Introduction to Classification & Regression Trees

Size: px
Start display at page:

Download "Introduction to Classification & Regression Trees"

Transcription

1 Introduction to Classification & Regression Trees ISLR Chapter 8 vember 8, 2017

2 Classification and Regression Trees Carseat data from ISLR package

3 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0

4 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0 Fit a Classification tree model to Price and Income

5 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0 Fit a Classification tree model to Price and Income Pick a predictor and a cutpoint to split data X j s and X k > s to minimize deviance (or SSE for regression) - leads to a root node in a tree

6 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0 Fit a Classification tree model to Price and Income Pick a predictor and a cutpoint to split data X j s and X k > s to minimize deviance (or SSE for regression) - leads to a root node in a tree continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 001 deviance of the root node)

7 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0 Fit a Classification tree model to Price and Income Pick a predictor and a cutpoint to split data X j s and X k > s to minimize deviance (or SSE for regression) - leads to a root node in a tree continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 001 deviance of the root node) Prediction is mean or proportion of successes of data in terminal nodes

8 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0 Fit a Classification tree model to Price and Income Pick a predictor and a cutpoint to split data X j s and X k > s to minimize deviance (or SSE for regression) - leads to a root node in a tree continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 001 deviance of the root node) Prediction is mean or proportion of successes of data in terminal nodes Output is a decision tree

9 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0 Fit a Classification tree model to Price and Income Pick a predictor and a cutpoint to split data X j s and X k > s to minimize deviance (or SSE for regression) - leads to a root node in a tree continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 001 deviance of the root node) Prediction is mean or proportion of successes of data in terminal nodes Output is a decision tree regression or classification function is nonlinear in predictors

10 Classification and Regression Trees Carseat data from ISLR package Binary Outcome High 1 if Sales > 8, otherwise 0 Fit a Classification tree model to Price and Income Pick a predictor and a cutpoint to split data X j s and X k > s to minimize deviance (or SSE for regression) - leads to a root node in a tree continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 001 deviance of the root node) Prediction is mean or proportion of successes of data in terminal nodes Output is a decision tree regression or classification function is nonlinear in predictors Captures interactions

11 Carseat Example library(tree) data(carseats) Carseats = mutate(carseats, High=factor(ifelse ( Carseats$Sales <=8, "", "Yes ")) ) treecarseats = tree(high ~ Price + Income, data=carseats)

12 Carseat Example plot(treecarseats) text(treecarseats) Price < 925 Yes Price < 142 Income < 605 Income < 625

13 Partition partitiontree(treecarseats) points(carseats$price,carseats$income, col=carseats$high) Price Income Yes

14 Splits treecarseats ## node), split, n, deviance, yval, (yprob) ## * denotes terminal node ## ## 1) root ( ) ## 2) Price < Yes ( ) * ## 3) Price > ( ) ## 6) Price < ( ) ## 12) Income < ( ) ## 13) Income > ( ) ## 7) Price > ( ) ## 14) Income < ( ) * ## 15) Income > ( ) *

15 Summary summary(treecarseats) ## ## Classification tree: ## tree(formula = High ~ Price + Income, data = Carseats) ## Number of terminal nodes: 5 ## Residual mean deviance: 118 = 4662 / 395 ## Misclassification error rate: 0325 = 130 / 400

16 All Variables treecarseats =tree(high ~ -Sales, data=carseats ) summary(treecarseats) ## ## Classification tree: ## tree(formula = High ~ - Sales, data = Carseats) ## Variables actually used in tree construction: ## [1] "ShelveLoc" "Price" "Income" "CompPrice ## [6] "Advertising" "Age" "US" ## Number of terminal nodes: 27 ## Residual mean deviance: = 1707 / 373 ## Misclassification error rate: 009 = 36 / 400 Overfitting?

