Porting Financial Market Applications to the Cell Broadband Engine Architecture

Size: px
Start display at page:

Download "Porting Financial Market Applications to the Cell Broadband Engine Architecture"

Transcription

1 Porting Financial Market Applications to the Cell Broadband Engine Architecture John Easton, Ingo Meents, Olaf Stephen, Horst Zisgen, Sei Kato Presented By: Kanik Sem Dept of Computer & Information Sciences University of Delaware

2 Outline Why Cell B.E. for financial markets? Porting strategies for the Cell B.E. platform Performance results Mixed-precision workloads Tying it all together Conclusions

3 Why Cell B.E. for financial markets? Potential for dramatic impact on financial applications Application codes ported to the Cell Optimized codes to fully exploit Cell Performance improvements of almost 40x

4 A description of the application Code used to price a European Option. Model based on Monte Carlo simulation technique. Need to generate a large number (200,000,000 in this case) of uniform, pseudo-random numbers. Using the random numbers generated, execute the financial model.

5 Porting strategies for Cell Recompilation of existing code for Cell XLC better than gcc Make some structural changes Framework to start separate threads on each SPU. Splitting RNG across all cores. Make functional changes to the code. Re-engineered functions to exploit vectorization on SPU cores.

6 Analysis of the original code %time Seconds Calls Function name getrandom() simulateeuropeanoptionvalue() hpcmontecarlo::random() hpcblackscholes() SDK for Cell provides optimized RNG. Can generate 64 number generators at once on Cell blade. Use gettimeofday() function.

7 Initial performance results To run the performance tests, the following parameters were used : Compiler used: spuxlc, ppuxlc Compiler optimization setting: -03 qstrict Random-number generation method: sdk Precision: single Number of evaluations: 200,000,000

8 Initial performance results Performance by number of SPUs (single precision) Number of SPUs Elapsed time (seconds)2.4 GHz Cell/B.E. processor (measured) Elapsed time (seconds)3.2 GHz Cell/B.E. processor (estimated) Speedup

9 Initial performance results

10 Double Precision Organizations in financial markets require double-precision calculations. Initial target marketplace for Cell does not need this. Initial implementation of Cell provides limited double-precision support in hardware Single-precision Fully pipelined Double-precision Partially pipelined

11 Performance results Performance by number of SPUs (double -precision) Number of SPUs Elapsed time (seconds)2.4 GHz Cell/B.E. processor (measured) Elapsed time (seconds)3.2 GHz Cell/B.E. processor (estimated) Speedup

12 Mersenne-Twister Run time with Mersenne-Twister (without optimization): 5 sec Run time with the Cell/B.E. SDK: 4.1 sec Mechanisms to improve the performance still further : Optimize Mersenne-Twister code for threading framework. Rewrite the code to utilize the SIMD capabilities of SPUs. Performance comparison between Cell/B.E. SDK and Mersenne -Twister random -number generators Precision Runtime (seconds) SDK RNG (2.4Ghz) Runtime (seconds) Mersenne - Twister RNG (2.4 GHz) Single Double Runtime (seconds) Mersenne - Twister RNG 3.2 GHz (estimated)

13 Mixed-precision workloads Mixed-Precision: Only those parts that actually need double-precision are calculated using double-precision. Disadvantage: Makes for a slight increase in the programming effort needed Identify parts of code which use this sort of precision Make the appropriate changes to the code. Advantage: Performance improvement.

14 Mixed-precision workloads The two methods of applying mixed-precision to our code are: (1) Concatenating two single-precision random variables. (2) Generate one single-precision random variable and then doing a double-precision division.

15 Mixed-precision workloads # SPU CC_DP_MT CC_DP_SDK M_DP_MT SP_MT SP_SDK CC_DP_MT = Concatenation Double-Precision Mersenne-Twister CC_DP_SDK = Concatenation Double-Precision SDK M_DP_MT = Division Double-Precision Mersenne-Twister SP_MT = Single-Precision Mersenne-Twister SP_SDK = Single-Precision SDK

16 Mixed-precision workloads

17 Mixed-precision workloads Additional optimization techniques : Unrolling more parts of Mersenne-Twister RNG. Additional software pipelining by parallelizing computation. Introducing new variables to eliminate dependencies. Pre-calculating some items: a[0]=<something>; for (i=0;i<n;i++) {sinf4(a[0]) ; sinf4(a[i+1));...}

18 Intel optimizations A master thread forks slave threads to perform RNG. master thread part of the Cell/B.E. code that runs on PPU slave threads parts that run on the SPUs. Difference: Work scheduled by the OpenMP runtime shares same cores as the OS threads. The SPUs on the Cell/B.E. version are not running the operating system. This enables them to be used entirely to run the application code.

