Building Interpreters

Size: px
Start display at page:

Download "Building Interpreters"

Transcription

1 Building Interpreters Mool Sagiv html:// Chapter 4 1

2 Structure of a simple compiler/interpreter Leical analsis Snta analsis Runtime Sstem Design Intermediate code (AST) Code generation Machine dependent Contet analsis PL dependent Smbol Table PLpardigm dependent Interpretation 2

3 Tpes of Interpreters Recursive Recursivel traverse the tree Uniform data representation Conceptuall clean Ecellent error detection 1000 slower than compiler Iterative Closer to CPU One flat loop Eplicit stack Good error detection 30 slower than compiler Can invoke compiler on code fragments 3

4 Input language (Overview) Full parameterized epressions Arguments can be a single digit epression digit ( epression operator epression ) operator * digit

5 #include "parser.h" #include "backend.h" static int Interpret_epression(Epression *epr) { switch (epr->tpe) { case 'D': return epr->value; break; case 'P': { int e_left = Interpret_epression(epr->left); int e_right = Interpret_epression(epr->right); switch (epr->oper) { case '': return e_left e_right; case '*': return e_left * e_right; }} break; } } vo Process(AST_node *icode) { printf("%d\n", Interpret_epression(icode)); } 5

6 AST for (2 * ((3*4)9)) tpe left * P right D 2 oper P * P D 9 D 3 D 4 6

7 Uniform self-entifing data representation The tpes of the sizes of program data values are not known when the interpreter is written Uniform representation of data tpes Tpe Size The value is a pointer 7

8 Eample: Comple Number re: im:

9 9

10 Status Indicator Direct control flow of the interpreter Possible values Normal mode Errors Jumps Eceptions Return 10

11 Eample: Interpreting C Return PROCEDURE Elaborate return with epression statement (RWE node): SET Result To Evaluate epression (RWE node. epression); IF Status. mode /= Normal mode: Return mode; SET Status. mode To Return mode; SET Status. value TO Result; 11

12 Interpreting If-Statement 12

13 Smbol table Stores content of variables, named ants, For ever variable V of tpe T A pointer to the name of V The file name and the line it is declared Kind of declaration A pointer to T A pointer to newl allocated space Initialization bit Language dependent information (e.g. scope) 13

14 Summar Recursive Interpreters Can be implemented quickl Debug the programming language Not good for heav-dut interpreter Slow Can emplo general techniques to speed the recursive interpreter Memoization Tail call elimination Partial evaluation 14

15 Memoization int fib(int n) { if (n == 0) return 0 ; if (n==1) return 1; return fib(n-1) fib(n-2) ; } int sfib[100] = {-1, -1,, -1} int fib(int n) { if (sfib[n] > 0) return sfib[n]; if (n == 0) return 0 ; if (n==1) return 1; sfib[n] = fib(n-1) fib(n-2) ; return sfib[n]; } 15

16 Tail Call Elimination vo a( ) { b(); } vo b(){ code; } vo a( ) { code; } vo b(){ code; } 16

17 Tail Call Elimination vo a(int n) { code if (n > 0) a(n-1); } vo a(int n) { loop: code if (n > 0) { n = n -1 ; goto loop } 17

18 Partial Evaluation Partiall interpret static parts in a program Generates an equivalent program Program Partial Evaluator Program Input 1 Input 2 18

19 Eample int pow(int n, int e) { if (e==0) return 1; else return n * pow(n, e-1); } int pow4(int n) { return n * n * n *n; } e=4 19

20 Eample2 Bool match(string, regep) { switch(regep) {. } } regep=a b* 20

21 Partial Evaluation Generalizes Compilation Interpreter Partial Evaluator Program AST Program Input 21

22 But. 22

23 Iterative Interpretation Closed to CPU One flat loop with one big case statement Use eplicit stack Intermediate results Local variables Requires full annotated threaded AST Active-node-pointer (interpreted node) 23

24 Demo Compiler 24

25 Threaded AST Annotated AST Ever node is connected to the immediate successor in the eecution Control flow graph Nodes Basic eecution units epressions ignments Edges Transfer of control sequential while 25

26 Threaded AST for (2 * ((3*4)9)) Dumm_node tpe left * P right Start D 2 oper P * P D 9 D 3 D 4 26

27 Demo Compiler 27

28 C Eample while (( > 0) && ( < 10)) { } = ; = 1 ; > 0 and < 10 while T F seq eit 28 1

29 Threading the AST(3.2.1) One preorder AST p Ever tpe of AST has its threading routine Maintains Last node pointer Global variable Set successor of Last pointer when node is visited 29