17 Tree ShelveLoc:ac Price < 925 Price < 135 US:a Income < 46 Income < 57 CompPrice Population < 1105 < 2075 Advertising < 135 Price < 109 Yes Yes Yes Yes Yes Yes CompPrice < 1245 Age < 545 CompPrice < CompPrice 1305 < 1225 Price < 1065 Price < 1225 Income < 100 Price < 125 Population < 177 Yes Yes Income < 605 ShelveLoc:a CompPrice < 1475 Yes Yes Price < 1095 Price < 147 CompPrice < 1525 Age < 495 Yes Yes Yes

18 Classification Error setseed (2) train=sample (1: nrow(carseats ), 200) Carseatstest=Carseats [-train,] treecarseats =tree(high ~ -Sales, data=carseats,subset=train ) treepred=predict (treecarseats,carseatstest,type ="cla table(treepred, Carseatstest$High) ## ## treepred Yes ## ## Yes ( ) /200 # classification error ## [1] 0285

19 Cost-Complexity Pruning 1 Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations

20 Cost-Complexity Pruning 1 Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations 2 Prediction for region m is the Class c that max cˆπ mc

21 Cost-Complexity Pruning 1 Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations 2 Prediction for region m is the Class c that max cˆπ mc 3 Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter k,

22 Cost-Complexity Pruning 1 Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations 2 Prediction for region m is the Class c that max cˆπ mc 3 Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter k, N miss N k T missclassification error penalized by number of terminal nodes

23 Cost-Complexity Pruning 1 Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations 2 Prediction for region m is the Class c that max cˆπ mc 3 Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter k, N miss N k T missclassification error penalized by number of terminal nodes 4 Using K-fold cross validation, compute average cost-complexity for each k

24 Cost-Complexity Pruning 1 Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations 2 Prediction for region m is the Class c that max cˆπ mc 3 Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter k, N miss N k T missclassification error penalized by number of terminal nodes 4 Using K-fold cross validation, compute average cost-complexity for each k 5 Pick subtree with smallest penalized error

25 Pruning via Cross Validation ) setseed(2) cvcarseats = cvtree(treecarseats, FUN=prunemisclass) cvcarseats$dev cvcarseats$dev cvcarseats$size cvcarseats$k

26 Pruned prunecarseats = prunemisclass(treecarseats,best =9) ShelveLoc: Bad,Medium Price < 142 Price < 1425 ShelveLoc: Bad Price < 865 Advertising < 65 Yes Yes Yes Age < 375 CompPrice < 1185 Yes

27 Miss-classification after Selection treepred=predict(prunecarseats, Carseatstest, type="class") table(treepred,carseatstest$high) ## ## treepred Yes ## ## Yes (94 +60)/200 # classified Correctly ## [1] 077

28 Tree with Random Split of Data Price < 925 CompPrice < 1085 ShelveLoc:ac ShelveLoc:aPopulation < 86 Yes Yes Yes Age < 615 Income < 355 Price < 1265 Age < 795 Advertising < 75 Population < 545 Advertising < 16 Advertising < 3 CompPrice < 1315 CompPrice < 1385 CompPrice < 118 Population < 2315 Yes Yes Income < 84 Age < 445 Yes Income < 415

29 Tree with another Random Split of Data ShelveLoc:ac Advertising < 125 Price < 1425 Price < 1075 Age < 565 US:a CompPrice < 1295 Price < 92 ShelveLoc:a CompPrice < 1195 Yes Yes CompPrice < 127 Price < 1445 ShelveLoc:a Income < 655 CompPrice < 1445 Price < 985 Income < 97CompPrice < 120 Yes Age < 405 Yes Yes Yes Age < 485 Yes Population < 1345

30 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)

31 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability) Reduce variability by averaging over multiple training sets!

32 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability) Reduce variability by averaging over multiple training sets! do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)

33 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability) Reduce variability by averaging over multiple training sets! do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement) Generate B bootstrap sample of observations from the single training data

34 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability) Reduce variability by averaging over multiple training sets! do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement) Generate B bootstrap sample of observations from the single training data Calculate predictions for the bth sample ˆf b (x)

35 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability) Reduce variability by averaging over multiple training sets! do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement) Generate B bootstrap sample of observations from the single training data Calculate predictions for the bth sample ˆf b (x) Bagging (Bootstrap Aggregation) estimate is ˆfbag (x) = 1 B ˆfb (x) Trees are grown deep so little bias (although could prune)

36 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability) Reduce variability by averaging over multiple training sets! do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement) Generate B bootstrap sample of observations from the single training data Calculate predictions for the bth sample ˆf b (x) Bagging (Bootstrap Aggregation) estimate is ˆfbag (x) = 1 B ˆfb (x) Trees are grown deep so little bias (although could prune) Reduce variance by averaging many trees across the bootstrap samples