19 Intel optimizations System/CPU Operating System Compiler No. of Threads (Cores) Speed (GHz) x3550/3.0 Red Hat Linux Intel ICPC x336 / 2.8 Red Hat Linux Intel ICPC HS21 / 2.33 Fedora Core 6 gcc

20 Tying it all together

21 Future Work Results achieved so far are on a system that many view as being unsuitable for Financial Markets users. Enhanced Double-Precision version of the Cell Broadband Engine technology. Systems based on Cell/B.E. technology are an excellent platform for Financial Markets applications.

22 Getting the most performance out of Cell/B.E. technology Offload as much of the computation onto the SPUs as possible. Write the SIMD code yourself rather than relying on the compiler to do it. XLC provides auto-simdize This may not be a good approximation. In certain situations, you might find that starting from scratch is a much quicker way to implement application code.

23 Conclusions Reasons for general-purpose processors make up the majority of the computational infrastructures : (1) Huge numbers of systems based on these processors. (2) Large supply of professionals skilled, this leads to lower skills costs. (3) A lot of application development tooling. (4) The relatively easy code porting to these platforms.

24 Conclusions ESOTERIC technologies: Offer high performance for their chip area. Consume much less power per computation. Disadvantages: (1) Skills to program them are rare and, hence, expensive. (2) Lack of application development tooling. (3) The porting process is generally both slow and costly.

25 Conclusions Advantages of Cell/B.E. technology: (1) Consumes less power, space and cooling (2) High computational power. (3) Better data movement and manipulation abilities. (4) A number of strong customer proof points. (5) Support from key Independent Software Vendors (6) Results of experiments such as this one.

26 Questions. Comments. Caveats.

Accelerating Financial Applications on the GPU

Accelerating Financial Applications on the GPU Accelerating Financial Applications on the GPU Scott Grauer-Gray Robert Searles William Killian John Cavazos Department of Computer and Information Science University of Delaware Sixth Workshop on General

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

Fahad Zafar, Dibyajyoti Ghosh, Lawrence Sebald, Shujia Zhou. University of Maryland Baltimore County

Fahad Zafar, Dibyajyoti Ghosh, Lawrence Sebald, Shujia Zhou. University of Maryland Baltimore County Accelerating a climate physics model with OpenCL Fahad Zafar, Dibyajyoti Ghosh, Lawrence Sebald, Shujia Zhou University of Maryland Baltimore County Introduction The demand to increase forecast predictability

More information

MULTI-CORE PROGRAMMING. Dongrui She December 9, 2010 ASSIGNMENT

MULTI-CORE PROGRAMMING. Dongrui She December 9, 2010 ASSIGNMENT MULTI-CORE PROGRAMMING Dongrui She December 9, 2010 ASSIGNMENT Goal of the Assignment 1 The purpose of this assignment is to Have in-depth understanding of the architectures of real-world multi-core CPUs

More information

SIMD Exploitation in (JIT) Compilers

SIMD Exploitation in (JIT) Compilers SIMD Exploitation in (JIT) Compilers Hiroshi Inoue, IBM Research - Tokyo 1 What s SIMD? Single Instruction Multiple Data Same operations applied for multiple elements in a vector register input 1 A0 input

More information

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems ( ZIH ) Center for Information Services and High Performance Computing Event Tracing and Visualization for Cell Broadband Engine Systems ( daniel.hackenberg@zih.tu-dresden.de ) Daniel Hackenberg Cell Broadband

More information

A Simple Path to Parallelism with Intel Cilk Plus

A Simple Path to Parallelism with Intel Cilk Plus Introduction This introductory tutorial describes how to use Intel Cilk Plus to simplify making taking advantage of vectorization and threading parallelism in your code. It provides a brief description

More information

Cell SDK and Best Practices

Cell SDK and Best Practices Cell SDK and Best Practices Stefan Lutz Florian Braune Hardware-Software-Co-Design Universität Erlangen-Nürnberg siflbrau@mb.stud.uni-erlangen.de Stefan.b.lutz@mb.stud.uni-erlangen.de 1 Overview - Introduction