30 Last node pointer main > 0 and < 10 while seq 30 1

31 Last node pointer main > 0 and < 10 while seq 31 1

32 Last node pointer main > 0 and < 10 while seq 32 1

33 Last node pointer main > 0 and < 10 while seq 33 1

34 Last node pointer main > 0 and < 10 while seq 34 1

35 Last node pointer main > 0 and < 10 while seq 35 1

36 Last node pointer main > 0 and < 10 while seq 36 1

37 Last node pointer main > 0 and < 10 while seq 37 1

38 Last node pointer main > 0 and < 10 while T seq 38 1

39 Last node pointer main > 0 and < 10 while T seq 39 1

40 Last node pointer main > 0 and < 10 while T seq 40 1

41 Last node pointer main > 0 and < 10 while T seq 41 1

42 main > 0 and < 10 while T seq Last node pointer 42 1

43 main > 0 and < 10 while T Last node pointer seq 43 1

44 main > First node pointer 0 and < 10 while T Last node pointer seq 44 1

45 Demo Compiler 45

46 Conditional Statement Last node pointer if cond then_part else_part 46

47 Conditional Statement if T F cond then_part else_part Last node pointer End_If 47

48 Iterative Interpretation Closed to CPU One flat loop with one big case statement Use eplicit stack Intermediate results Local variables Requires full annotated threaded AST Active-node-pointer (interpreted node) 48

49 Demo Compiler 49

50 Conditional Statements 50

51 Storing Threaded AST General Graph Arra Pseudo Instructions 51

52 Threaded AST as General Graph condition IF statement 1 statement 2 statement 3 statement 4 END If 52

53 Threaded AST as Arra condition IF statement 1 statement 2 statement 3 statement 4 53

54 Threaded AST as Pseudo Instructions condition IFFALSE statement 1 JUMP statement 2 statement 3 statement 4 54

55 Iterative Interpreters (Summar) Different AST representations Faster than recursive interpreters Some interpretative overhead is eliminated Portable Secure Similarities with the compiler 55

Typical workflow. CSE341: Programming Languages. Lecture 17 Implementing Languages Including Closures. Reality more complicated

Typical workflow. CSE341: Programming Languages. Lecture 17 Implementing Languages Including Closures. Reality more complicated Typical workflow concrete synta (string) "(fn => + ) 4" Parsing CSE341: Programming Languages abstract synta (tree) Lecture 17 Implementing Languages Including Closures Function Constant + 4 Var Var Type

More information

Winter Compiler Construction T9 IR part 2 + Runtime organization. Announcements. Today. Know thy group s code

Winter Compiler Construction T9 IR part 2 + Runtime organization. Announcements. Today. Know thy group s code Winter 26-27 Compiler Construction T9 IR part 2 + Runtime organization Mool Sagiv and Roman Manevich School of Computer Science Tel-Aviv Universit Announcements What is epected in PA3 documentation (5

More information

News. CSE 130: Programming Languages. Environments & Closures. Functions are first-class values. Recap: Functions as first-class values

News. CSE 130: Programming Languages. Environments & Closures. Functions are first-class values. Recap: Functions as first-class values CSE 130: Programming Languages Environments & Closures News PA 3 due THIS Friday (5/1) Midterm NEXT Friday (5/8) Ranjit Jhala UC San Diego Recap: Functions as first-class values Arguments, return values,

More information

Variables and Bindings

Variables and Bindings Net: Variables Variables and Bindings Q: How to use variables in ML? Q: How to assign to a variable? # let = 2+2;; val : int = 4 let = e;; Bind the value of epression e to the variable Variables and Bindings

More information

Tail Recursion: Factorial. Begin at the beginning. How does it execute? Tail recursion. Tail recursive factorial. Tail recursive factorial

Tail Recursion: Factorial. Begin at the beginning. How does it execute? Tail recursion. Tail recursive factorial. Tail recursive factorial Begin at the beginning Epressions (Synta) Compile-time Static Eec-time Dynamic Types Values (Semantics) 1. Programmer enters epression 2. ML checks if epression is well-typed Using a precise set of rules,

More information

COMP 181. Prelude. Intermediate representations. Today. High-level IR. Types of IRs. Intermediate representations and code generation

COMP 181. Prelude. Intermediate representations. Today. High-level IR. Types of IRs. Intermediate representations and code generation Prelude COMP 181 Lecture 14 Intermediate representations and code generation October 19, 2006 Who is Seth Lloyd? Professor of mechanical engineering at MIT, pioneer in quantum computing Article in Nature:

More information

Object Oriented Languages. Hwansoo Han

Object Oriented Languages. Hwansoo Han Object Oriented Languages Hwansoo Han Object-Oriented Languages An object is an abstract data tpe Encapsulates data, operations and internal state behind a simple, consistent interface. z Data Code Data

More information

CS 403 Compiler Construction Lecture 8 Syntax Tree and Intermediate Code Generation [Based on Chapter 6 of Aho2] This Lecture

CS 403 Compiler Construction Lecture 8 Syntax Tree and Intermediate Code Generation [Based on Chapter 6 of Aho2] This Lecture CS 403 Compiler Construction Lecture 8 Snta Tree and Intermediate Code Generation [Based on Chapter 6 of Aho2] 1 This Lecture 2 1 Remember: Phases of a Compiler This lecture: Intermediate Code This lecture:

More information

Module Mechanisms CS412/413. Modules + abstract types. Abstract types. Multiple Implementations. How to type-check?

