A Pattern Language for Parallel Programming

Size: px
Start display at page:

Download "A Pattern Language for Parallel Programming"

Transcription

1 A Pattern Language for Parallel Programming Tim Mattson Beverly Sanders Berna Massingill

2 Motivation Hardware for parallel computing is everywhere : clusters, SMP workstations, NUMA Big Iron. Software to run on these systems is not. Knowledge needed to make effective use of hardware is mostly limited to high-end HPC community. How to disseminate this knowledge (to programmers, domain experts) so that sequential software is rare?

3 A Possible Long-Term Solution A layered solution stack focused on the algorithm designer, not the hardware: A pattern language for parallel programming. A component-based framework. Low-level portable APIs for parallel computing. Supporting middleware. We believe you must start at the top: Get the pattern language right first and you stand a better change of doing other layers right.

4 A Shameless Plug A pattern language for parallel algorithm design with examples in MPI, OpenMP, and Java. This is our hypothesis about how expert parallel programmers think about parallel programming. Now available at a bookstore near you!

5 What s a Design Pattern? High-quality solution to frequently occurring problem in some domain. Written in consistent format to allow readers to quickly understand context and solution. Named so that pattern names provide a vocabulary for discussing solutions (as has happened in object-oriented oriented programming).

6 What s a Pattern Language? Carefully structured collection of patterns. Not a programming language. Can embody a design methodology, so user works through patterns to develop complex design using language s patterns.

7 The Pattern Language s Structure A software design can be viewed as a series of refinements. We consider the process in terms of 4 design spaces which add progressively lower-level elements to the design. Design Space The Evolving Design Finding Concurrency Algorithm Structure Supporting Structures Tasks, shared data, partial orders Thread/process structures, schedules Source code organization, shared data Implementation Mechanisms Thread/process mgmt, interaction

8 Parallel Software: Where the design spaces fit in during software development Finding Concurrency Original Problem Algorithm Structure Units of execution + new shared data for extracted dependencies Supporting struct. & impl. mech. Tasks, shared and local data Program SPMD_Emb_Par () { Program SPMD_Emb_Par () TYPE { Program *tmp, *func(); SPMD_Emb_Par () global_array TYPE { Program *tmp, Data(TYPE); *func(); SPMD_Emb_Par () global_array TYPE { Res(TYPE); *tmp, Data(TYPE); *func(); int N = global_array get_num_procs(); TYPE Res(TYPE); *tmp, Data(TYPE); *func(); int id int= N get_proc_id(); = global_array get_num_procs(); Res(TYPE); Data(TYPE); if (id==0) int int= setup_problem(n,data); N global_array get_proc_id(); = get_num_procs(); Res(TYPE); for (int if (id==0) int I= 0; int I<N;I=I+Num){ = setup_problem(n,data); Num get_proc_id(); = get_num_procs(); tmp for (int if = (id==0) func(i); int I= 0; I<N;I=I+Num){ = setup_problem(n,data); get_proc_id(); Res.accumulate( tmp for (int if = (id==0) func(i); I= 0; tmp); I<N;I=I+Num){ setup_problem(n, Data); } Res.accumulate( tmp for (int = func(i); I= ID; tmp); I<N;I=I+Num){ } } Res.accumulate( tmp = func(i, tmp); Data); } Res.accumulate( tmp); } } } } Corresponding source code

9 The Finding Concurrency Design Space Start with a specification that solves the original problem, finish with a decomposition of the problem into tasks, plus an analysis of shared data and task dependencies (partial ordering). Start Dependency Analysis Group Group Tasks Tasks Order Order Tasks Tasks Data Data Sharing Sharing Decomposition Data Data Decomposition Decomposition Task Task Decomposition Decomposition Design Design Evaluation

10 The Algorithm Structure Design Space Select overall program organization to exploit concurrency identified in previous step. Start Organize By Flow of Data Organize By Tasks Organize By Data Regular? Irregular? Linear? Recursive? Linear? Recursive? Pipeline Pipeline Event-Based Event-Based Coordination Coordination Task Task Parallelism Parallelism Divide Divide and and Conquer Conquer Geometric Geometric Decomposition Decomposition Recursive Recursive Data Data