More information

Evaluating the Portability of UPC to the Cell Broadband Engine

Evaluating the Portability of UPC to the Cell Broadband Engine Evaluating the Portability of UPC to the Cell Broadband Engine Dipl. Inform. Ruben Niederhagen JSC Cell Meeting CHAIR FOR OPERATING SYSTEMS Outline Introduction UPC Cell UPC on Cell Mapping Compiler and

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

vs. GPU Performance Without the Answer University of Virginia Computer Engineering g Labs

vs. GPU Performance Without the Answer University of Virginia Computer Engineering g Labs Where is the Data? Why you Cannot Debate CPU vs. GPU Performance Without the Answer Chris Gregg and Kim Hazelwood University of Virginia Computer Engineering g Labs 1 GPUs and Data Transfer GPU computing

More information

IBM Cell Processor. Gilbert Hendry Mark Kretschmann

IBM Cell Processor. Gilbert Hendry Mark Kretschmann IBM Cell Processor Gilbert Hendry Mark Kretschmann Architectural components Architectural security Programming Models Compiler Applications Performance Power and Cost Conclusion Outline Cell Architecture:

More information

COMP4510 Introduction to Parallel Computation. Shared Memory and OpenMP. Outline (cont d) Shared Memory and OpenMP

COMP4510 Introduction to Parallel Computation. Shared Memory and OpenMP. Outline (cont d) Shared Memory and OpenMP COMP4510 Introduction to Parallel Computation Shared Memory and OpenMP Thanks to Jon Aronsson (UofM HPC consultant) for some of the material in these notes. Outline (cont d) Shared Memory and OpenMP Including

More information

Sony/Toshiba/IBM (STI) CELL Processor. Scientific Computing for Engineers: Spring 2008

Sony/Toshiba/IBM (STI) CELL Processor. Scientific Computing for Engineers: Spring 2008 Sony/Toshiba/IBM (STI) CELL Processor Scientific Computing for Engineers: Spring 2008 Nec Hercules Contra Plures Chip's performance is related to its cross section same area 2 performance (Pollack's Rule)

More information

Maxwell: a 64-FPGA Supercomputer

Maxwell: a 64-FPGA Supercomputer Maxwell: a 64-FPGA Supercomputer Copyright 2007, the University of Edinburgh Dr Rob Baxter Software Development Group Manager, EPCC R.Baxter@epcc.ed.ac.uk +44 131 651 3579 Outline The FHPCA Why build Maxwell?

More information

FFTC: Fastest Fourier Transform on the IBM Cell Broadband Engine. David A. Bader, Virat Agarwal

FFTC: Fastest Fourier Transform on the IBM Cell Broadband Engine. David A. Bader, Virat Agarwal FFTC: Fastest Fourier Transform on the IBM Cell Broadband Engine David A. Bader, Virat Agarwal Cell System Features Heterogeneous multi-core system architecture Power Processor Element for control tasks

More information

Cell Processor and Playstation 3

Cell Processor and Playstation 3 Cell Processor and Playstation 3 Guillem Borrell i Nogueras February 24, 2009 Cell systems Bad news More bad news Good news Q&A IBM Blades QS21 Cell BE based. 8 SPE 460 Gflops Float 20 GFLops Double QS22

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Crypto On the Playstation 3

Crypto On the Playstation 3 Crypto On the Playstation 3 Neil Costigan School of Computing, DCU. neil.costigan@computing.dcu.ie +353.1.700.6916 PhD student / 2 nd year of research. Supervisor : - Dr Michael Scott. IRCSET funded. Playstation

More information

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Alan Humphrey, Qingyu Meng, Martin Berzins Scientific Computing and Imaging Institute & University of Utah I. Uintah Overview

More information

Compilation for Heterogeneous Platforms

Compilation for Heterogeneous Platforms Compilation for Heterogeneous Platforms Grid in a Box and on a Chip Ken Kennedy Rice University http://www.cs.rice.edu/~ken/presentations/heterogeneous.pdf Senior Researchers Ken Kennedy John Mellor-Crummey

More information

Intel C++ Compiler Professional Edition 11.1 for Linux* In-Depth

Intel C++ Compiler Professional Edition 11.1 for Linux* In-Depth Intel C++ Compiler Professional Edition 11.1 for Linux* In-Depth Contents Intel C++ Compiler Professional Edition 11.1 for Linux*.... 3 Intel C++ Compiler Professional Edition Components:......... 3 s...3