Module Mechanisms CS412/413. Modules + abstract types. Abstract types. Multiple Implementations. How to type-check? CS412/413 Introduction to Compilers and Translators Andrew Mers Cornell Universit Lecture 19: ADT mechanisms 10 March 00 Module Mechanisms Last time: modules, was to implement ADTs Module collection of

More information

Classes. Compiling Methods. Code Generation for Objects. Implementing Objects. Methods. Fields

Classes. Compiling Methods. Code Generation for Objects. Implementing Objects. Methods. Fields Classes Implementing Objects Components fields/instance variables values differ from to usuall mutable methods values shared b all s of a class usuall immutable component visibilit: public/private/protected

More information

Side note: Tail Recursion. Begin at the beginning. Side note: Tail Recursion. Base Types. Base Type: int. Base Type: int

Side note: Tail Recursion. Begin at the beginning. Side note: Tail Recursion. Base Types. Base Type: int. Base Type: int Begin at the beginning Epressions (Synta) Compile-time Static Eec-time Dynamic Types Values (Semantics) 1. Programmer enters epression 2. ML checks if epression is well-typed Using a precise set of rules,

More information

Compiler construction in4303 lecture 8

Compiler construction in4303 lecture 8 Compiler construction in4303 lecture 8 Interpretation Simple code generation Chapter 4 4.2.4 Overview intermediate code program text front-end interpretation code generation code selection register allocation

More information

LECTURE 18. Control Flow

LECTURE 18. Control Flow LECTURE 18 Control Flow CONTROL FLOW Sequencing: the execution of statements and evaluation of expressions is usually in the order in which they appear in a program text. Selection (or alternation): a

More information

Short Notes of CS201

Short Notes of CS201 #includes: Short Notes of CS201 The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with < and > if the file is a system

More information

CS201 - Introduction to Programming Glossary By

CS201 - Introduction to Programming Glossary By CS201 - Introduction to Programming Glossary By #include : The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with

More information

Building up a language SICP Variations on a Scheme. Meval. The Core Evaluator. Eval. Apply. 2. syntax procedures. 1.

Building up a language SICP Variations on a Scheme. Meval. The Core Evaluator. Eval. Apply. 2. syntax procedures. 1. 6.001 SICP Variations on a Scheme Scheme Evaluator A Grand Tour Techniques for language design: Interpretation: eval/appl Semantics vs. snta Sntactic transformations Building up a language... 3. 1. eval/appl

More information

Semantics. Names. Binding Time

Semantics. Names. Binding Time /24/ CSE 3302 Programming Languages Semantics Chengkai Li, Weimin He Spring Names Names: identif language entities variables, procedures, functions, constants, data tpes, Attributes: properties of names

More information

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation Language Implementation Methods The Design and Implementation of Programming Languages Compilation Interpretation Hybrid In Text: Chapter 1 2 Compilation Interpretation Translate high-level programs to

More information

Compiler construction

Compiler construction This lecture Compiler construction Lecture 5: Project etensions Magnus Mreen Spring 2018 Chalmers Universit o Technolog Gothenburg Universit Some project etensions: Arras Pointers and structures Object-oriented

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation In the analysis-synthesis model of a compiler, the front end analyzes a source program and creates an intermediate representation, from which the back end generates target

More information

NOTE: Answer ANY FOUR of the following 6 sections:

NOTE: Answer ANY FOUR of the following 6 sections: A-PDF MERGER DEMO Philadelphia University Lecturer: Dr. Nadia Y. Yousif Coordinator: Dr. Nadia Y. Yousif Internal Examiner: Dr. Raad Fadhel Examination Paper... Programming Languages Paradigms (750321)

More information

Attributes of Variable. Lecture 13: Run-Time Storage Management. Lifetime. Value & Location

Attributes of Variable. Lecture 13: Run-Time Storage Management. Lifetime. Value & Location Attributes of Variable Lecture 13 Run-Time Storage Management CSC 131 Kim Bruce Scope Lifetime Location Value Done! Lifetime Value & Location FORTRAN - all allocated statically - Stack-based (C/C++/Java/Pascal/...)

