beta, c(+i*m,), inrc ) end do return end Compile with: ftn -Oaggress -O -s default6 c sgemmnn.f

21 Optimizing the row exchanges A row exchange is performed at each step of the block column factorization to put the largest element (in absolute value) on the diagonal. The vector IPIV records the exchanges. Example: IPIV() = IPIV() = 6 IPIV() = 9 IPIV() = IPIV() = IPIV(6) = IPIV(7) = IPIV(8) =

22 Gather/scatter indices We can avoid synchronizing after every exchange by translating IPIV into gather and scatter permutation vectors. scatter gather

23 Optimizing the communication To optimize the communication, rows to be exchanged are first copied locally into a contiguous buffer.

24 When a p q grid isn t enough Shortcomings of existing algorithm: Many processors are idle during column factorization. Not every processor count factors neatly into N = p q. Example: = x = x = x6 = x On some systems it is better to leave one or two processors idle ( N p may not factor neatly). p

25 The Virtual Processor Grid Generalize the -D grid factorization to p q = k N p, where k, p N, and lcm(p,n ) = k N. p Example: 6 processors in a virtual grid p p This becomes the tiling pattern for the distributed -D matrix

26 Data structure for VPG Recall the -D array used for row-wise storage of blocks: A( mb,, ncblks, nrblks ) Now add another dimension for the virtual processor index: A( mb,, ncblks, nrblks, nvpi ) Maintains contiguousness of distribution blocks and row blocks. Need to add a loop over the virtual processor indices. No extra storage except for some extra buffers for each virtual processor. 6

27 Coding issues for VPG Loop doesn t always go from to nvpi. Example: Send second column of following matrix across rows. Send is initiated with virtual processor index on {,}, with v.p. index on {,}. Recv is initiated with virtual processor index on {,,,} and with v.p. index on {,} do i =, nvpi- {work on block numbered + mod(start-+i, nvpi)} end do 7

28 LINPACK Benchmark Performance CRAY X, MSPs Gflop/s N x grid x grid x grid 8

29 Summary Storage order of distribution blocks was optimized for the cache. Leading dimension was padded from 6 to 6 to optimize the matrix-multiply kernel. Main computational kernel uses SSP parallelism. Communication was optimized using SHMEM. No barriers! Communication was extensively overlapped with computation. Virtual processor grid improves parallelism of column and row operations. 9

Benchmark Results. 2006/10/03

Benchmark Results. 2006/10/03 Benchmark Results cychou@nchc.org.tw 2006/10/03 Outline Motivation HPC Challenge Benchmark Suite Software Installation guide Fine Tune Results Analysis Summary 2 Motivation Evaluate, Compare, Characterize

More information

HPCC Results. Nathan Wichmann Benchmark Engineer

HPCC Results. Nathan Wichmann Benchmark Engineer HPCC Results Nathan Wichmann Benchmark Engineer Outline What is HPCC? Results Comparing current machines Conclusions May 04 2 HPCChallenge Project Goals To examine the performance of HPC architectures

More information

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P.

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P. 1 2 The LINPACK Benchmark on the Fujitsu AP 1000 Richard P. Brent Computer Sciences Laboratory The LINPACK Benchmark A popular benchmark for floating-point performance. Involves the solution of a nonsingular

More information

Computer Comparisons Using HPCC. Nathan Wichmann Benchmark Engineer

Computer Comparisons Using HPCC. Nathan Wichmann Benchmark Engineer Computer Comparisons Using HPCC Nathan Wichmann Benchmark Engineer Outline Comparisons using HPCC HPCC test used Methods used to compare machines using HPCC Normalize scores Weighted averages Comparing

More information

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline:

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline: AMath 483/583 Lecture 22 Outline: MPI Master Worker paradigm Linear algebra LAPACK and the BLAS References: $UWHPSC/codes/mpi class notes: MPI section class notes: Linear algebra Another Send/Receive example

More information

Dense matrix algebra and libraries (and dealing with Fortran)

Dense matrix algebra and libraries (and dealing with Fortran) Dense matrix algebra and libraries (and dealing with Fortran) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealing with Fortran)

More information

A Few Numerical Libraries for HPC

A Few Numerical Libraries for HPC A Few Numerical Libraries for HPC CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) A Few Numerical Libraries for HPC Spring 2016 1 / 37 Outline 1 HPC == numerical linear