More information

Parallel Computing Ideas

Parallel Computing Ideas Parallel Computing Ideas K. 1 1 Department of Mathematics 2018 Why When to go for speed Historically: Production code Code takes a long time to run Code runs many times Code is not end in itself 2010:

More information

Pricing of Derivatives by Fast, Hardware-Based Monte-Carlo Simulation

Pricing of Derivatives by Fast, Hardware-Based Monte-Carlo Simulation Pricing of Derivatives by Fast, Hardware-Based Monte-Carlo Simulation Prof. Dr. Joachim K. Anlauf Universität Bonn Institut für Informatik II Technische Informatik Römerstr. 164 53117 Bonn E-Mail: anlauf@informatik.uni-bonn.de

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming January 14, 2015 www.cac.cornell.edu What is Parallel Programming? Theoretically a very simple concept Use more than one processor to complete a task Operationally

More information

Intel C++ Compiler Professional Edition 11.0 for Linux* In-Depth

Intel C++ Compiler Professional Edition 11.0 for Linux* In-Depth Intel C++ Compiler Professional Edition 11.0 for Linux* In-Depth Contents Intel C++ Compiler Professional Edition for Linux*...3 Intel C++ Compiler Professional Edition Components:...3 Features...3 New

More information

C6000 Compiler Roadmap

C6000 Compiler Roadmap C6000 Compiler Roadmap CGT v7.4 CGT v7.3 CGT v7. CGT v8.0 CGT C6x v8. CGT Longer Term In Development Production Early Adopter Future CGT v7.2 reactive Current 3H2 4H 4H2 H H2 Future CGT C6x v7.3 Control

More information

Intel Math Kernel Library 10.3

Intel Math Kernel Library 10.3 Intel Math Kernel Library 10.3 Product Brief Intel Math Kernel Library 10.3 The Flagship High Performance Computing Math Library for Windows*, Linux*, and Mac OS* X Intel Math Kernel Library (Intel MKL)

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 7 Parallel Processing 1 Parallelism Instruction-level parallelism (Ch.6) pipeline superscalar latency issues hazards Processor-level parallelism (Ch.7) array/vector of processors

More information

Cell Programming Tips & Techniques

Cell Programming Tips & Techniques Cell Programming Tips & Techniques Course Code: L3T2H1-58 Cell Ecosystem Solutions Enablement 1 Class Objectives Things you will learn Key programming techniques to exploit cell hardware organization and

More information

Cell Programming Maciej Cytowski (ICM) PRACE Workshop New Languages & Future Technology Prototypes, March 1-2, LRZ, Germany

Cell Programming Maciej Cytowski (ICM) PRACE Workshop New Languages & Future Technology Prototypes, March 1-2, LRZ, Germany Cell Programming Maciej Cytowski (ICM) PRACE Workshop New Languages & Future Technology Prototypes, March 1-2, LRZ, Germany Agenda Introduction to technology Cell programming models SPE runtime management

More information

Financial Modeling on the Cell Broadband Engine

Financial Modeling on the Cell Broadband Engine Financial Modeling on the Cell Broadband Engine Virat Agarwal virat@cc.gatech.edu College of Computing Georgia Institute of Technology Atlanta, GA 30332 David A. Bader bader@cc.gatech.edu College of Computing

More information

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing NTNU, IMF February 16. 2018 1 Recap: Distributed memory programming model Parallelism with MPI. An MPI execution is started

More information

Peta-Scale Simulations with the HPC Software Framework walberla:

Peta-Scale Simulations with the HPC Software Framework walberla: Peta-Scale Simulations with the HPC Software Framework walberla: Massively Parallel AMR for the Lattice Boltzmann Method SIAM PP 2016, Paris April 15, 2016 Florian Schornbaum, Christian Godenschwager,

More information

Neil Costigan School of Computing, Dublin City University PhD student / 2 nd year of research.