37 Bagging: Bootstrap Aggregation Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability) Reduce variability by averaging over multiple training sets! do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement) Generate B bootstrap sample of observations from the single training data Calculate predictions for the bth sample ˆf b (x) Bagging (Bootstrap Aggregation) estimate is ˆfbag (x) = 1 B ˆfb (x) Trees are grown deep so little bias (although could prune) Reduce variance by averaging many trees across the bootstrap samples

38 Next Class Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification

39 Next Class Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification Ways to improving Trees through multiple trees in some ensemble: Bagging

40 Next Class Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification Ways to improving Trees through multiple trees in some ensemble: Bagging Random Forests

41 Next Class Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification Ways to improving Trees through multiple trees in some ensemble: Bagging Random Forests Boosting

42 Next Class Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification Ways to improving Trees through multiple trees in some ensemble: Bagging Random Forests Boosting BART (Bayesian Additive Regression Trees)

43 Next Class Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification Ways to improving Trees through multiple trees in some ensemble: Bagging Random Forests Boosting BART (Bayesian Additive Regression Trees) Combining trees will yield improved prediction accuracy, but with loss of interpretability

Random Forest A. Fornaser

Random Forest A. Fornaser Random Forest A. Fornaser alberto.fornaser@unitn.it Sources Lecture 15: decision trees, information theory and random forests, Dr. Richard E. Turner Trees and Random Forests, Adele Cutler, Utah State University

More information

The Basics of Decision Trees

The Basics of Decision Trees Tree-based Methods Here we describe tree-based methods for regression and classification. These involve stratifying or segmenting the predictor space into a number of simple regions. Since the set of splitting

More information

Decision trees. For this lab, we will use the Carseats data set from the ISLR package. (install and) load the package with the data set

Decision trees. For this lab, we will use the Carseats data set from the ISLR package. (install and) load the package with the data set Decision trees For this lab, we will use the Carseats data set from the ISLR package. (install and) load the package with the data set # install.packages('islr') library(islr) Carseats is a simulated data

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Tree-based Methods Here we describe tree-based methods for regression and classification. These involve stratifying

More information

Random Forests and Boosting

Random Forests and Boosting Random Forests and Boosting Tree-based methods are simple and useful for interpretation. However they typically are not competitive with the best supervised learning approaches in terms of prediction accuracy.

More information

Lecture 20: Bagging, Random Forests, Boosting

Lecture 20: Bagging, Random Forests, Boosting Lecture 20: Bagging, Random Forests, Boosting Reading: Chapter 8 STATS 202: Data mining and analysis November 13, 2017 1 / 17 Classification and Regression trees, in a nut shell Grow the tree by recursively

More information

Tree-based methods for classification and regression

Tree-based methods for classification and regression Tree-based methods for classification and regression Ryan Tibshirani Data Mining: 36-462/36-662 April 11 2013 Optional reading: ISL 8.1, ESL 9.2 1 Tree-based methods Tree-based based methods for predicting

More information

Ensemble Learning: An Introduction. Adapted from Slides by Tan, Steinbach, Kumar

Ensemble Learning: An Introduction. Adapted from Slides by Tan, Steinbach, Kumar Ensemble Learning: An Introduction Adapted from Slides by Tan, Steinbach, Kumar 1 General Idea D Original Training data Step 1: Create Multiple Data Sets... D 1 D 2 D t-1 D t Step 2: Build Multiple Classifiers

More information

Lecture 19: Decision trees

Lecture 19: Decision trees Lecture 19: Decision trees Reading: Section 8.1 STATS 202: Data mining and analysis November 10, 2017 1 / 17 Decision trees, 10,000 foot view R2 R5 t4 1. Find a partition of the space of predictors. X2

More information

STAT Midterm Research Project: Random Forest. Vicky Xu. Xiyu Liang. Xue Cao

STAT Midterm Research Project: Random Forest. Vicky Xu. Xiyu Liang. Xue Cao STAT 5703 Midterm Research Project: Random Forest Vicky Xu Xiyu Liang Xue Cao 1 Table of Contents Abstract... 4 Literature Review... 5 Decision Tree... 6 1. Definition and Overview... 6 2. Some most common

More information

Classification with Decision Tree Induction

Classification with Decision Tree Induction Classification with Decision Tree Induction This algorithm makes Classification Decision for a test sample with the help of tree like structure (Similar to Binary Tree OR k-ary tree) Nodes in the tree