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

HPCC Optimizations and Results for the Cray X1 Nathan Wichmann Cray Inc. May 14, 2004

HPCC Optimizations and Results for the Cray X1 Nathan Wichmann Cray Inc. May 14, 2004 HPCC Optimizations and Results for the Cray X1 Nathan Wichmann Cray Inc. May 14, 2004 ABSTRACT: A new benchmark call HPCC has recently been proposed to evaluate High Performance systems. This paper discusses

More information

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency 1 2 Parallel Algorithms for Linear Algebra Richard P. Brent Computer Sciences Laboratory Australian National University Outline Basic concepts Parallel architectures Practical design issues Programming

More information

Accelerating Linpack Performance with Mixed Precision Algorithm on CPU+GPGPU Heterogeneous Cluster

Accelerating Linpack Performance with Mixed Precision Algorithm on CPU+GPGPU Heterogeneous Cluster th IEEE International Conference on Computer and Information Technology (CIT ) Accelerating Linpack Performance with Mixed Precision Algorithm on CPU+GPGPU Heterogeneous Cluster WANG Lei ZHANG Yunquan

More information

SCALING DGEMM TO MULTIPLE CAYMAN GPUS AND INTERLAGOS MANY-CORE CPUS FOR HPL

SCALING DGEMM TO MULTIPLE CAYMAN GPUS AND INTERLAGOS MANY-CORE CPUS FOR HPL SCALING DGEMM TO MULTIPLE CAYMAN GPUS AND INTERLAGOS MANY-CORE CPUS FOR HPL Matthias Bach and David Rohr Frankfurt Institute for Advanced Studies Goethe University of Frankfurt I: INTRODUCTION 3 Scaling

More information

Automatic Performance Tuning. Jeremy Johnson Dept. of Computer Science Drexel University

Automatic Performance Tuning. Jeremy Johnson Dept. of Computer Science Drexel University Automatic Performance Tuning Jeremy Johnson Dept. of Computer Science Drexel University Outline Scientific Computation Kernels Matrix Multiplication Fast Fourier Transform (FFT) Automated Performance Tuning

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2013 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Technical Report Performance Analysis of CULA on different NVIDIA GPU Architectures. Prateek Gupta

Technical Report Performance Analysis of CULA on different NVIDIA GPU Architectures. Prateek Gupta Technical Report 2014-02 Performance Analysis of CULA on different NVIDIA GPU Architectures Prateek Gupta May 20, 2014 1 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

More information

Lecture 17: Array Algorithms

Lecture 17: Array Algorithms Lecture 17: Array Algorithms CS178: Programming Parallel and Distributed Systems April 4, 2001 Steven P. Reiss I. Overview A. We talking about constructing parallel programs 1. Last time we discussed sorting

More information

Overpartioning with the Rice dhpf Compiler

Overpartioning with the Rice dhpf Compiler Overpartioning with the Rice dhpf Compiler Strategies for Achieving High Performance in High Performance Fortran Ken Kennedy Rice University http://www.cs.rice.edu/~ken/presentations/hug00overpartioning.pdf

More information

Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments

Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra SIAM Conference on Computational Science and Engineering

More information

CS420: Operating Systems

CS420: Operating Systems Main Memory James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Program must

More information

Fast Tridiagonal Solvers on GPU

Fast Tridiagonal Solvers on GPU Fast Tridiagonal Solvers on GPU Yao Zhang John Owens UC Davis Jonathan Cohen NVIDIA GPU Technology Conference 2009 Outline Introduction Algorithms Design algorithms for GPU architecture Performance Bottleneck-based

More information

9. Linear Algebra Computation

9. Linear Algebra Computation 9. Linear Algebra Computation Basic Linear Algebra Subprograms (BLAS) Routines that provide standard, low-level, building blocks for performing basic vector and matrix operations. Originally developed

More information

AMath 483/583 Lecture 11. Notes: Notes: Comments on Homework. Notes: AMath 483/583 Lecture 11

AMath 483/583 Lecture 11. Notes: Notes: Comments on Homework. Notes: AMath 483/583 Lecture 11 AMath 483/583 Lecture 11 Outline: Computer architecture Cache considerations Fortran optimization Reading: S. Goedecker and A. Hoisie, Performance Optimization of Numerically Intensive Codes, SIAM, 2001.