11 The Supporting Structures Design Space High-level constructs affecting large-scale organization of the source code. Program Structure SPMD SPMD Master/Worker Master/Worker Loop Loop Parallelism Parallelism Data Structures Shared Shared Data Data Shared Shared Queue Queue Distributed Distributed Array Array Fork/Join Fork/Join

12 The Implementation Mechanisms Design Space The primitives of parallel computing. Book s examples are in Java, OpenMP, and MPI. This design space discusses key issues more generically. Not properly design patterns, included to make the pattern language self-contained. UE* Management Thread Thread control control Process Process control control Synchronization Memory Memory sync/fences sync/fences Barriers Barriers Mutual Mutual Exclusion Exclusion Communication Message Message passing passing Collective Collective comm comm Other Other comm comm * UE = Unit of execution

13 Open questions How close did we come to getting it right (identifying right/useful patterns)? We ve heard from patterns people; now we need to hear from domain experts. Our patterns are modeled on 20 years of experience with HPC. Are they too narrow in scope? Our patterns come from an old-fashioned, procedural mindset and are not tied to modern object-oriented oriented software design concepts. Should we be more GoF-like? Lowest-level design space was not represented as patterns. Does this suggest a need to be more abstract and a redesign of that space?

Design patterns for HPC: an introduction. Paolo Ciancarini Department of Informatics University of Bologna

Design patterns for HPC: an introduction. Paolo Ciancarini Department of Informatics University of Bologna Design patterns for HPC: an introduction Paolo Ciancarini paolo.ciancarini@unibo.it Department of Informatics University of Bologna Motivation and Concept Software designers should exploit reusable design

More information

Teaching people how to think parallel

Teaching people how to think parallel Teaching people how to think parallel Tim Mattson Principal Engineer Application Research Laboratory Intel Corp Disclaimer This is not an Intel talk. The views expressed in this presentation are my own

More information

Marco Danelutto. May 2011, Pisa

Marco Danelutto. May 2011, Pisa Marco Danelutto Dept. of Computer Science, University of Pisa, Italy May 2011, Pisa Contents 1 2 3 4 5 6 7 Parallel computing The problem Solve a problem using n w processing resources Obtaining a (close

More information

EE382N (20): Computer Architecture - Parallelism and Locality Lecture 13 Parallelism in Software IV

EE382N (20): Computer Architecture - Parallelism and Locality Lecture 13 Parallelism in Software IV EE382 (20): Computer Architecture - Parallelism and Locality Lecture 13 Parallelism in Software IV Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality (c) Rodric Rabbah, Mattan

More information

Dinesh Kaushik

Dinesh Kaushik Understanding the Performance of Hybrid (distributed/shared memory) Programming Model http://www.mcs.anl.gov/petsc-fun3d Dinesh Kaushik Mathematics and Computer Science Division Argonne National Laboratory

More information

A Hands-on Introduction to OpenMP *

A Hands-on Introduction to OpenMP * A Hands-on Introduction to OpenMP * Tim Mattson Intel Corp. timothy.g.mattson@intel.com * The name OpenMP is the property of the OpenMP Architecture Review Board. Introduction OpenMP is one of the most

More information

Moore s Law. Computer architect goal Software developer assumption

Moore s Law. Computer architect goal Software developer assumption Moore s Law The number of transistors that can be placed inexpensively on an integrated circuit will double approximately every 18 months. Self-fulfilling prophecy Computer architect goal Software developer

More information

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 11 Parallelism in Software II

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 11 Parallelism in Software II EE382 (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 11 Parallelism in Software II Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality, Fall 2011 --

More information

Ade Miller Senior Development Manager Microsoft patterns & practices

Ade Miller Senior Development Manager Microsoft patterns & practices Ade Miller (adem@microsoft.com) Senior Development Manager Microsoft patterns & practices Save time and reduce risk on your software development projects by incorporating patterns & practices, Microsoft's

More information

Parallelization Strategy

Parallelization Strategy COSC 6374 Parallel Computation Algorithm structure Spring 2008 Parallelization Strategy Finding Concurrency Structure the problem to expose exploitable concurrency Algorithm Structure Supporting Structure

More information

CS510 Advanced Topics in Concurrency. Jonathan Walpole

CS510 Advanced Topics in Concurrency. Jonathan Walpole CS510 Advanced Topics in Concurrency Jonathan Walpole Threads Cannot Be Implemented as a Library Reasoning About Programs What are the valid outcomes for this program? Is it valid for both r1 and r2 to