More information

Regression trees with R

Regression trees with R Regression trees with R Emanuele Taufer file:///c:/users/emanuele.taufer/google%20drive/2%20corsi/5%20qmma%20-%20mim/0%20labs/l7-regression-trees.html#(1) 1/17 Implement decision trees with R To adapt

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Nonparametric Approaches to Regression

Nonparametric Approaches to Regression Nonparametric Approaches to Regression In traditional nonparametric regression, we assume very little about the functional form of the mean response function. In particular, we assume the model where m(xi)

More information

INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN

INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN MOTIVATION FOR RANDOM FOREST Random forest is a great statistical learning model. It works well with small to medium data. Unlike Neural Network which requires

More information

Nonparametric Classification Methods

Nonparametric Classification Methods Nonparametric Classification Methods We now examine some modern, computationally intensive methods for regression and classification. Recall that the LDA approach constructs a line (or plane or hyperplane)

More information

Business Club. Decision Trees

Business Club. Decision Trees Business Club Decision Trees Business Club Analytics Team December 2017 Index 1. Motivation- A Case Study 2. The Trees a. What is a decision tree b. Representation 3. Regression v/s Classification 4. Building

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Data Mining Lecture 8: Decision Trees

Data Mining Lecture 8: Decision Trees Data Mining Lecture 8: Decision Trees Jo Houghton ECS Southampton March 8, 2019 1 / 30 Decision Trees - Introduction A decision tree is like a flow chart. E. g. I need to buy a new car Can I afford it?

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Matthew S. Shotwell, Ph.D. Department of Biostatistics Vanderbilt University School of Medicine Nashville, TN, USA March 16, 2018 Introduction trees partition feature

More information

7. Boosting and Bagging Bagging

7. Boosting and Bagging Bagging Group Prof. Daniel Cremers 7. Boosting and Bagging Bagging Bagging So far: Boosting as an ensemble learning method, i.e.: a combination of (weak) learners A different way to combine classifiers is known

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

Stat 342 Exam 3 Fall 2014

Stat 342 Exam 3 Fall 2014 Stat 34 Exam 3 Fall 04 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed There are questions on the following 6 pages. Do as many of them as you can

More information

Additive Models, Trees, etc. Based in part on Chapter 9 of Hastie, Tibshirani, and Friedman David Madigan

Additive Models, Trees, etc. Based in part on Chapter 9 of Hastie, Tibshirani, and Friedman David Madigan Additive Models, Trees, etc. Based in part on Chapter 9 of Hastie, Tibshirani, and Friedman David Madigan Predictive Modeling Goal: learn a mapping: y = f(x;θ) Need: 1. A model structure 2. A score function

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Part I. Classification & Decision Trees. Classification. Classification. Week 4 Based in part on slides from textbook, slides of Susan Holmes

Part I. Classification & Decision Trees. Classification. Classification. Week 4 Based in part on slides from textbook, slides of Susan Holmes Week 4 Based in part on slides from textbook, slides of Susan Holmes Part I Classification & Decision Trees October 19, 2012 1 / 1 2 / 1 Classification Classification Problem description We are given a

More information

CSC 411 Lecture 4: Ensembles I

CSC 411 Lecture 4: Ensembles I CSC 411 Lecture 4: Ensembles I Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 04-Ensembles I 1 / 22 Overview We ve seen two particular classification algorithms:

More information

Decision trees. Decision trees are useful to a large degree because of their simplicity and interpretability

Decision trees. Decision trees are useful to a large degree because of their simplicity and interpretability Decision trees A decision tree is a method for classification/regression that aims to ask a few relatively simple questions about an input and then predicts the associated output Decision trees are useful

More information

Computer Vision Group Prof. Daniel Cremers. 8. Boosting and Bagging

Computer Vision Group Prof. Daniel Cremers. 8. Boosting and Bagging Prof. Daniel Cremers 8. Boosting and Bagging Repetition: Regression We start with a set of basis functions (x) =( 0 (x), 1(x),..., M 1(x)) x 2 í d The goal is to fit a model into the data y(x, w) =w T

More information

Nonparametric Methods Recap

Nonparametric Methods Recap Nonparametric Methods Recap Aarti Singh Machine Learning 10-701/15-781 Oct 4, 2010 Nonparametric Methods Kernel Density estimate (also Histogram) Weighted frequency Classification - K-NN Classifier Majority