More information

F04EBFP.1. NAG Parallel Library Routine Document

F04EBFP.1. NAG Parallel Library Routine Document F04 Simultaneous Linear Equations F04EBFP NAG Parallel Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check for implementation-dependent

More information

Basic Communication Operations (Chapter 4)

Basic Communication Operations (Chapter 4) Basic Communication Operations (Chapter 4) Vivek Sarkar Department of Computer Science Rice University vsarkar@cs.rice.edu COMP 422 Lecture 17 13 March 2008 Review of Midterm Exam Outline MPI Example Program:

More information

AMath 483/583 Lecture 11

AMath 483/583 Lecture 11 AMath 483/583 Lecture 11 Outline: Computer architecture Cache considerations Fortran optimization Reading: S. Goedecker and A. Hoisie, Performance Optimization of Numerically Intensive Codes, SIAM, 2001.

More information

Sorting on the Cray X1

Sorting on the Cray X1 Introduction Sorting on the Cray X1 Helene E. Kulsrud CCR-P Since 1978 and our studies of the Cray I, CCR has used sorting of 63 and 64 bit numbers as a benchmark. Therefore it was expected that we would

More information

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1 LAPACK Linear Algebra PACKage 1 Janice Giudice David Knezevic 1 Motivating Question Recalling from last week... Level 1 BLAS: vectors ops Level 2 BLAS: matrix-vectors ops 2 2 O( n ) flops on O( n ) data

More information

Dangerously Clever X1 Application Tricks

Dangerously Clever X1 Application Tricks Dangerously Clever X1 Application Tricks CUG 2004 James B. White III (Trey) trey@ornl.gov 1 Acknowledgement Research sponsored by the Mathematical, Information, and Division, Office of Advanced Scientific

More information

Automatic Development of Linear Algebra Libraries for the Tesla Series

Automatic Development of Linear Algebra Libraries for the Tesla Series Automatic Development of Linear Algebra Libraries for the Tesla Series Enrique S. Quintana-Ortí quintana@icc.uji.es Universidad Jaime I de Castellón (Spain) Dense Linear Algebra Major problems: Source

More information

HPCS HPCchallenge Benchmark Suite

HPCS HPCchallenge Benchmark Suite HPCS HPCchallenge Benchmark Suite David Koester, Ph.D. () Jack Dongarra (UTK) Piotr Luszczek () 28 September 2004 Slide-1 Outline Brief DARPA HPCS Overview Architecture/Application Characterization Preliminary

More information

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science Algorithms and Architecture William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp Algorithms What is an algorithm? A set of instructions to perform a task How do we evaluate an algorithm?

More information

Work Allocation. Mark Greenstreet. CpSc 418 Oct. 25, Mark Greenstreet Work Allocation CpSc 418 Oct. 25, / 13

Work Allocation. Mark Greenstreet. CpSc 418 Oct. 25, Mark Greenstreet Work Allocation CpSc 418 Oct. 25, / 13 Work Allocation Mark Greenstreet CpSc 418 Oct. 25, 2012 Mark Greenstreet Work Allocation CpSc 418 Oct. 25, 2012 0 / 13 Lecture Outline Work Allocation Static Allocation (matrices and other arrays) Stripes

More information

Automatic Tuning of the High Performance Linpack Benchmark

Automatic Tuning of the High Performance Linpack Benchmark Automatic Tuning of the High Performance Linpack Benchmark Ruowei Chen Supervisor: Dr. Peter Strazdins The Australian National University What is the HPL Benchmark? World s Top 500 Supercomputers http://www.top500.org

More information

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation CUDA Accelerated Linpack on Clusters E. Phillips, NVIDIA Corporation Outline Linpack benchmark CUDA Acceleration Strategy Fermi DGEMM Optimization / Performance Linpack Results Conclusions LINPACK Benchmark

More information

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions.