Neil Costigan School of Computing, Dublin City University PhD student / 2 nd year of research. Crypto On the Cell Neil Costigan School of Computing, Dublin City University. neil.costigan@computing.dcu.ie +353.1.700.6916 PhD student / 2 nd year of research. Supervisor : - Dr Michael Scott. IRCSET

More information

Introduction to Performance Tuning & Optimization Tools

Introduction to Performance Tuning & Optimization Tools Introduction to Performance Tuning & Optimization Tools a[i] a[i+1] + a[i+2] a[i+3] b[i] b[i+1] b[i+2] b[i+3] = a[i]+b[i] a[i+1]+b[i+1] a[i+2]+b[i+2] a[i+3]+b[i+3] Ian A. Cosden, Ph.D. Manager, HPC Software

More information

Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture

Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture Da Zhang Collaborators: Hao Wang, Kaixi Hou, Jing Zhang Advisor: Wu-chun Feng Evolution of Genome Sequencing1 In 20032: 1 human genome

More information

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies John C. Linford John Michalakes Manish Vachharajani Adrian Sandu IMAGe TOY 2009 Workshop 2 Virginia

More information

OpenMP Shared Memory Programming

OpenMP Shared Memory Programming OpenMP Shared Memory Programming John Burkardt, Information Technology Department, Virginia Tech.... Mathematics Department, Ajou University, Suwon, Korea, 13 May 2009.... http://people.sc.fsu.edu/ jburkardt/presentations/

More information

Intel C++ Compiler Professional Edition 11.1 for Mac OS* X. In-Depth

Intel C++ Compiler Professional Edition 11.1 for Mac OS* X. In-Depth Intel C++ Compiler Professional Edition 11.1 for Mac OS* X In-Depth Contents Intel C++ Compiler Professional Edition 11.1 for Mac OS* X. 3 Intel C++ Compiler Professional Edition 11.1 Components:...3 Features...3

More information

parallel Parallel R ANF R Vincent Miele CNRS 07/10/2015

parallel Parallel R ANF R Vincent Miele CNRS 07/10/2015 Parallel R ANF R Vincent Miele CNRS 07/10/2015 Thinking Plan Thinking Context Principles Traditional paradigms and languages Parallel R - the foundations embarrassingly computations in R the snow heritage

More information

The Pennsylvania State University. The Graduate School. College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM

The Pennsylvania State University. The Graduate School. College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM The Pennsylvania State University The Graduate School College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM FOR THE IBM CELL BROADBAND ENGINE A Thesis in Computer Science and Engineering by

More information

Optimizing JPEG2000 Still Image Encoding on the Cell Broadband Engine

Optimizing JPEG2000 Still Image Encoding on the Cell Broadband Engine 37th International Conference on Parallel Processing Optimizing JPEG2000 Still Image Encoding on the Cell Broadband Engine Seunghwa Kang David A. Bader Georgia Institute of Technology, Atlanta, GA 30332

More information

Banking on Monte Carlo and beyond

Banking on Monte Carlo and beyond Banking on Monte Carlo and beyond Dr Ian Reid Ian.Reid@nag.co.uk Experts in numerical algorithms and HPC services Agenda Introduction What s the problem? GPUs an opportunity? NAG s research/experience/feedback

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

Exploring different level of parallelism Instruction-level parallelism (ILP): how many of the operations/instructions in a computer program can be performed simultaneously 1. e = a + b 2. f = c + d 3.

More information

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation Outline IBM OpenPower Platform Accelerating

More information

Arm's role in co-design for the next generation of HPC platforms

Arm's role in co-design for the next generation of HPC platforms Arm's role in co-design for the next generation of HPC platforms Filippo Spiga Software and Large Scale Systems What it is Co-design? Abstract: Preparations for Exascale computing have led to the realization

More information

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads...

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads... OPENMP PERFORMANCE 2 A common scenario... So I wrote my OpenMP program, and I checked it gave the right answers, so I ran some timing tests, and the speedup was, well, a bit disappointing really. Now what?.

More information

Multi/Many Core Programming Strategies

Multi/Many Core Programming Strategies Multicore Challenge Conference 2012 UWE, Bristol Multi/Many Core Programming Strategies Greg Michaelson School of Mathematical & Computer Sciences Heriot-Watt University Multicore Challenge Conference

More information

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant

More information

Multi-core Architectures. Dr. Yingwu Zhu

Multi-core Architectures. Dr. Yingwu Zhu Multi-core Architectures Dr. Yingwu Zhu Outline Parallel computing? Multi-core architectures Memory hierarchy Vs. SMT Cache coherence What is parallel computing? Using multiple processors in parallel to

More information

EXOCHI: Architecture and Programming Environment for A Heterogeneous Multicore Multithreaded System

EXOCHI: Architecture and Programming Environment for A Heterogeneous Multicore Multithreaded System EXOCHI: Architecture and Programming Environment for A Heterogeneous Multicore Multithreaded System By Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian, Milind Girkar, Nick

More information

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads...