More information

Parallel Programming Concepts. Parallel Algorithms. Peter Tröger

Parallel Programming Concepts. Parallel Algorithms. Peter Tröger Parallel Programming Concepts Parallel Algorithms Peter Tröger Sources: Ian Foster. Designing and Building Parallel Programs. Addison-Wesley. 1995. Mattson, Timothy G.; S, Beverly A.; ers,; Massingill,

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming David Lifka lifka@cac.cornell.edu May 23, 2011 5/23/2011 www.cac.cornell.edu 1 y What is Parallel Programming? Using more than one processor or computer to complete

More information

Parallel Algorithm Design. CS595, Fall 2010

Parallel Algorithm Design. CS595, Fall 2010 Parallel Algorithm Design CS595, Fall 2010 1 Programming Models The programming model o determines the basic concepts of the parallel implementation and o abstracts from the hardware as well as from the

More information

Parallel Programming

Parallel Programming Parallel Programming 9. Pipeline Parallelism Christoph von Praun praun@acm.org 09-1 (1) Parallel algorithm structure design space Organization by Data (1.1) Geometric Decomposition Organization by Tasks

More information

Shared Memory Programming with OpenMP (3)

Shared Memory Programming with OpenMP (3) Shared Memory Programming with OpenMP (3) 2014 Spring Jinkyu Jeong (jinkyu@skku.edu) 1 SCHEDULING LOOPS 2 Scheduling Loops (2) parallel for directive Basic partitioning policy block partitioning Iteration

More information

High Performance Computing

High Performance Computing The Need for Parallelism High Performance Computing David McCaughan, HPC Analyst SHARCNET, University of Guelph dbm@sharcnet.ca Scientific investigation traditionally takes two forms theoretical empirical

More information

PARALLEL DESIGN PATTERNS

PARALLEL DESIGN PATTERNS CHAPTER 6 PARALLEL DESIGN PATTERNS Design patterns have been introduced in the 90 to describe simple and elegant solutions to specific problems in object-oriented software design. Design patterns capture

More information

Parallelism in Software

Parallelism in Software Parallelism in Software Minsoo Ryu Department of Computer Science and Engineering 2 1 Parallelism in Software 2 Creating a Multicore Program 3 Multicore Design Patterns 4 Q & A 2 3 Types of Parallelism

More information

Parallel Computing Parallel Programming Languages Hwansoo Han

Parallel Computing Parallel Programming Languages Hwansoo Han Parallel Computing Parallel Programming Languages Hwansoo Han Parallel Programming Practice Current Start with a parallel algorithm Implement, keeping in mind Data races Synchronization Threading syntax

More information

Patterns of Parallel Programming with.net 4. Ade Miller Microsoft patterns & practices

Patterns of Parallel Programming with.net 4. Ade Miller Microsoft patterns & practices Patterns of Parallel Programming with.net 4 Ade Miller (adem@microsoft.com) Microsoft patterns & practices Introduction Why you should care? Where to start? Patterns walkthrough Conclusions (and a quiz)

More information

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 14 Parallelism in Software V

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 14 Parallelism in Software V EE382 (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 14 Parallelism in Software V Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality, Fall 2011 --

More information

EE382N (20): Computer Architecture - Parallelism and Locality Lecture 11 Parallelism in Software II

EE382N (20): Computer Architecture - Parallelism and Locality Lecture 11 Parallelism in Software II EE382 (20): Computer Architecture - Parallelism and Locality Lecture 11 Parallelism in Software II Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality (c) Rodric Rabbah, Mattan

More information

Distributed Systems CS /640

Distributed Systems CS /640 Distributed Systems CS 15-440/640 Programming Models Borrowed and adapted from our good friends at CMU-Doha, Qatar Majd F. Sakr, Mohammad Hammoud andvinay Kolar 1 Objectives Discussion on Programming Models

More information

Communicating Process Architectures in Light of Parallel Design Patterns and Skeletons

Communicating Process Architectures in Light of Parallel Design Patterns and Skeletons Communicating Process Architectures in Light of Parallel Design Patterns and Skeletons Dr Kevin Chalmers School of Computing Edinburgh Napier University Edinburgh k.chalmers@napier.ac.uk Overview ˆ I started