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions. Schedule CUDA Digging further into the programming manual Application Programming Interface (API) text only part, sorry Image utilities (simple CUDA examples) Performace considerations Matrix multiplication

More information

Tiling: A Data Locality Optimizing Algorithm

Tiling: A Data Locality Optimizing Algorithm Tiling: A Data Locality Optimizing Algorithm Announcements Monday November 28th, Dr. Sanjay Rajopadhye is talking at BMAC Friday December 2nd, Dr. Sanjay Rajopadhye will be leading CS553 Last Monday Kelly

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

2.7 Numerical Linear Algebra Software

2.7 Numerical Linear Algebra Software 2.7 Numerical Linear Algebra Software In this section we will discuss three software packages for linear algebra operations: (i) (ii) (iii) Matlab, Basic Linear Algebra Subroutines (BLAS) and LAPACK. There

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

NAG Fortran Library Routine Document F04CAF.1

NAG Fortran Library Routine Document F04CAF.1 F04 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

Introduction to the Xeon Phi programming model. Fabio AFFINITO, CINECA

Introduction to the Xeon Phi programming model. Fabio AFFINITO, CINECA Introduction to the Xeon Phi programming model Fabio AFFINITO, CINECA What is a Xeon Phi? MIC = Many Integrated Core architecture by Intel Other names: KNF, KNC, Xeon Phi... Not a CPU (but somewhat similar

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2018 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

A Standard for Batching BLAS Operations

A Standard for Batching BLAS Operations A Standard for Batching BLAS Operations Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 5/8/16 1 API for Batching BLAS Operations We are proposing, as a community

More information

Accelerated Library Framework for Hybrid-x86

Accelerated Library Framework for Hybrid-x86 Software Development Kit for Multicore Acceleration Version 3.0 Accelerated Library Framework for Hybrid-x86 Programmer s Guide and API Reference Version 1.0 DRAFT SC33-8406-00 Software Development Kit

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Zero elements of first column below 1 st row multiplying 1 st

More information

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark by Nkemdirim Dockery High Performance Computing Workloads Core-memory sized Floating point intensive Well-structured

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

Portland State University ECE 588/688. Cray-1 and Cray T3E

Portland State University ECE 588/688. Cray-1 and Cray T3E Portland State University ECE 588/688 Cray-1 and Cray T3E Copyright by Alaa Alameldeen 2018 Cray-1 A successful Vector processor from the 1970s Vector instructions are examples of SIMD Contains vector

More information

NAG Fortran Library Routine Document F07AAF (DGESV).1

NAG Fortran Library Routine Document F07AAF (DGESV).1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

printf("\n\nx = "); for(i=0;i<5;i++) printf("\n%f %f", X[i],X[i+5]); printf("\n\ny = "); for(i=0;i<5;i++) printf("\n%f", Y[i]);

printf(\n\nx = ); for(i=0;i<5;i++) printf(\n%f %f, X[i],X[i+5]); printf(\n\ny = ); for(i=0;i<5;i++) printf(\n%f, Y[i]); OLS.c / / #include #include #include int main(){ int i,info, ipiv[2]; char trans = 't', notrans ='n'; double alpha = 1.0, beta=0.0; int ncol=2; int nrow=5; int

More information

Exam Design and Analysis of Algorithms for Parallel Computer Systems 9 15 at ÖP3

Exam Design and Analysis of Algorithms for Parallel Computer Systems 9 15 at ÖP3 UMEÅ UNIVERSITET Institutionen för datavetenskap Lars Karlsson, Bo Kågström och Mikael Rännar Design and Analysis of Algorithms for Parallel Computer Systems VT2009 June 2, 2009 Exam Design and Analysis

More information

Notes on LINPACK NxN Benchmark on Hewlett-Packard Systems

Notes on LINPACK NxN Benchmark on Hewlett-Packard Systems Notes on LINPACK NxN Benchmark on Hewlett-Packard Systems Piotr Luszczek August 3, 2001 Benchmark Matrix Optimizations Parallel name dimension allowed Processing 100 100 complier No 1000 1000 manual No

More information

A MATLAB Interface to the GPU

A MATLAB Interface to the GPU Introduction Results, conclusions and further work References Department of Informatics Faculty of Mathematics and Natural Sciences University of Oslo June 2007 Introduction Results, conclusions and further

More information

A Case for High Performance Computing with Virtual Machines

A Case for High Performance Computing with Virtual Machines A Case for High Performance Computing with Virtual Machines Wei Huang*, Jiuxing Liu +, Bulent Abali +, and Dhabaleswar K. Panda* *The Ohio State University +IBM T. J. Waston Research Center Presentation