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads... OPENMP PERFORMANCE 2 A common scenario... So I wrote my OpenMP program, and I checked it gave the right answers, so I ran some timing tests, and the speedup was, well, a bit disappointing really. Now what?.

More information

Parallel Architecture & Programing Models for Face Recognition

Parallel Architecture & Programing Models for Face Recognition Parallel Architecture & Programing Models for Face Recognition Submitted by Sagar Kukreja Computer Engineering Department Rochester Institute of Technology Agenda Introduction to face recognition Feature

More information

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Jonas Hahnfeld 1, Christian Terboven 1, James Price 2, Hans Joachim Pflug 1, Matthias S. Müller

More information

Processors, Performance, and Profiling

Processors, Performance, and Profiling Processors, Performance, and Profiling Architecture 101: 5-Stage Pipeline Fetch Decode Execute Memory Write-Back Registers PC FP ALU Memory Architecture 101 1. Fetch instruction from memory. 2. Decode

More information

Cell Broadband Engine Overview

Cell Broadband Engine Overview Cell Broadband Engine Overview Course Code: L1T1H1-02 Cell Ecosystem Solutions Enablement 1 Class Objectives Things you will learn An overview of Cell history Cell microprocessor highlights Hardware architecture

More information

Accelerator Programming Lecture 1

Accelerator Programming Lecture 1 Accelerator Programming Lecture 1 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de January 11, 2016 Accelerator Programming

More information

Building a Bridge: from Pre-Silicon Verification to Post-Silicon Validation

Building a Bridge: from Pre-Silicon Verification to Post-Silicon Validation Building a Bridge: from Pre-Silicon Verification to Post-Silicon Validation FMCAD, 2008 Moshe Levinger 26/11/2008 Talk Outline Simulation-Based Functional Verification Pre-Silicon Technologies Random Test

More information

Hello World! Course Code: L2T2H1-10 Cell Ecosystem Solutions Enablement. Systems and Technology Group

Hello World! Course Code: L2T2H1-10 Cell Ecosystem Solutions Enablement. Systems and Technology Group Hello World! Course Code: L2T2H1-10 Cell Ecosystem Solutions Enablement 1 Course Objectives You will learn how to write, build and run Hello World! on the Cell System Simulator. There are three different

More information

Simultaneous Multithreading on Pentium 4

Simultaneous Multithreading on Pentium 4 Hyper-Threading: Simultaneous Multithreading on Pentium 4 Presented by: Thomas Repantis trep@cs.ucr.edu CS203B-Advanced Computer Architecture, Spring 2004 p.1/32 Overview Multiple threads executing on

More information

Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs

Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs C.-C. Su a, C.-W. Hsieh b, M. R. Smith b, M. C. Jermy c and J.-S. Wu a a Department of Mechanical Engineering, National Chiao Tung

More information

INFS 214: Introduction to Computing

INFS 214: Introduction to Computing INFS 214: Introduction to Computing Session 13 Cloud Computing Lecturer: Dr. Ebenezer Ankrah, Dept. of Information Studies Contact Information: eankrah@ug.edu.gh College of Education School of Continuing

More information

Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?

Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC? Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC? Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, Mateo Valero SC 13, November 19 th 2013, Denver, CO, USA

More information

Merge Sort Quicksort 9 Abstract Windowing Toolkit & Swing Abstract Windowing Toolkit (AWT) vs. Swing AWT GUI Components Layout Managers Swing GUI

Merge Sort Quicksort 9 Abstract Windowing Toolkit & Swing Abstract Windowing Toolkit (AWT) vs. Swing AWT GUI Components Layout Managers Swing GUI COURSE TITLE :Introduction to Programming 2 COURSE PREREQUISITE :Introduction to Programming 1 COURSE DURATION :16 weeks (3 hours/week) COURSE METHODOLOGY:Combination of lecture and laboratory exercises

More information

Datenbanksysteme II: Modern Hardware. Stefan Sprenger November 23, 2016

Datenbanksysteme II: Modern Hardware. Stefan Sprenger November 23, 2016 Datenbanksysteme II: Modern Hardware Stefan Sprenger November 23, 2016 Content of this Lecture Introduction to Modern Hardware CPUs, Cache Hierarchy Branch Prediction SIMD NUMA Cache-Sensitive Skip List