More information

COSC 6374 Parallel Computation. Parallel Design Patterns. Edgar Gabriel. Fall Design patterns

COSC 6374 Parallel Computation. Parallel Design Patterns. Edgar Gabriel. Fall Design patterns COSC 6374 Parallel Computation Parallel Design Patterns Fall 2014 Design patterns A design pattern is a way of reusing abstract knowledge about a problem and its solution Patterns are devices that allow

More information

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 14 Parallelism in Software I

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 14 Parallelism in Software I EE382 (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 14 Parallelism in Software I Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality, Spring 2015

More information

Task Graph. Name: Problem: Context: D B. C Antecedent. Task Graph

Task Graph. Name: Problem: Context: D B. C Antecedent. Task Graph Graph Name: Graph Note: The Graph pattern is a concurrent execution pattern and should not be confused with the Arbitrary Static Graph architectural pattern (1) which addresses the overall organization

More information

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008 1 of 6 Lecture 7: March 4 CISC 879 Software Support for Multicore Architectures Spring 2008 Lecture 7: March 4, 2008 Lecturer: Lori Pollock Scribe: Navreet Virk Open MP Programming Topics covered 1. Introduction

More information

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing NTNU, IMF February 16. 2018 1 Recap: Distributed memory programming model Parallelism with MPI. An MPI execution is started

More information

Chap. 4 Part 1. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1

Chap. 4 Part 1. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1 Chap. 4 Part 1 CIS*3090 Fall 2016 Fall 2016 CIS*3090 Parallel Programming 1 Part 2 of textbook: Parallel Abstractions How can we think about conducting computations in parallel before getting down to coding?

More information

Parallel Programming Concepts. What kind of programming model can bridge the gap? Dr. Peter Tröger M.Sc. Frank Feinbube

Parallel Programming Concepts. What kind of programming model can bridge the gap? Dr. Peter Tröger M.Sc. Frank Feinbube Parallel Programming Concepts What kind of programming model can bridge the gap? Dr. Peter Tröger M.Sc. Frank Feinbube 5 Hybrid System GDDR5 Dual Gigabit LAN Dual Gigabit LAN GDDR5 DDR3 Core CPU Core 16x

More information

Parallel Programming

Parallel Programming Parallel Programming 7. Data Parallelism Christoph von Praun praun@acm.org 07-1 (1) Parallel algorithm structure design space Organization by Data (1.1) Geometric Decomposition Organization by Tasks (1.3)

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 17 Shared-memory Programming Outline OpenMP Shared-memory model Parallel for loops Declaring private variables Critical sections Reductions

More information

Martin Kruliš, v

Martin Kruliš, v Martin Kruliš 1 Optimizations in General Code And Compilation Memory Considerations Parallelism Profiling And Optimization Examples 2 Premature optimization is the root of all evil. -- D. Knuth Our goal

More information

Shared Memory Programming. Parallel Programming Overview

Shared Memory Programming. Parallel Programming Overview Shared Memory Programming Arvind Krishnamurthy Fall 2004 Parallel Programming Overview Basic parallel programming problems: 1. Creating parallelism & managing parallelism Scheduling to guarantee parallelism

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming January 14, 2015 www.cac.cornell.edu What is Parallel Programming? Theoretically a very simple concept Use more than one processor to complete a task Operationally

More information

PGAS: Partitioned Global Address Space

PGAS: Partitioned Global Address Space .... PGAS: Partitioned Global Address Space presenter: Qingpeng Niu January 26, 2012 presenter: Qingpeng Niu : PGAS: Partitioned Global Address Space 1 Outline presenter: Qingpeng Niu : PGAS: Partitioned

More information

Patterns for Parallel Application Programs *

Patterns for Parallel Application Programs * Patterns for Parallel Application Programs * Berna L. Massingill, University of Florida, blm@cise.ufl.edu Timothy G. Mattson, Intel Corporation, timothy.g.mattson@intel.com Beverly A. Sanders, University

More information

CS 5220: Shared memory programming. David Bindel

CS 5220: Shared memory programming. David Bindel CS 5220: Shared memory programming David Bindel 2017-09-26 1 Message passing pain Common message passing pattern Logical global structure Local representation per processor Local data may have redundancy

More information

Patterns for! Parallel Programming!