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing W. P. Petersen Seminar for Applied Mathematics Department of Mathematics, ETHZ, Zurich wpp@math. ethz.ch P. Arbenz Institute for Scientific Computing Department Informatik,

More information

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories HPC Benchmarking Presentations: Jack Dongarra, University of Tennessee & ORNL The HPL Benchmark: Past, Present & Future Mike Heroux, Sandia National Laboratories The HPCG Benchmark: Challenges It Presents

More information

Performance of the CRAY T3E Multiprocessor

Performance of the CRAY T3E Multiprocessor Performance of the CRAY T3E Multiprocessor 1 Introduction Ed Anderson, Jeff Brooks, Charles Grassl and Steve Scott Cray Research, Inc. {eca, jpb, cmg, sls}@cray.com The CRAY T3E is a scalable shared-memory

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

I/O in scientific applications

I/O in scientific applications COSC 4397 Parallel I/O (II) Access patterns Spring 2010 I/O in scientific applications Different classes of I/O operations Required I/O: reading input data and writing final results Checkpointing: data

More information

X1 Porting Experiences. Tom Baring Arctic Region Supercomputing Center

X1 Porting Experiences. Tom Baring Arctic Region Supercomputing Center X1 Porting Experiences Tom Baring Arctic Region Supercomputing Center X1 Porting Experiences Every code ported to the X1 should be analyzed for performance... X1 Porting Experiences Outline Six case studies

More information

Scientific Computing with GPUs Autotuning GEMMs Fermi GPUs

Scientific Computing with GPUs Autotuning GEMMs Fermi GPUs Parallel Processing and Applied Mathematics September 11-14, 2011 Toruń, Poland Scientific Computing with GPUs Autotuning GEMMs Fermi GPUs Innovative Computing Laboratory Electrical Engineering and Computer

More information

Computer Architectures and Aspects of NWP models

Computer Architectures and Aspects of NWP models Computer Architectures and Aspects of NWP models Deborah Salmond ECMWF Shinfield Park, Reading, UK Abstract: This paper describes the supercomputers used in operational NWP together with the computer aspects

More information

Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme on OpenPower 8

Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme on OpenPower 8 Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme on OpenPower 8 Martin Köhler Jens Saak 2 The Gauss-Jordan Elimination scheme is an alternative to the LU decomposition

More information

Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends

Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends Paolo Bientinesi AICES, RWTH Aachen pauldj@aices.rwth-aachen.de ComplexHPC Spring School 2013 Heterogeneous computing - Impact

More information

Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development

Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development M. Serdar Celebi

More information

Portland State University ECE 588/688. Cray-1 and Cray T3E

Portland State University ECE 588/688. Cray-1 and Cray T3E Portland State University ECE 588/688 Cray-1 and Cray T3E Copyright by Alaa Alameldeen 2014 Cray-1 A successful Vector processor from the 1970s Vector instructions are examples of SIMD Contains vector

More information

NAG Library Routine Document F07MAF (DSYSV).1

NAG Library Routine Document F07MAF (DSYSV).1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Numerical libraries. - Exercises -

Numerical libraries. - Exercises - Numerical libraries - Exercises - Library installation As a beginning effort try download and install LAPACK from NETLIB: Download from http://www.netlib.org/lapack/lapack- 3.4.1.tgz Configure make.inc

More information

Solving Dense Linear Systems on Graphics Processors

Solving Dense Linear Systems on Graphics Processors Solving Dense Linear Systems on Graphics Processors Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí High Performance Computing & Architectures Group Universidad

More information

Numerical libraries. Exercises PARALLEL COMPUTING USING MPI AND OPENMP. M.Cremonesi May 2014

Numerical libraries. Exercises PARALLEL COMPUTING USING MPI AND OPENMP. M.Cremonesi May 2014 Numerical libraries Exercises PARALLEL COMPUTING USING MPI AND OPENMP M.Cremonesi May 2014 Library installation As a beginning effort try download and install LAPACK from NETLIB: Download from http://www.netlib.org/lapack/lapack-

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #15 3/7/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 From last class Outline

More information

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core Tuning on a single core 1 From models to practice In lecture 2, we discussed features such as instruction-level parallelism and cache hierarchies that we need to understand in order to have a reasonable

More information

CS 470 Spring Other Architectures. Mike Lam, Professor. (with an aside on linear algebra)

CS 470 Spring Other Architectures. Mike Lam, Professor. (with an aside on linear algebra) CS 470 Spring 2016 Mike Lam, Professor Other Architectures (with an aside on linear algebra) Parallel Systems Shared memory (uniform global address space) Primary story: make faster computers Programming

More information

Dense LU Factorization

Dense LU Factorization Dense LU Factorization Dr.N.Sairam & Dr.R.Seethalakshmi School of Computing, SASTRA Univeristy, Thanjavur-613401. Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 6 Contents 1. Dense LU Factorization...