More information

Testing unrolling optimization technique for quasi random numbers

Testing unrolling optimization technique for quasi random numbers Testing unrolling optimization technique for quasi random numbers Romain Reuillon David R.C. Hill LIMOS, UMR CNRS 6158 LIMOS, UMR CNRS 6158 Blaise Pascal University Blaise Pascal University ISIMA, Campus

More information

A Code Merging Optimization Technique for GPU. Ryan Taylor Xiaoming Li University of Delaware

A Code Merging Optimization Technique for GPU. Ryan Taylor Xiaoming Li University of Delaware A Code Merging Optimization Technique for GPU Ryan Taylor Xiaoming Li University of Delaware FREE RIDE MAIN FINDING A GPU program can use the spare resources of another GPU program without hurting its

More information

The Mont-Blanc approach towards Exascale

The Mont-Blanc approach towards Exascale http://www.montblanc-project.eu The Mont-Blanc approach towards Exascale Alex Ramirez Barcelona Supercomputing Center Disclaimer: Not only I speak for myself... All references to unavailable products are

More information

Real-time covariance tracking algorithm for embedded systems

Real-time covariance tracking algorithm for embedded systems Real-time covariance tracking algorithm for embedded systems A. Roméro, L. Lacassagne, A. Zahraee, M. Gouiffès www.lri.fr/~lacas LRI, LIMSI & IEF - University Paris-Sud Covariance matching techniques are

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package High Performance Machine Learning Workshop Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package Matheus Souza, Lucas Maciel, Pedro Penna, Henrique Freitas 24/09/2018 Agenda Introduction

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2017 Previous class What is logical address? Who use it? Describes a location in the logical memory address space Compiler

More information

Lecture 13: March 25

Lecture 13: March 25 CISC 879 Software Support for Multicore Architectures Spring 2007 Lecture 13: March 25 Lecturer: John Cavazos Scribe: Ying Yu 13.1. Bryan Youse-Optimization of Sparse Matrix-Vector Multiplication on Emerging

More information

High Performance Computing Implementation on a Risk Assessment Problem

High Performance Computing Implementation on a Risk Assessment Problem High Performance Computing Implementation on a Risk Assessment Problem Carlos A. Acosta 1 and Juan D. Ocampo 2 University of Texas at San Antonio, San Antonio, TX, 78249 Harry Millwater, Jr. 3 University

More information

Performance, Power, Die Yield. CS301 Prof Szajda

Performance, Power, Die Yield. CS301 Prof Szajda Performance, Power, Die Yield CS301 Prof Szajda Administrative HW #1 assigned w Due Wednesday, 9/3 at 5:00 pm Performance Metrics (How do we compare two machines?) What to Measure? Which airplane has the

More information

Parallel Computing. Hwansoo Han (SKKU)

Parallel Computing. Hwansoo Han (SKKU) Parallel Computing Hwansoo Han (SKKU) Unicore Limitations Performance scaling stopped due to Power consumption Wire delay DRAM latency Limitation in ILP 10000 SPEC CINT2000 2 cores/chip Xeon 3.0GHz Core2duo

More information

Approaches to Parallel Computing

Approaches to Parallel Computing Approaches to Parallel Computing K. Cooper 1 1 Department of Mathematics Washington State University 2019 Paradigms Concept Many hands make light work... Set several processors to work on separate aspects

More information

Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications

Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications Thread Tailor Dynamically Weaving Threads Together for Efficient, Adaptive Parallel Applications Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, Nathan Clark Motivation Hardware Trends Put more cores

More information

THREAD LEVEL PARALLELISM

THREAD LEVEL PARALLELISM THREAD LEVEL PARALLELISM Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 4 is due on Dec. 11 th This lecture

More information

Enterprise Linux vs. Embedded Linux

Enterprise Linux vs. Embedded Linux AN INTEL COMPANY Enterprise Linux vs. Embedded Linux WHEN IT MATTERS, IT RUNS ON WIND RIVER EXECUTIVE SUMMARY The use of open source operating systems has garnered more attention in recent years for a

More information

Towards a Holistic Approach to Auto-Parallelization

Towards a Holistic Approach to Auto-Parallelization Towards a Holistic Approach to Auto-Parallelization Integrating Profile-Driven Parallelism Detection and Machine-Learning Based Mapping Georgios Tournavitis, Zheng Wang, Björn Franke and Michael F.P. O

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

Parallel Algorithm Design. CS595, Fall 2010

Parallel Algorithm Design. CS595, Fall 2010 Parallel Algorithm Design CS595, Fall 2010 1 Programming Models The programming model o determines the basic concepts of the parallel implementation and o abstracts from the hardware as well as from the