More information

Programming Languages

Programming Languages CSE 130 : Fall 2008 Programming Languages Lecture 3: Epressions and Types Ranjit Jhala UC San Diego News PA 1 due (net) Fri 10/10 5pm PA 2 out today or tomorrow Office hours posted on Webpage: Held in

More information

A function that invokes itself is said to

A function that invokes itself is said to when a function invokes itself A function that invokes itself is said to be nothing new A common problem solving technique: - break problem down into smaller/simpler sub-problems - solve sub-problems -

More information

CS S-11 Memory Management 1

CS S-11 Memory Management 1 CS414-2017S-11 Management 1 11-0: Three places in memor that a program can store variables Call stack Heap Code segment 11-1: Eecutable Code Code Segment Static Storage Stack Heap 11-2: Three places in

More information

Compiling and Interpreting Programming. Overview of Compilers and Interpreters

Compiling and Interpreting Programming. Overview of Compilers and Interpreters Copyright R.A. van Engelen, FSU Department of Computer Science, 2000 Overview of Compilers and Interpreters Common compiler and interpreter configurations Virtual machines Integrated programming environments

More information

Constructors and Destructors. OOC 4 th Sem, B Div Prof. Mouna M. Naravani

Constructors and Destructors. OOC 4 th Sem, B Div Prof. Mouna M. Naravani Constructors and Destructors OOC 4 th Sem, B Div 2016-17 Prof. Mouna M. Naravani A constructor guarantees that an object created by the class will be initialized automatically. Ex: create an object integer

More information

Programming Language Pragmatics

Programming Language Pragmatics Chapter 10 :: Functional Languages Programming Language Pragmatics Michael L. Scott Historical Origins The imperative and functional models grew out of work undertaken Alan Turing, Alonzo Church, Stephen

More information

Programming Languages

Programming Languages CSE 130: Spring 2010 Programming Languages Lecture 3: Epressions and Types Ranjit Jhala UC San Diego A Problem fun -> +1 Can functions only have a single parameter? A Solution: Simultaneous Binding Parameter

More information

CS 132 Compiler Construction, Fall 2011 Instructor: Jens Palsberg Multiple Choice Exam, Dec 6, 2011

CS 132 Compiler Construction, Fall 2011 Instructor: Jens Palsberg Multiple Choice Exam, Dec 6, 2011 CS 132 Compiler Construction, Fall 2011 Instructor: Jens Palsberg Multiple Choice Eam, Dec 6, 2011 ID Name This eam consists of 22 questions. Each question has four options, eactl one of which is correct,

More information

The basic operations defined on a symbol table include: free to remove all entries and free the storage of a symbol table

The basic operations defined on a symbol table include: free to remove all entries and free the storage of a symbol table SYMBOL TABLE: A symbol table is a data structure used by a language translator such as a compiler or interpreter, where each identifier in a program's source code is associated with information relating

More information

An Elegant Weapon for a More Civilized Age

An Elegant Weapon for a More Civilized Age An Elegant Weapon for a More Civilized Age Solving an Easy Problem What are the input types? What is the output type? Give example input/output pairs Which input represents the domain of the recursion,

More information

Stream Computing using Brook+

Stream Computing using Brook+ Stream Computing using Brook+ School of Electrical Engineering and Computer Science University of Central Florida Slides courtesy of P. Bhaniramka Outline Overview of Brook+ Brook+ Software Architecture

More information

Introduction to Shape and Pointer Analysis

Introduction to Shape and Pointer Analysis Introduction to Shape and Pointer Analsis CS 502 Lecture 11 10/30/08 Some slides adapted from Nielson, Nielson, Hankin Principles of Program Analsis Analsis of the Heap Thus far, we have focussed on control

More information

The role of semantic analysis in a compiler

The role of semantic analysis in a compiler Semantic Analysis Outline The role of semantic analysis in a compiler A laundry list of tasks Scope Static vs. Dynamic scoping Implementation: symbol tables Types Static analyses that detect type errors

More information

Compilation

Compilation Compilation 0368-3133 Lecture 1: Introduction Noam Rinetzky 1 2 Admin Lecturer: Noam Rinetzky maon@tau.ac.il http://www.cs.tau.ac.il/~maon T.A.: Oren Ish Shalom Textbooks: Modern Compiler Design Compilers:

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution 1. (40 points) Write the following subroutine in x86 assembly: Recall that: int f(int v1, int v2, int v3) { int x = v1 + v2; urn (x + v3) * (x v3); Subroutine arguments are passed on the stack, and can

More information

Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology exam Compiler Construction in4020 July 5, 2007 14.00-15.30 This exam (8 pages) consists of 60 True/False

More information

Programming Project #3: Syntax Analysis

Programming Project #3: Syntax Analysis Programming Project #3: Synta Analysis Due Date: Tuesday, October 25, 2005, Noon Overview Write a recursive-descent parser for the PCAT language. Section 12 of the PCAT manual gives a contet-free grammar

More information

Recursion(int day){return Recursion(day += 1);} Comp Sci 1575 Data Structures. Recursive design. Convert loops to recursion