More information

Ensemble Methods: Bagging

Ensemble Methods: Bagging Ensemble Methods: Bagging Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Eric Eaton (UPenn), Jenna Wiens (UMich), Tommi Jaakola (MIT), David Kauchak (Pomona), David Sontag

More information

Random Forest Classification and Attribute Selection Program rfc3d

Random Forest Classification and Attribute Selection Program rfc3d Random Forest Classification and Attribute Selection Program rfc3d Overview Random Forest (RF) is a supervised classification algorithm using multiple decision trees. Program rfc3d uses training data generated

More information

Introduction to Automated Text Analysis. bit.ly/poir599

Introduction to Automated Text Analysis. bit.ly/poir599 Introduction to Automated Text Analysis Pablo Barberá School of International Relations University of Southern California pablobarbera.com Lecture materials: bit.ly/poir599 Today 1. Solutions for last

More information

CART. Classification and Regression Trees. Rebecka Jörnsten. Mathematical Sciences University of Gothenburg and Chalmers University of Technology

CART. Classification and Regression Trees. Rebecka Jörnsten. Mathematical Sciences University of Gothenburg and Chalmers University of Technology CART Classification and Regression Trees Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology CART CART stands for Classification And Regression Trees.

More information

8. Tree-based approaches

8. Tree-based approaches Foundations of Machine Learning École Centrale Paris Fall 2015 8. Tree-based approaches Chloé-Agathe Azencott Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr

More information

Decision Trees Dr. G. Bharadwaja Kumar VIT Chennai

Decision Trees Dr. G. Bharadwaja Kumar VIT Chennai Decision Trees Decision Tree Decision Trees (DTs) are a nonparametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target

More information

Model Inference and Averaging. Baging, Stacking, Random Forest, Boosting

Model Inference and Averaging. Baging, Stacking, Random Forest, Boosting Model Inference and Averaging Baging, Stacking, Random Forest, Boosting Bagging Bootstrap Aggregating Bootstrap Repeatedly select n data samples with replacement Each dataset b=1:b is slightly different

More information

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100.

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100. Linear Model Selection and Regularization especially usefull in high dimensions p>>100. 1 Why Linear Model Regularization? Linear models are simple, BUT consider p>>n, we have more features than data records

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 10 - Classification trees Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey

More information

Machine Learning: An Applied Econometric Approach Online Appendix

Machine Learning: An Applied Econometric Approach Online Appendix Machine Learning: An Applied Econometric Approach Online Appendix Sendhil Mullainathan mullain@fas.harvard.edu Jann Spiess jspiess@fas.harvard.edu April 2017 A How We Predict In this section, we detail

More information

International Journal of Software and Web Sciences (IJSWS)

International Journal of Software and Web Sciences (IJSWS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

More information

Lecture 13: Model selection and regularization

Lecture 13: Model selection and regularization Lecture 13: Model selection and regularization Reading: Sections 6.1-6.2.1 STATS 202: Data mining and analysis October 23, 2017 1 / 17 What do we know so far In linear regression, adding predictors always

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Syllabus Fri. 27.10. (1) 0. Introduction A. Supervised Learning: Linear Models & Fundamentals Fri. 3.11. (2) A.1 Linear Regression Fri. 10.11. (3) A.2 Linear Classification Fri. 17.11. (4) A.3 Regularization

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 12 Combining

More information

Advanced and Predictive Analytics with JMP 12 PRO. JMP User Meeting 9. Juni Schwalbach

Advanced and Predictive Analytics with JMP 12 PRO. JMP User Meeting 9. Juni Schwalbach Advanced and Predictive Analytics with JMP 12 PRO JMP User Meeting 9. Juni 2016 -Schwalbach Definition Predictive Analytics encompasses a variety of statistical techniques from modeling, machine learning

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Logical Rhythm - Class 3. August 27, 2018

Logical Rhythm - Class 3. August 27, 2018 Logical Rhythm - Class 3 August 27, 2018 In this Class Neural Networks (Intro To Deep Learning) Decision Trees Ensemble Methods(Random Forest) Hyperparameter Optimisation and Bias Variance Tradeoff Biological

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

A Practical Tour of Ensemble (Machine) Learning

A Practical Tour of Ensemble (Machine) Learning A Practical Tour of Ensemble (Machine) Learning Nima Hejazi Evan Muzzall Division of Biostatistics, University of California, Berkeley D-Lab, University of California, Berkeley slides: https://googl/wwaqc