Patterns for! Parallel Programming! Lecture 4! Patterns for! Parallel Programming! John Cavazos! Dept of Computer & Information Sciences! University of Delaware!! www.cis.udel.edu/~cavazos/cisc879! Lecture Overview Writing a Parallel Program

More information

Overview: The OpenMP Programming Model

Overview: The OpenMP Programming Model Overview: The OpenMP Programming Model motivation and overview the parallel directive: clauses, equivalent pthread code, examples the for directive and scheduling of loop iterations Pi example in OpenMP

More information

S = 32 2 d kb (1) L = 32 2 D B (2) A = 2 2 m mod 4 (3) W = 16 2 y mod 4 b (4)

S = 32 2 d kb (1) L = 32 2 D B (2) A = 2 2 m mod 4 (3) W = 16 2 y mod 4 b (4) 1 Cache Design You have already written your civic registration number (personnummer) on the cover page in the format YyMmDd-XXXX. Use the following formulas to calculate the parameters of your caches:

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 9: Implementing Synchronization (Chapter 6) Multiprocessor Memory Models Uniprocessor memory is simple Every load from a location retrieves the last value stored to that

More information

Parallel Computing Introduction

Parallel Computing Introduction Parallel Computing Introduction Bedřich Beneš, Ph.D. Associate Professor Department of Computer Graphics Purdue University von Neumann computer architecture CPU Hard disk Network Bus Memory GPU I/O devices

More information

OpenMP I. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen

OpenMP I. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen OpenMP I Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS16/17 OpenMP References Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press,

More information

Parallelism I. John Cavazos. Dept of Computer & Information Sciences University of Delaware

Parallelism I. John Cavazos. Dept of Computer & Information Sciences University of Delaware Parallelism I John Cavazos Dept of Computer & Information Sciences University of Delaware Lecture Overview Thinking in Parallel Flynn s Taxonomy Types of Parallelism Parallelism Basics Design Patterns

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms http://sudalab.is.s.u-tokyo.ac.jp/~reiji/pna16/ [ 9 ] Shared Memory Performance Parallel Numerical Algorithms / IST / UTokyo 1 PNA16 Lecture Plan General Topics 1. Architecture

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

Distributed systems: paradigms and models Motivations

Distributed systems: paradigms and models Motivations Distributed systems: paradigms and models Motivations Prof. Marco Danelutto Dept. Computer Science University of Pisa Master Degree (Laurea Magistrale) in Computer Science and Networking Academic Year

More information

Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality)

Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality) COMP 322: Fundamentals of Parallel Programming Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality) Mack Joyner and Zoran Budimlić {mjoyner,

More information

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo OpenMP Amasis Brauch German University in Cairo May 4, 2010 Simple Algorithm 1 void i n c r e m e n t e r ( short a r r a y ) 2 { 3 long i ; 4 5 for ( i = 0 ; i < 1000000; i ++) 6 { 7 a r r a y [ i ]++;

More information

Parallel and High Performance Computing CSE 745

Parallel and High Performance Computing CSE 745 Parallel and High Performance Computing CSE 745 1 Outline Introduction to HPC computing Overview Parallel Computer Memory Architectures Parallel Programming Models Designing Parallel Programs Parallel

More information

An Introduction to Parallel Programming

An Introduction to Parallel Programming An Introduction to Parallel Programming Ing. Andrea Marongiu (a.marongiu@unibo.it) Includes slides from Multicore Programming Primer course at Massachusetts Institute of Technology (MIT) by Prof. SamanAmarasinghe

More information

CS 351 Design of Large Programs Programming Abstractions

CS 351 Design of Large Programs Programming Abstractions CS 351 Design of Large Programs Programming Abstractions Brooke Chenoweth University of New Mexico Spring 2019 Searching for the Right Abstraction The language we speak relates to the way we think. The

More information

Parallel Programming Concepts. Parallel Algorithms. Peter Tröger. Sources:

Parallel Programming Concepts. Parallel Algorithms. Peter Tröger. Sources: Parallel Programming Concepts Parallel Algorithms Peter Tröger Sources: Ian Foster. Designing and Building Parallel Programs. Addison-Wesley. 1995. Mattson, Timothy G.; S, Beverly A.; ers,; Massingill,

More information

Ver teil tes Rechnen und Parallelprogrammierung: Introduction to Multi-Threading in Java

Ver teil tes Rechnen und Parallelprogrammierung: Introduction to Multi-Threading in Java Ver teil tes Rechnen und Parallelprogrammierung: Introduction to Multi-Threading in Java Based on the book (chapter 29): Introduction to Java Programming (Comprehensive Version) by Y. Daniel Liang Based

More information

Why you should care about hardware locality and how.