Recursion(int day){return Recursion(day += 1);} Comp Sci 1575 Data Structures. Recursive design. Convert loops to recursion Recursion(int day){return Recursion(day += 1);} Comp Sci 1575 Data Structures Outline 1 2 Solution 2: calls 3 Implementation To create recursion, you must create recursion. How to a recursive algorithm

More information

Semantics (cont.) Symbol Table. Static Scope. Static Scope. Static Scope. CSE 3302 Programming Languages. Static vs. Dynamic Scope

Semantics (cont.) Symbol Table. Static Scope. Static Scope. Static Scope. CSE 3302 Programming Languages. Static vs. Dynamic Scope -2-1 CSE 3302 Programming Languages Semantics (cont.) Smbol Table Smbol Table: maintain bindings. Can be viewed as functions that map names to their attributes. Names SmbolTable Attributes Chengkai Li,

More information

Semantic Analysis. Outline. The role of semantic analysis in a compiler. Scope. Types. Where we are. The Compiler Front-End

Semantic Analysis. Outline. The role of semantic analysis in a compiler. Scope. Types. Where we are. The Compiler Front-End Outline Semantic Analysis The role of semantic analysis in a compiler A laundry list of tasks Scope Static vs. Dynamic scoping Implementation: symbol tables Types Static analyses that detect type errors

More information

CSc 453 Interpreters & Interpretation

CSc 453 Interpreters & Interpretation CSc 453 Interpreters & Interpretation Saumya Debray The University of Arizona Tucson Interpreters An interpreter is a program that executes another program. An interpreter implements a virtual machine,

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The eamples and discussion in the following slides have been adapted from a variet of sources, including: Chapter 3 of Computer Sstems 3 nd Edition b Brant and O'Hallaron 86 Assembl/GAS

More information

Dispatch techniques and closure representations

Dispatch techniques and closure representations Dispatch techniques and closure representations Jan Midtgaard Week 3, Virtual Machines for Programming Languages Aarhus University, Q4-2011 Dispatch techniques Efficient bytecode interpreters (1/2) The

More information

COP4020 Programming Languages. Compilers and Interpreters Robert van Engelen & Chris Lacher

COP4020 Programming Languages. Compilers and Interpreters Robert van Engelen & Chris Lacher COP4020 ming Languages Compilers and Interpreters Robert van Engelen & Chris Lacher Overview Common compiler and interpreter configurations Virtual machines Integrated development environments Compiler

More information

Simple example. Analysis of programs with pointers. Program model. Points-to relation

Simple example. Analysis of programs with pointers. Program model. Points-to relation Simple eample Analsis of programs with pointers := 5 ptr := & *ptr := 9 := program S1 S2 S3 S4 What are the defs and uses of in this program? Problem: just looking at variable names will not give ou the

More information

Recap. Recap. If-then-else expressions. If-then-else expressions. If-then-else expressions. If-then-else expressions

Recap. Recap. If-then-else expressions. If-then-else expressions. If-then-else expressions. If-then-else expressions Recap Epressions (Synta) Compile-time Static Eec-time Dynamic Types (Semantics) Recap Integers: +,-,* floats: +,-,* Booleans: =,

More information

Where We Are. Lexical Analysis. Syntax Analysis. IR Generation. IR Optimization. Code Generation. Machine Code. Optimization.

Where We Are. Lexical Analysis. Syntax Analysis. IR Generation. IR Optimization. Code Generation. Machine Code. Optimization. Where We Are Source Code Lexical Analysis Syntax Analysis Semantic Analysis IR Generation IR Optimization Code Generation Optimization Machine Code Where We Are Source Code Lexical Analysis Syntax Analysis

More information

Introduction to Programming Using Java (98-388)

Introduction to Programming Using Java (98-388) Introduction to Programming Using Java (98-388) Understand Java fundamentals Describe the use of main in a Java application Signature of main, why it is static; how to consume an instance of your own class;

More information

Introduction to OpenMP

Introduction to OpenMP 1 / 7 Introduction to OpenMP: Exercises and Handout Introduction to OpenMP Christian Terboven Center for Computing and Communication, RWTH Aachen University Seffenter Weg 23, 52074 Aachen, Germany Abstract

More information

3.Constructors and Destructors. Develop cpp program to implement constructor and destructor.

3.Constructors and Destructors. Develop cpp program to implement constructor and destructor. 3.Constructors and Destructors Develop cpp program to implement constructor and destructor. Constructors A constructor is a special member function whose task is to initialize the objects of its class.

More information

Chapter 13. Recursion. Copyright 2016 Pearson, Inc. All rights reserved.