More information

Notes based on: Data Mining for Business Intelligence

Notes based on: Data Mining for Business Intelligence Chapter 9 Classification and Regression Trees Roger Bohn April 2017 Notes based on: Data Mining for Business Intelligence 1 Shmueli, Patel & Bruce 2 3 II. Results and Interpretation There are 1183 auction

More information

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics Lecture 12: Ensemble Learning I Jie Wang Department of Computational Medicine & Bioinformatics University of Michigan 1 Outline Bias

More information

An Empirical Comparison of Ensemble Methods Based on Classification Trees. Mounir Hamza and Denis Larocque. Department of Quantitative Methods

An Empirical Comparison of Ensemble Methods Based on Classification Trees. Mounir Hamza and Denis Larocque. Department of Quantitative Methods An Empirical Comparison of Ensemble Methods Based on Classification Trees Mounir Hamza and Denis Larocque Department of Quantitative Methods HEC Montreal Canada Mounir Hamza and Denis Larocque 1 June 2005

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees David S. Rosenberg New York University April 3, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 3, 2018 1 / 51 Contents 1 Trees 2 Regression

More information

Oliver Dürr. Statistisches Data Mining (StDM) Woche 12. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Oliver Dürr. Statistisches Data Mining (StDM) Woche 12. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften Statistisches Data Mining (StDM) Woche 12 Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften oliver.duerr@zhaw.ch Winterthur, 6 Dezember 2016 1 Multitasking

More information

Data Mining. 3.2 Decision Tree Classifier. Fall Instructor: Dr. Masoud Yaghini. Chapter 5: Decision Tree Classifier

Data Mining. 3.2 Decision Tree Classifier. Fall Instructor: Dr. Masoud Yaghini. Chapter 5: Decision Tree Classifier Data Mining 3.2 Decision Tree Classifier Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction Basic Algorithm for Decision Tree Induction Attribute Selection Measures Information Gain Gain Ratio

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

Classification/Regression Trees and Random Forests

Classification/Regression Trees and Random Forests Classification/Regression Trees and Random Forests Fabio G. Cozman - fgcozman@usp.br November 6, 2018 Classification tree Consider binary class variable Y and features X 1,..., X n. Decide Ŷ after a series

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Lecture 5: Decision Trees (Part II)

Lecture 5: Decision Trees (Part II) Lecture 5: Decision Trees (Part II) Dealing with noise in the data Overfitting Pruning Dealing with missing attribute values Dealing with attributes with multiple values Integrating costs into node choice

More information

Machine Learning. A. Supervised Learning A.7. Decision Trees. Lars Schmidt-Thieme

Machine Learning. A. Supervised Learning A.7. Decision Trees. Lars Schmidt-Thieme Machine Learning A. Supervised Learning A.7. Decision Trees Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany 1 /

More information

An introduction to random forests

An introduction to random forests An introduction to random forests Eric Debreuve / Team Morpheme Institutions: University Nice Sophia Antipolis / CNRS / Inria Labs: I3S / Inria CRI SA-M / ibv Outline Machine learning Decision tree Random

More information

Patrick Breheny. November 10

Patrick Breheny. November 10 Patrick Breheny November Patrick Breheny BST 764: Applied Statistical Modeling /6 Introduction Our discussion of tree-based methods in the previous section assumed that the outcome was continuous Tree-based

More information

Sensor-based Semantic-level Human Activity Recognition using Temporal Classification

Sensor-based Semantic-level Human Activity Recognition using Temporal Classification Sensor-based Semantic-level Human Activity Recognition using Temporal Classification Weixuan Gao gaow@stanford.edu Chuanwei Ruan chuanwei@stanford.edu Rui Xu ray1993@stanford.edu I. INTRODUCTION Human

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Lecture 20: Classification and Regression Trees

Lecture 20: Classification and Regression Trees Fall, 2017 Outline Basic Ideas Basic Ideas Tree Construction Algorithm Parameter Tuning Choice of Impurity Measure Missing Values Characteristics of Classification Trees Main Characteristics: very flexible,

More information

Chapter 7: Numerical Prediction

Chapter 7: Numerical Prediction Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Chapter 7: Numerical Prediction Lecture: Prof. Dr.