Why you should care about hardware locality and how. Why you should care about hardware locality and how. Brice Goglin TADaaM team Inria Bordeaux Sud-Ouest Agenda Quick example as an introduction Bind your processes What's the actual problem? Convenient

More information

Parallel Architectures

Parallel Architectures Parallel Architectures CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Parallel Architectures Spring 2018 1 / 36 Outline 1 Parallel Computer Classification Flynn s

More information

Teaching Parallel Programming using Java

Teaching Parallel Programming using Java Teaching Parallel Programming using Java Aamir Shafi 1, Aleem Akhtar 1, Ansar Javed 1, and Bryan Carpenter 2 Presenter: Faizan Zahid 1 1 National University of Sciences & Technology (NUST), Pakistan 2

More information

ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING

ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING Keynote, ADVCOMP 2017 November, 2017, Barcelona, Spain Prepared by: Ahmad Qawasmeh Assistant Professor The Hashemite University,

More information

ACCELERATED COMPLEX EVENT PROCESSING WITH GRAPHICS PROCESSING UNITS

ACCELERATED COMPLEX EVENT PROCESSING WITH GRAPHICS PROCESSING UNITS ACCELERATED COMPLEX EVENT PROCESSING WITH GRAPHICS PROCESSING UNITS Prabodha Srimal Rodrigo Registration No. : 138230V Degree of Master of Science Department of Computer Science & Engineering University

More information

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc.

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc. HPC Runtime Software Rishi Khan SC 11 Current Programming Models Shared Memory Multiprocessing OpenMP fork/join model Pthreads Arbitrary SMP parallelism (but hard to program/ debug) Cilk Work Stealing

More information

A unified multicore programming model

A unified multicore programming model A unified multicore programming model Simplifying multicore migration By Sven Brehmer Abstract There are a number of different multicore architectures and programming models available, making it challenging

More information

Parallel Programming Patterns Overview CS 472 Concurrent & Parallel Programming University of Evansville

Parallel Programming Patterns Overview CS 472 Concurrent & Parallel Programming University of Evansville Parallel Programming Patterns Overview CS 472 Concurrent & Parallel Programming of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information

More information

Writing Parallel Programs COMP360

Writing Parallel Programs COMP360 Writing Parallel Programs COMP360 We stand at the threshold of a many core world. The hardware community is ready to cross this threshold. The parallel software community is not. Tim Mattson principal

More information

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5 CS 153 Lab4 and 5 Kishore Kumar Pusukuri Outline Introduction A thread is a straightforward concept : a single sequential flow of control. In traditional operating systems, each process has an address

More information

PCS - Part Two: Multiprocessor Architectures

PCS - Part Two: Multiprocessor Architectures PCS - Part Two: Multiprocessor Architectures Institute of Computer Engineering University of Lübeck, Germany Baltic Summer School, Tartu 2008 Part 2 - Contents Multiprocessor Systems Symmetrical Multiprocessors

More information

Parallel Computing. Hwansoo Han (SKKU)

Parallel Computing. Hwansoo Han (SKKU) Parallel Computing Hwansoo Han (SKKU) Unicore Limitations Performance scaling stopped due to Power consumption Wire delay DRAM latency Limitation in ILP 10000 SPEC CINT2000 2 cores/chip Xeon 3.0GHz Core2duo

More information

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004 A Study of High Performance Computing and the Cray SV1 Supercomputer Michael Sullivan TJHSST Class of 2004 June 2004 0.1 Introduction A supercomputer is a device for turning compute-bound problems into

More information

Performance Analysis of Large-Scale OpenMP and Hybrid MPI/OpenMP Applications with Vampir NG

Performance Analysis of Large-Scale OpenMP and Hybrid MPI/OpenMP Applications with Vampir NG Performance Analysis of Large-Scale OpenMP and Hybrid MPI/OpenMP Applications with Vampir NG Holger Brunst Center for High Performance Computing Dresden University, Germany June 1st, 2005 Overview Overview