More information

Lecture 3: Intro to parallel machines and models

Lecture 3: Intro to parallel machines and models Lecture 3: Intro to parallel machines and models David Bindel 1 Sep 2011 Logistics Remember: http://www.cs.cornell.edu/~bindel/class/cs5220-f11/ http://www.piazza.com/cornell/cs5220 Note: the entire class

More information

Overcoming the Barriers to Sustained Petaflop Performance

Overcoming the Barriers to Sustained Petaflop Performance Overcoming the Barriers to Sustained Petaflop Performance William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp Argonne National Laboratory A Laboratory Operated by The University of

More information

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca Distributed Dense Linear Algebra on Heterogeneous Architectures George Bosilca bosilca@eecs.utk.edu Centraro, Italy June 2010 Factors that Necessitate to Redesign of Our Software» Steepness of the ascent

More information

Auto-tunable GPU BLAS

Auto-tunable GPU BLAS Auto-tunable GPU BLAS Jarle Erdal Steinsland Master of Science in Computer Science Submission date: June 2011 Supervisor: Anne Cathrine Elster, IDI Norwegian University of Science and Technology Department

More information

On the efficiency of the Accelerated Processing Unit for scientific computing

On the efficiency of the Accelerated Processing Unit for scientific computing 24 th High Performance Computing Symposium Pasadena, April 5 th 2016 On the efficiency of the Accelerated Processing Unit for scientific computing I. Said, P. Fortin, J.-L. Lamotte, R. Dolbeau, H. Calandra

More information

Optimization of MPI Applications Rolf Rabenseifner

Optimization of MPI Applications Rolf Rabenseifner Optimization of MPI Applications Rolf Rabenseifner University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Optimization of MPI Applications Slide 1 Optimization and Standardization

More information

Cluster Computing. Remote Memory Architectures

Cluster Computing. Remote Memory Architectures Remote Memory Architectures Evolution Shared Memory Shared Virtual Memory Parallel Virtual Machine Structured Memory SIMD Remote Memory Communication Models A B A B P0 receive send message passing 2-sided

More information

Parallel Performance and Optimization

Parallel Performance and Optimization Parallel Performance and Optimization Erik Schnetter Gregory G. Howes Iowa High Performance Computing Summer School University of Iowa Iowa City, Iowa May 20-22, 2013 Thank you Ben Rogers Glenn Johnson

More information

Data parallel algorithms, algorithmic building blocks, precision vs. accuracy

Data parallel algorithms, algorithmic building blocks, precision vs. accuracy Data parallel algorithms, algorithmic building blocks, precision vs. accuracy Robert Strzodka Architecture of Computing Systems GPGPU and CUDA Tutorials Dresden, Germany, February 25 2008 2 Overview Parallel

More information

NAG Fortran Library Routine Document F04DHF.1

NAG Fortran Library Routine Document F04DHF.1 F04 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

Halfway! Sequoia. A Point of View. Sequoia. First half of the course is over. Now start the second half. CS315B Lecture 9

Halfway! Sequoia. A Point of View. Sequoia. First half of the course is over. Now start the second half. CS315B Lecture 9 Halfway! Sequoia CS315B Lecture 9 First half of the course is over Overview/Philosophy of Regent Now start the second half Lectures on other programming models Comparing/contrasting with Regent Start with

More information

The LINPACK Benchmark on the Fujitsu AP 1000

The LINPACK Benchmark on the Fujitsu AP 1000 The LINPACK Benchmark on the Fujitsu AP 1000 Richard P. Brent Computer Sciences Laboratory Australian National University Canberra, Australia Abstract We describe an implementation of the LINPACK Benchmark