Chapter 13. Recursion. Copyright 2016 Pearson, Inc. All rights reserved. Chapter 13 Recursion Copyright 2016 Pearson, Inc. All rights reserved. Learning Objectives Recursive void Functions Tracing recursive calls Infinite recursion, overflows Recursive Functions that Return

More information

Scope, Functions, and Storage Management

Scope, Functions, and Storage Management Scope, Functions, and Storage Management Implementing Functions and Blocks cs3723 1 Simplified Machine Model (Compare To List Abstract Machine) Registers Code Data Program Counter (current instruction)

More information

Introduction to Scientific Computing

Introduction to Scientific Computing Introduction to Scientific Computing Dr Hanno Rein Last updated: October 12, 2018 1 Computers A computer is a machine which can perform a set of calculations. The purpose of this course is to give you

More information

Abstract Syntax. Mooly Sagiv. html://www.cs.tau.ac.il/~msagiv/courses/wcc06.html

Abstract Syntax. Mooly Sagiv. html://www.cs.tau.ac.il/~msagiv/courses/wcc06.html Abstract Syntax Mooly Sagiv html://www.cs.tau.ac.il/~msagiv/courses/wcc06.html Outline The general idea Cup Motivating example Interpreter for arithmetic expressions The need for abstract syntax Abstract

More information

Example: Using Pointers With Functions

Example: Using Pointers With Functions Eample: Using Pointers With Functions Pass b Value and Simulating Pass b Reference for Functions void fun (int a, int b, int c, int *sum, int *diff); int (void) int m =, n = 2, = 0, = 0; printf("pre: m=%d

More information

Project. there are a couple of 3 person teams. a new drop with new type checking is coming. regroup or see me or forever hold your peace

Project. there are a couple of 3 person teams. a new drop with new type checking is coming. regroup or see me or forever hold your peace Project there are a couple of 3 person teams regroup or see me or forever hold your peace a new drop with new type checking is coming using it is optional 1 Compiler Architecture source code Now we jump

More information

P.G.TRB - COMPUTER SCIENCE. c) data processing language d) none of the above

P.G.TRB - COMPUTER SCIENCE. c) data processing language d) none of the above P.G.TRB - COMPUTER SCIENCE Total Marks : 50 Time : 30 Minutes 1. C was primarily developed as a a)systems programming language b) general purpose language c) data processing language d) none of the above

More information

CSE 504: Compiler Design. Runtime Environments

CSE 504: Compiler Design. Runtime Environments Runtime Environments Pradipta De pradipta.de@sunykorea.ac.kr Current Topic Procedure Abstractions Mechanisms to manage procedures and procedure calls from compiler s perspective Runtime Environment Choices

More information

STA 250: Statistics Lab 1

STA 250: Statistics Lab 1 STA 250: Statistics Lab 1 This lab work is intended to be an introduction to the software R. What follows is a description of the basic functionalities of R, along with a series of tasks that ou d have

More information

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department Abstract Data Structures IB Computer Science Content developed by Dartford Grammar School Computer Science Department HL Topics 1-7, D1-4 1: System design 2: Computer Organisation 3: Networks 4: Computational

More information

Typical Compiler. Ahead- of- time compiler. Compilers... that target interpreters. Interpreter 12/9/15. compile time. run time

Typical Compiler. Ahead- of- time compiler. Compilers... that target interpreters. Interpreter 12/9/15. compile time. run time Ahead- of- time Tpical Compiler compile time C source C 86 assembl 86 assembler 86 machine Source Leical Analzer Snta Analzer Semantic Analzer Analsis Intermediate Code Generator Snthesis run time 86 machine

More information

Macros and Preprocessor. CGS 3460, Lecture 39 Apr 17, 2006 Hen-I Yang

Macros and Preprocessor. CGS 3460, Lecture 39 Apr 17, 2006 Hen-I Yang Macros and Preprocessor CGS 3460, Lecture 39 Apr 17, 2006 Hen-I Yang Previously Operations on Linked list (Create and Insert) Agenda Linked List (More insert, lookup and delete) Preprocessor Linked List

More information

1 Chapter Plan...1 Exercise - Simple Program...2

1 Chapter Plan...1 Exercise - Simple Program...2 Chapter 1: Introduction Exercise - Simple Program...2 2 Subject Matter...4 1. What is PL/1?...4 2. PL/1: Strengths and Advantages...5 3. Program Structure...6 4. Data Types...7 5. Built-in Functions...8

More information

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find CS1622 Lecture 15 Semantic Analysis CS 1622 Lecture 15 1 Semantic Analysis How to build symbol tables How to use them to find multiply-declared and undeclared variables. How to perform type checking CS

More information

COP5621 Exam 4 - Spring 2005

COP5621 Exam 4 - Spring 2005 COP5621 Exam 4 - Spring 2005 Name: (Please print) Put the answers on these sheets. Use additional sheets when necessary. Show how you derived your answer when applicable (this is required for full credit

More information

CS 320: Concepts of Programming Languages

CS 320: Concepts of Programming Languages CS 320: Concepts of Programming Languages Wayne Snyder Computer Science Department Boston University Lecture 24: Compilation: Implementing Function Calls o Function Definitions in Mini-C o The Run-Time