More information

Concurrency & Parallelism. Threads, Concurrency, and Parallelism. Multicore Processors 11/7/17

Concurrency & Parallelism. Threads, Concurrency, and Parallelism. Multicore Processors 11/7/17 Concurrency & Parallelism So far, our programs have been sequential: they do one thing after another, one thing at a. Let s start writing programs that do more than one thing at at a. Threads, Concurrency,

More information

More Communication (cont d)

More Communication (cont d) Data types and the use of communicators can simplify parallel program development and improve code readability Sometimes, however, simply treating the processors as an unstructured collection is less than

More information

Software Development Fundamentals (SDF)

Software Development Fundamentals (SDF) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Software Development Fundamentals (SDF) Fluency in the process of software development is a prerequisite to the study of most

More information

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11 Preface xvii Acknowledgments xix CHAPTER 1 Introduction to Parallel Computing 1 1.1 Motivating Parallelism 2 1.1.1 The Computational Power Argument from Transistors to FLOPS 2 1.1.2 The Memory/Disk Speed

More information

First-Class Synchronization Barriers. Franklyn Turbak Wellesley College

First-Class Synchronization Barriers. Franklyn Turbak Wellesley College First-Class Synchronization Barriers Franklyn Turbak Wellesley College Overview What is a Synchronization Barrier? Dimensions of Barriers Synchrons: First-Class Barriers with a Variable Number of Participants

More information

POSIX Threads: a first step toward parallel programming. George Bosilca

POSIX Threads: a first step toward parallel programming. George Bosilca POSIX Threads: a first step toward parallel programming George Bosilca bosilca@icl.utk.edu Process vs. Thread A process is a collection of virtual memory space, code, data, and system resources. A thread

More information

Threads, Concurrency, and Parallelism

Threads, Concurrency, and Parallelism Threads, Concurrency, and Parallelism Lecture 24 CS2110 Spring 2017 Concurrency & Parallelism So far, our programs have been sequential: they do one thing after another, one thing at a time. Let s start

More information

CMSC 714 Lecture 4 OpenMP and UPC. Chau-Wen Tseng (from A. Sussman)

CMSC 714 Lecture 4 OpenMP and UPC. Chau-Wen Tseng (from A. Sussman) CMSC 714 Lecture 4 OpenMP and UPC Chau-Wen Tseng (from A. Sussman) Programming Model Overview Message passing (MPI, PVM) Separate address spaces Explicit messages to access shared data Send / receive (MPI

More information

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho Programming with MPI on GridRS Dr. Márcio Castro e Dr. Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage -

More information

Parallel Programming Models. Parallel Programming Models. Threads Model. Implementations 3/24/2014. Shared Memory Model (without threads)

Parallel Programming Models. Parallel Programming Models. Threads Model. Implementations 3/24/2014. Shared Memory Model (without threads) Parallel Programming Models Parallel Programming Models Shared Memory (without threads) Threads Distributed Memory / Message Passing Data Parallel Hybrid Single Program Multiple Data (SPMD) Multiple Program

More information

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism Motivation for Parallelism Motivation for Parallelism The speed of an application is determined by more than just processor speed. speed Disk speed Network speed... Multiprocessors typically improve the

More information

Threads Cannot Be Implemented As a Library

Threads Cannot Be Implemented As a Library Threads Cannot Be Implemented As a Library Authored by Hans J. Boehm Presented by Sarah Sharp February 18, 2008 Outline POSIX Thread Library Operation Vocab Problems with pthreads POSIX Thread Library

More information

Lecture #7: Implementing Mutual Exclusion

Lecture #7: Implementing Mutual Exclusion Lecture #7: Implementing Mutual Exclusion Review -- 1 min Solution #3 to too much milk works, but it is really unsatisfactory: 1) Really complicated even for this simple example, hard to convince yourself

More information

CPS343 Parallel and High Performance Computing Project 1 Spring 2018

CPS343 Parallel and High Performance Computing Project 1 Spring 2018 CPS343 Parallel and High Performance Computing Project 1 Spring 2018 Assignment Write a program using OpenMP to compute the estimate of the dominant eigenvalue of a matrix Due: Wednesday March 21 The program

More information

Parallel Programming with OpenMP

Parallel Programming with OpenMP Parallel Programming with OpenMP Parallel programming for the shared memory model Christopher Schollar Andrew Potgieter 3 July 2013 DEPARTMENT OF COMPUTER SCIENCE Roadmap for this course Introduction OpenMP

More information

Programming with MPI. Pedro Velho

Programming with MPI. Pedro Velho Programming with MPI Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage - Who might be interested in those applications?