More information

AUTOMATIC SMT THREADING

AUTOMATIC SMT THREADING AUTOMATIC SMT THREADING FOR OPENMP APPLICATIONS ON THE INTEL XEON PHI CO-PROCESSOR WIM HEIRMAN 1,2 TREVOR E. CARLSON 1 KENZO VAN CRAEYNEST 1 IBRAHIM HUR 2 AAMER JALEEL 2 LIEVEN EECKHOUT 1 1 GHENT UNIVERSITY

More information

Falcon: Scaling IO Performance in Multi-SSD Volumes. The George Washington University

Falcon: Scaling IO Performance in Multi-SSD Volumes. The George Washington University Falcon: Scaling IO Performance in Multi-SSD Volumes Pradeep Kumar H Howie Huang The George Washington University SSDs in Big Data Applications Recent trends advocate using many SSDs for higher throughput

More information

Using Industry Standards to Exploit the Advantages and Resolve the Challenges of Multicore Technology

Using Industry Standards to Exploit the Advantages and Resolve the Challenges of Multicore Technology Using Industry Standards to Exploit the Advantages and Resolve the Challenges of Multicore Technology September 19, 2007 Markus Levy, EEMBC and Multicore Association Enabling the Multicore Ecosystem Multicore

More information

Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok

Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok Texas Learning and Computation Center Department of Computer Science University of Houston Outline Motivation

More information

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM I5 AND I7 PROCESSORS Juan M. Cebrián 1 Lasse Natvig 1 Jan Christian Meyer 2 1 Depart. of Computer and Information

More information

Parallel Programming

Parallel Programming Parallel Programming OpenMP Nils Moschüring PhD Student (LMU) Nils Moschüring PhD Student (LMU), OpenMP 1 1 Overview What is parallel software development Why do we need parallel computation? Problems

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University 1. Introduction 2. System Structures 3. Process Concept 4. Multithreaded Programming

More information

Locality. Cache. Direct Mapped Cache. Direct Mapped Cache

Locality. Cache. Direct Mapped Cache. Direct Mapped Cache Locality A principle that makes having a memory hierarchy a good idea If an item is referenced, temporal locality: it will tend to be referenced again soon spatial locality: nearby items will tend to be

More information

Experiences with Achieving Portability across Heterogeneous Architectures

Experiences with Achieving Portability across Heterogeneous Architectures Experiences with Achieving Portability across Heterogeneous Architectures Lukasz G. Szafaryn +, Todd Gamblin ++, Bronis R. de Supinski ++ and Kevin Skadron + + University of Virginia ++ Lawrence Livermore

More information

Compiling for GPUs. Adarsh Yoga Madhav Ramesh

Compiling for GPUs. Adarsh Yoga Madhav Ramesh Compiling for GPUs Adarsh Yoga Madhav Ramesh Agenda Introduction to GPUs Compute Unified Device Architecture (CUDA) Control Structure Optimization Technique for GPGPU Compiler Framework for Automatic Translation

More information

Mesh Networking Principles

Mesh Networking Principles Technology, N. Jones Research Note 8 July 2003 Mesh Topologies Promise Resilient Wireless Networks Mesh architecture will become an essential element of wireless networking because it is easy to install,

More information

An Evaluation of an Energy Efficient Many-Core SoC with Parallelized Face Detection

An Evaluation of an Energy Efficient Many-Core SoC with Parallelized Face Detection An Evaluation of an Energy Efficient Many-Core SoC with Parallelized Face Detection Hiroyuki Usui, Jun Tanabe, Toru Sano, Hui Xu, and Takashi Miyamori Toshiba Corporation, Kawasaki, Japan Copyright 2013,

More information

Porting Linux to x86-64

Porting Linux to x86-64 Porting Linux to x86-64 Andi Kleen SuSE Labs ak@suse.de Abstract... Some implementation details with changes over the existing i386 port are discussed. 1 Introduction x86-64 is a new architecture developed

More information

Communicating Process Architectures in Light of Parallel Design Patterns and Skeletons

Communicating Process Architectures in Light of Parallel Design Patterns and Skeletons Communicating Process Architectures in Light of Parallel Design Patterns and Skeletons Dr Kevin Chalmers School of Computing Edinburgh Napier University Edinburgh k.chalmers@napier.ac.uk Overview ˆ I started

More information