More information

Fitting Classification and Regression Trees Using Statgraphics and R. Presented by Dr. Neil W. Polhemus

Fitting Classification and Regression Trees Using Statgraphics and R. Presented by Dr. Neil W. Polhemus Fitting Classification and Regression Trees Using Statgraphics and R Presented by Dr. Neil W. Polhemus Classification and Regression Trees Machine learning methods used to construct predictive models from

More information

Machine Learning (CSE 446): Concepts & the i.i.d. Supervised Learning Paradigm

Machine Learning (CSE 446): Concepts & the i.i.d. Supervised Learning Paradigm Machine Learning (CSE 446): Concepts & the i.i.d. Supervised Learning Paradigm Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 17 Review 1 / 17 Decision Tree: Making a

More information

1) Give decision trees to represent the following Boolean functions:

1) Give decision trees to represent the following Boolean functions: 1) Give decision trees to represent the following Boolean functions: 1) A B 2) A [B C] 3) A XOR B 4) [A B] [C Dl Answer: 1) A B 2) A [B C] 1 3) A XOR B = (A B) ( A B) 4) [A B] [C D] 2 2) Consider the following

More information

Stat 602X Exam 2 Spring 2011

Stat 602X Exam 2 Spring 2011 Stat 60X Exam Spring 0 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed . Below is a small p classification training set (for classes) displayed in

More information

Decision Trees / Discrete Variables

Decision Trees / Discrete Variables Decision trees Decision Trees / Discrete Variables Season Location Fun? Location summer prison -1 summer beach +1 Prison Beach Ski Slope Winter ski-slope +1-1 Season +1 Winter beach -1 Winter Summer -1

More information

Given a collection of records (training set )

Given a collection of records (training set ) Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is (always) the class. Find a model for class attribute as a function of the values of other

More information

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Exploratory Machine Learning studies for disruption prediction on DIII-D by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Presented at the 2 nd IAEA Technical Meeting on

More information

Trimmed bagging a DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI) Christophe Croux, Kristel Joossens and Aurélie Lemmens

Trimmed bagging a DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI) Christophe Croux, Kristel Joossens and Aurélie Lemmens Faculty of Economics and Applied Economics Trimmed bagging a Christophe Croux, Kristel Joossens and Aurélie Lemmens DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI) KBI 0721 Trimmed Bagging

More information

CART Bagging Trees Random Forests. Leo Breiman

CART Bagging Trees Random Forests. Leo Breiman CART Bagging Trees Random Forests Leo Breiman Breiman, L., J. Friedman, R. Olshen, and C. Stone, 1984: Classification and regression trees. Wadsworth Books, 358. Breiman, L., 1996: Bagging predictors.

More information

2017 ITRON EFG Meeting. Abdul Razack. Specialist, Load Forecasting NV Energy

2017 ITRON EFG Meeting. Abdul Razack. Specialist, Load Forecasting NV Energy 2017 ITRON EFG Meeting Abdul Razack Specialist, Load Forecasting NV Energy Topics 1. Concepts 2. Model (Variable) Selection Methods 3. Cross- Validation 4. Cross-Validation: Time Series 5. Example 1 6.

More information

Chapter 5. Tree-based Methods

Chapter 5. Tree-based Methods Chapter 5. Tree-based Methods Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Regression

More information

Predictive modelling / Machine Learning Course on Big Data Analytics

Predictive modelling / Machine Learning Course on Big Data Analytics Predictive modelling / Machine Learning Course on Big Data Analytics Roberta Turra, Cineca 19 September 2016 Going back to the definition of data analytics process of extracting valuable information from

More information

DECISION TREES & RANDOM FORESTS X CONVOLUTIONAL NEURAL NETWORKS

DECISION TREES & RANDOM FORESTS X CONVOLUTIONAL NEURAL NETWORKS DECISION TREES & RANDOM FORESTS X CONVOLUTIONAL NEURAL NETWORKS Deep Neural Decision Forests Microsoft Research Cambridge UK, ICCV 2015 Decision Forests, Convolutional Networks and the Models in-between

More information

Overview. Non-Parametrics Models Definitions KNN. Ensemble Methods Definitions, Examples Random Forests. Clustering. k-means Clustering 2 / 8