More information

Synchronization COMPSCI 386

Synchronization COMPSCI 386 Synchronization COMPSCI 386 Obvious? // push an item onto the stack while (top == SIZE) ; stack[top++] = item; // pop an item off the stack while (top == 0) ; item = stack[top--]; PRODUCER CONSUMER Suppose

More information

Parallel design patterns ARCHER course. Vectorisation and active messaging

Parallel design patterns ARCHER course. Vectorisation and active messaging Parallel design patterns ARCHER course Vectorisation and active messaging Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License.

More information

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Philippas Tsigas Chalmers University of Technology Computer Science and Engineering Department Philippas Tsigas

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 17 Shared-memory Programming 1 Outline n OpenMP n Shared-memory model n Parallel for loops n Declaring private variables n Critical

More information

COMP4510 Introduction to Parallel Computation. Shared Memory and OpenMP. Outline (cont d) Shared Memory and OpenMP

COMP4510 Introduction to Parallel Computation. Shared Memory and OpenMP. Outline (cont d) Shared Memory and OpenMP COMP4510 Introduction to Parallel Computation Shared Memory and OpenMP Thanks to Jon Aronsson (UofM HPC consultant) for some of the material in these notes. Outline (cont d) Shared Memory and OpenMP Including

More information

Parallelization Strategy

Parallelization Strategy COSC 335 Software Design Parallel Design Patterns (II) Spring 2008 Parallelization Strategy Finding Concurrency Structure the problem to expose exploitable concurrency Algorithm Structure Supporting Structure

More information

POSIX Threads and OpenMP tasks

POSIX Threads and OpenMP tasks POSIX Threads and OpenMP tasks Jimmy Aguilar Mena February 16, 2018 Introduction Pthreads Tasks Two simple schemas Independent functions # include # include void f u n c t i

More information

Parallelization Principles. Sathish Vadhiyar

Parallelization Principles. Sathish Vadhiyar Parallelization Principles Sathish Vadhiyar Parallel Programming and Challenges Recall the advantages and motivation of parallelism But parallel programs incur overheads not seen in sequential programs

More information

Experience with Processes and Monitors in Mesa. Arvind Krishnamurthy

Experience with Processes and Monitors in Mesa. Arvind Krishnamurthy Experience with Processes and Monitors in Mesa Arvind Krishnamurthy Background Focus of this paper: light-weight processes (threads) and how they synchronize with each other History: Second system; followed

More information

Parallel Programming with OpenMP. CS240A, T. Yang

Parallel Programming with OpenMP. CS240A, T. Yang Parallel Programming with OpenMP CS240A, T. Yang 1 A Programmer s View of OpenMP What is OpenMP? Open specification for Multi-Processing Standard API for defining multi-threaded shared-memory programs

More information

Introduction to parallel Computing

Introduction to parallel Computing Introduction to parallel Computing VI-SEEM Training Paschalis Paschalis Korosoglou Korosoglou (pkoro@.gr) (pkoro@.gr) Outline Serial vs Parallel programming Hardware trends Why HPC matters HPC Concepts

More information

Dr Markus Hagenbuchner CSCI319 SIM. Distributed Systems Chapter 4 - Communication

Dr Markus Hagenbuchner CSCI319 SIM. Distributed Systems Chapter 4 - Communication Dr Markus Hagenbuchner markus@uow.edu.au CSCI319 SIM Distributed Systems Chapter 4 - Communication CSCI319 Chapter 4 Page: 1 Communication Lecture notes based on the textbook by Tannenbaum Study objectives:

More information

Our new HPC-Cluster An overview

Our new HPC-Cluster An overview Our new HPC-Cluster An overview Christian Hagen Universität Regensburg Regensburg, 15.05.2009 Outline 1 Layout 2 Hardware 3 Software 4 Getting an account 5 Compiling 6 Queueing system 7 Parallelization

More information