More information

Question No: 1 ( Marks: 1 ) - Please choose one One difference LISP and PROLOG is. AI Puzzle Game All f the given

Question No: 1 ( Marks: 1 ) - Please choose one One difference LISP and PROLOG is. AI Puzzle Game All f the given MUHAMMAD FAISAL MIT 4 th Semester Al-Barq Campus (VGJW01) Gujranwala faisalgrw123@gmail.com MEGA File Solved MCQ s For Final TERM EXAMS CS508- Modern Programming Languages Question No: 1 ( Marks: 1 ) -

More information

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator CS 412/413 Introduction to Compilers and Translators Andrew Myers Cornell University Administration Design reports due Friday Current demo schedule on web page send mail with preferred times if you haven

More information

Preface... (vii) CHAPTER 1 INTRODUCTION TO COMPUTERS

Preface... (vii) CHAPTER 1 INTRODUCTION TO COMPUTERS Contents Preface... (vii) CHAPTER 1 INTRODUCTION TO COMPUTERS 1.1. INTRODUCTION TO COMPUTERS... 1 1.2. HISTORY OF C & C++... 3 1.3. DESIGN, DEVELOPMENT AND EXECUTION OF A PROGRAM... 3 1.4 TESTING OF PROGRAMS...

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

M1-R4: Programing and Problem Solving using C (JAN 2019)

M1-R4: Programing and Problem Solving using C (JAN 2019) M1-R4: Programing and Problem Solving using C (JAN 2019) Max Marks: 100 M1-R4-07-18 DURATION: 03 Hrs 1. Each question below gives a multiple choice of answers. Choose the most appropriate one and enter

More information

LECTURE 19. Subroutines and Parameter Passing

LECTURE 19. Subroutines and Parameter Passing LECTURE 19 Subroutines and Parameter Passing ABSTRACTION Recall: Abstraction is the process by which we can hide larger or more complex code fragments behind a simple name. Data abstraction: hide data

More information

Martin Kruliš, v

Martin Kruliš, v Martin Kruliš 1 Optimizations in General Code And Compilation Memory Considerations Parallelism Profiling And Optimization Examples 2 Premature optimization is the root of all evil. -- D. Knuth Our goal

More information

EECS1022 Winter 2018 Additional Notes Tracing Point, PointCollector, and PointCollectorTester

EECS1022 Winter 2018 Additional Notes Tracing Point, PointCollector, and PointCollectorTester EECS1022 Winter 2018 Additional Notes Tracing, Collector, and CollectorTester Chen-Wei Wang Contents 1 Class 1 2 Class Collector 2 Class CollectorTester 7 1 Class 1 class { 2 double ; double ; 4 (double

More information

Type Checking. Outline. General properties of type systems. Types in programming languages. Notation for type rules.

Type Checking. Outline. General properties of type systems. Types in programming languages. Notation for type rules. Outline Type Checking General properties of type systems Types in programming languages Notation for type rules Logical rules of inference Common type rules 2 Static Checking Refers to the compile-time

More information

Homework 1. Problem 1. The following code fragment processes an array and produces two values in registers $v0 and $v1:

Homework 1. Problem 1. The following code fragment processes an array and produces two values in registers $v0 and $v1: Homework 1 Problem 1 The following code fragment processes an array and produces two values in registers $v0 and $v1: add $v0, $zero, $zero add $v1, $zero, $zero add $t6, $zero, $zero sll $a2, $a1, 2 add

More information

Compiler Construction

Compiler Construction Compiler Construction Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ss-17/cc/ Generation of Intermediate Code Conceptual Structure of

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

Compiler Construction

Compiler Construction Compiler Construction Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ss-17/cc/ Generation of Intermediate Code Outline of Lecture 15 Generation

More information

Outline. General properties of type systems. Types in programming languages. Notation for type rules. Common type rules. Logical rules of inference

Outline. General properties of type systems. Types in programming languages. Notation for type rules. Common type rules. Logical rules of inference Type Checking Outline General properties of type systems Types in programming languages Notation for type rules Logical rules of inference Common type rules 2 Static Checking Refers to the compile-time

More information

Implementing Object-Oriented Languages. Implementing instance variable access. Implementing dynamic dispatching (virtual functions)

Implementing Object-Oriented Languages. Implementing instance variable access. Implementing dynamic dispatching (virtual functions) Implementing Object-Oriented Languages Implementing instance variable access Ke features: inheritance (possibl multiple) subtping & subtpe polmorphism message passing, dnamic binding, run-time tpe testing

More information

C Programming. Course Outline. C Programming. Code: MBD101. Duration: 10 Hours. Prerequisites:

C Programming. Course Outline. C Programming. Code: MBD101. Duration: 10 Hours. Prerequisites: C Programming Code: MBD101 Duration: 10 Hours Prerequisites: You are a computer science Professional/ graduate student You can execute Linux/UNIX commands You know how to use a text-editing tool You should