Overview. Non-Parametrics Models Definitions KNN. Ensemble Methods Definitions, Examples Random Forests. Clustering. k-means Clustering 2 / 8 Tutorial 3 1 / 8 Overview Non-Parametrics Models Definitions KNN Ensemble Methods Definitions, Examples Random Forests Clustering Definitions, Examples k-means Clustering 2 / 8 Non-Parametrics Models Definitions

More information

Allstate Insurance Claims Severity: A Machine Learning Approach

Allstate Insurance Claims Severity: A Machine Learning Approach Allstate Insurance Claims Severity: A Machine Learning Approach Rajeeva Gaur SUNet ID: rajeevag Jeff Pickelman SUNet ID: pattern Hongyi Wang SUNet ID: hongyiw I. INTRODUCTION The insurance industry has

More information

Lecture 06 Decision Trees I

Lecture 06 Decision Trees I Lecture 06 Decision Trees I 08 February 2016 Taylor B. Arnold Yale Statistics STAT 365/665 1/33 Problem Set #2 Posted Due February 19th Piazza site https://piazza.com/ 2/33 Last time we starting fitting

More information

Random Forest in Genomic Selection

Random Forest in Genomic Selection Random Forest in genomic selection 1 Dpto Mejora Genética Animal, INIA, Madrid; Universidad Politécnica de Valencia, 20-24 September, 2010. Outline 1 Remind 2 Random Forest Introduction Classification

More information

From Building Better Models with JMP Pro. Full book available for purchase here.

From Building Better Models with JMP Pro. Full book available for purchase here. From Building Better Models with JMP Pro. Full book available for purchase here. Contents Acknowledgments... ix About This Book... xi About These Authors... xiii Part 1 Introduction... 1 Chapter 1 Introduction...

More information

Algorithms: Decision Trees

Algorithms: Decision Trees Algorithms: Decision Trees A small dataset: Miles Per Gallon Suppose we want to predict MPG From the UCI repository A Decision Stump Recursion Step Records in which cylinders = 4 Records in which cylinders

More information

CS229 Lecture notes. Raphael John Lamarre Townshend

CS229 Lecture notes. Raphael John Lamarre Townshend CS229 Lecture notes Raphael John Lamarre Townshend Decision Trees We now turn our attention to decision trees, a simple yet flexible class of algorithms. We will first consider the non-linear, region-based

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees IST557 Data Mining: Techniques and Applications Jessie Li, Penn State University 1 Decision Tree Example Will a pa)ent have high-risk based on the ini)al 24-hour observa)on?

More information

Decision Tree CE-717 : Machine Learning Sharif University of Technology

Decision Tree CE-717 : Machine Learning Sharif University of Technology Decision Tree CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adapted from: Prof. Tom Mitchell Decision tree Approximating functions of usually discrete

More information

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13 CSE 634 - Data Mining Concepts and Techniques STATISTICAL METHODS Professor- Anita Wasilewska (REGRESSION) Team 13 Contents Linear Regression Logistic Regression Bias and Variance in Regression Model Fit

More information

Statistical foundations of machine learning

Statistical foundations of machine learning Statistical foundations of machine learning INFO-F-422 Gianluca Bontempi Machine Learning Group Computer Science Department mlg.ulb.ac.be Some algorithms for nonlinear modeling Feedforward neural network

More information

Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B

Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B 1 Supervised learning Catogarized / labeled data Objects in a picture: chair, desk, person, 2 Classification Fons van der Sommen

More information

Statistical Consulting Topics Using cross-validation for model selection. Cross-validation is a technique that can be used for model evaluation.

Statistical Consulting Topics Using cross-validation for model selection. Cross-validation is a technique that can be used for model evaluation. Statistical Consulting Topics Using cross-validation for model selection Cross-validation is a technique that can be used for model evaluation. We often fit a model to a full data set and then perform

More information

Decision Trees. This week: Next week: Algorithms for constructing DT. Pruning DT Ensemble methods. Random Forest. Intro to ML

Decision Trees. This week: Next week: Algorithms for constructing DT. Pruning DT Ensemble methods. Random Forest. Intro to ML Decision Trees This week: Algorithms for constructing DT Next week: Pruning DT Ensemble methods Random Forest 2 Decision Trees - Boolean x 1 0 1 +1 x 6 0 1 +1-1 3 Decision Trees - Continuous Decision stumps

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.4. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Using IF-THEN Rules for Classification Rule Extraction from a Decision Tree 1R Algorithm Sequential Covering Algorithms

More information