More information

MPI Performance Analysis and Optimization on Tile64/Maestro

MPI Performance Analysis and Optimization on Tile64/Maestro MPI Performance Analysis and Optimization on Tile64/Maestro Mikyung Kang, Eunhui Park, Minkyoung Cho, Jinwoo Suh, Dong-In Kang, and Stephen P. Crago USC/ISI-East July 19~23, 2009 Overview Background MPI

More information

MAGMA Library. version 0.1. S. Tomov J. Dongarra V. Volkov J. Demmel

MAGMA Library. version 0.1. S. Tomov J. Dongarra V. Volkov J. Demmel MAGMA Library version 0.1 S. Tomov J. Dongarra V. Volkov J. Demmel 2 -- MAGMA (version 0.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver June 2009 MAGMA project

More information

All-Pairs Shortest Paths - Floyd s Algorithm

All-Pairs Shortest Paths - Floyd s Algorithm All-Pairs Shortest Paths - Floyd s Algorithm Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 31, 2011 CPD (DEI / IST) Parallel

More information

Early Evaluation of the Cray X1 at Oak Ridge National Laboratory

Early Evaluation of the Cray X1 at Oak Ridge National Laboratory Early Evaluation of the Cray X1 at Oak Ridge National Laboratory Patrick H. Worley Thomas H. Dunigan, Jr. Oak Ridge National Laboratory 45th Cray User Group Conference May 13, 2003 Hyatt on Capital Square

More information

WhatÕs New in the Message-Passing Toolkit

WhatÕs New in the Message-Passing Toolkit WhatÕs New in the Message-Passing Toolkit Karl Feind, Message-passing Toolkit Engineering Team, SGI ABSTRACT: SGI message-passing software has been enhanced in the past year to support larger Origin 2

More information

Parallel Programming with MPI and OpenMP

Parallel Programming with MPI and OpenMP Parallel Programming with MPI and OpenMP Michael J. Quinn Chapter 6 Floyd s Algorithm Chapter Objectives Creating 2-D arrays Thinking about grain size Introducing point-to-point communications Reading

More information

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm

A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm Bjarne S. Andersen UNI C Danish IT Center for Education and Research and John A. Gunnels and Fred G. Gustavson IBM T.J.

More information

HDF5 I/O Performance. HDF and HDF-EOS Workshop VI December 5, 2002

HDF5 I/O Performance. HDF and HDF-EOS Workshop VI December 5, 2002 HDF5 I/O Performance HDF and HDF-EOS Workshop VI December 5, 2002 1 Goal of this talk Give an overview of the HDF5 Library tuning knobs for sequential and parallel performance 2 Challenging task HDF5 Library

More information

CUDA 6.0 Performance Report. April 2014

CUDA 6.0 Performance Report. April 2014 CUDA 6. Performance Report April 214 1 CUDA 6 Performance Report CUDART CUDA Runtime Library cufft Fast Fourier Transforms Library cublas Complete BLAS Library cusparse Sparse Matrix Library curand Random

More information

Overcoming the Barriers to Sustained Petaflop Performance. William D. Gropp Mathematics and Computer Science

Overcoming the Barriers to Sustained Petaflop Performance. William D. Gropp Mathematics and Computer Science Overcoming the Barriers to Sustained Petaflop Performance William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp But First Are we too CPU-centric? What about I/O? What do applications

More information

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Rolf Rabenseifner rabenseifner@hlrs.de Gerhard Wellein gerhard.wellein@rrze.uni-erlangen.de University of Stuttgart

More information

Vector an ordered series of scalar quantities a one-dimensional array. Vector Quantity Data Data Data Data Data Data Data Data

Vector an ordered series of scalar quantities a one-dimensional array. Vector Quantity Data Data Data Data Data Data Data Data Vector Processors A vector processor is a pipelined processor with special instructions designed to keep the (floating point) execution unit pipeline(s) full. These special instructions are vector instructions.

More information

Accelerating Linpack with CUDA on heterogeneous clusters

Accelerating Linpack with CUDA on heterogeneous clusters Accelerating Linpack with CUDA on heterogeneous clusters Massimiliano Fatica NVIDIA Corporation 2701 San Tomas Expressway Santa Clara CA 95050 mfatica@nvidia.com ABSTRACT This paper describes the use of

More information