More information

Procedures and Stacks

Procedures and Stacks Procedures and Stacks Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. March 15, 2018 L10-1 Announcements Schedule has shifted due to snow day Quiz 2 is now on Thu 4/12 (one week later)

More information

CS 62 Practice Final SOLUTIONS

CS 62 Practice Final SOLUTIONS CS 62 Practice Final SOLUTIONS 2017-5-2 Please put your name on the back of the last page of the test. Note: This practice test may be a bit shorter than the actual exam. Part 1: Short Answer [32 points]

More information

Chapter 5. Names, Bindings, and Scopes

Chapter 5. Names, Bindings, and Scopes Chapter 5 Names, Bindings, and Scopes Chapter 5 Topics Introduction Names Variables The Concept of Binding Scope Scope and Lifetime Referencing Environments Named Constants 1-2 Introduction Imperative

More information

BEAMJIT: An LLVM based just-in-time compiler for Erlang. Frej Drejhammar

BEAMJIT: An LLVM based just-in-time compiler for Erlang. Frej Drejhammar BEAMJIT: An LLVM based just-in-time compiler for Erlang Frej Drejhammar 140407 Who am I? Senior researcher at the Swedish Institute of Computer Science (SICS) working on programming languages,

More information

Konzepte von Programmiersprachen

Konzepte von Programmiersprachen Konzepte von Programmiersprachen Chapter 5: Continuation-Passing Interpreters Stefan Wehr Universität Freiburg 8. Juni 2009 Konzepte von Programmiersprachen 1 / 43 Motivation Continuations: abstraction

More information

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT C Review MaxMSP Developers Workshop Summer 2009 CNMAT C Syntax Program control (loops, branches): Function calls Math: +, -, *, /, ++, -- Variables, types, structures, assignment Pointers and memory (***

More information

FUNCTIONS. Without return With return Without return With return. Example: function with arguments and with return value

FUNCTIONS. Without return With return Without return With return. Example: function with arguments and with return value FUNCTIONS Definition: A is a set of instructions under a name that carries out a specific task, assigned to it. CLASSIFICATION of s: 1. User defined s (UDF) 2. Library s USER DEFINED FUNCTIONS Without

More information

Functional Programming. Pure Functional Programming

Functional Programming. Pure Functional Programming Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

More information

What Is a Function? Illustration of Program Flow

What Is a Function? Illustration of Program Flow What Is a Function? A function is, a subprogram that can act on data and return a value Each function has its own name, and when that name is encountered, the execution of the program branches to the body

More information

Compiler Construction

Compiler Construction Compiler Construction Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ss-16/cc/ Seminar Analysis and Verification of Pointer Programs (WS

More information

Pointers II. Class 31

Pointers II. Class 31 Pointers II Class 31 Compile Time all of the variables we have seen so far have been declared at compile time they are written into the program code you can see by looking at the program how many variables

More information

Recursion. What is Recursion? Simple Example. Repeatedly Reduce the Problem Into Smaller Problems to Solve the Big Problem

Recursion. What is Recursion? Simple Example. Repeatedly Reduce the Problem Into Smaller Problems to Solve the Big Problem Recursion Repeatedly Reduce the Problem Into Smaller Problems to Solve the Big Problem What is Recursion? A problem is decomposed into smaller sub-problems, one or more of which are simpler versions of

More information

Compiler Construction

Compiler Construction Compiler Construction Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ss-16/cc/ Seminar Analysis and Verification of Pointer Programs (WS

More information

Runtime Support for OOLs Object Records, Code Vectors, Inheritance Comp 412

Runtime Support for OOLs Object Records, Code Vectors, Inheritance Comp 412 COMP 412 FALL 2017 Runtime Support for OOLs Object Records, Code Vectors, Inheritance Comp 412 source IR Front End Optimizer Back End IR target Copyright 2017, Keith D. Cooper & Linda Torczon, all rights

More information

JVM ByteCode Interpreter

JVM ByteCode Interpreter JVM ByteCode Interpreter written in Haskell (In under 1000 Lines of Code) By Louis Jenkins Presentation Schedule ( 15 Minutes) Discuss and Run the Virtual Machine first

More information

CPSC 213. Introduction to Computer Systems. Readings for Next 2 Lectures. Loops (S5-loop) Control Flow. Static Control Flow. Unit 1d.

CPSC 213. Introduction to Computer Systems. Readings for Next 2 Lectures. Loops (S5-loop) Control Flow. Static Control Flow. Unit 1d. Readings for Next 2 Lectures Textbook CPSC 213 Condition Codes - Loops 3.6.1-3.6.5 Introduction to Computer Systems Unit 1d Static Control Flow Control Flow 1 Loops (S5-loop) 2 The flow of control is the

More information