Atomic Coherence: Leveraging Nanophotonics to Build Race-Free Cache Coherence Protocols. Dana Vantrease, Mikko Lipasti, Nathan Binkert

Size: px
Start display at page:

Download "Atomic Coherence: Leveraging Nanophotonics to Build Race-Free Cache Coherence Protocols. Dana Vantrease, Mikko Lipasti, Nathan Binkert"

Transcription

1 Atomic Coherence: Leveraging Nanophotonics to Build Race-Free Cache Coherence Protocols Dana Vantrease, Mikko Lipasti, Nathan Binkert 1

2 Executive Summary Problem: Cache coherence races make protocols complicated Solution: Atomic Coherence framework to protect in-flight coherence requests from encountering races Evaluation: Nanophotonics implementation (for speed) 2

3 Outline Substrate Implementations (9 slides) Results (4 slides) Coherence Complexity (7 slides) Atomic Coherence (3 slides) 3

4 Cache Coherence Cache Coherence: Goal: Maintain a proper ordering of reads/writes to an address How: Cache coherence protocol Core 0 $CACHE$ A=0xCAFE Core 1 $CACHE$ A=0xCAFE A=0xCAFE 4

5 Example: MSI (SGI-Origin-like, directory, invalidate) Stable States 5

6 Example: MSI (SGI-Origin-like, directory, invalidate) Stable States Transitory States 6

7 Example: MSI (SGI-Origin-like, directory, invalidate) Stable States Transitory States Races ( unexpected events from conflicting requests) 7

8 Cache Coherence Complexity L2 MOETSI Transitions (broadcast snooping bus) [Lepak Thesis, 03] 8

9 Cache Coherence Verification Headache Papers: So Many States, So Little Time: Verifying Memory Coherence in the Cray X1 Intel Core 2 Duo Errata: AI39. Cache Data Access Request from One Core Hitting a Modified Line in the L1 Data Cache of the Other Core May Cause Unpredictable System Behavior Formal Methods: e.g. Leslie Lamport s TLA+ (4 people, 2 man years for EV6) 9

10 Cache Coherence Address the problem: Verification RACES Headache Papers: So Many States, So Little Time: Verifying Memory Coherence in the Cray X1 Intel Core 2 Duo Errata: AI39. Cache Data Access Request from One Core Hitting a Modified Line in the L1 Data Cache of the Other Core May Cause Unpredictable System Behavior Formal Methods: e.g. Leslie Lamport s TLA+ (4 people, 2 man years for EV6) 10

11 Addressing Races Address the problem: RACES Races: Are common transitions in FSM, but are rare in practice Were easier to detect/resolve back in the day than they are today Blocking Bus: $ $ $ Mesh: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ (no physical ordering point) 11

12 Outline Results Coherence Complexity Substrate Implementations Atomic Coherence 12

13 Atomic Coherence: Simplicity Goal Traditional: Atomic Coherence: How are races dealt with? 13

14 14 Atomic Coherence: Race Resolution One coherence request per address active at a time How: Mutex system (ideally mutex-per-cacheline) 2 1 Seize Mutex[Addr] Perform Coherence on Addr Release Mutex[Addr]

15 Atomic & Coherence Substrates Atomic Substrate (Races dealt with here) S I Coherence Substrate (No races here) M Separate Substrates: + Decoupled + Simple(r) - Longer miss path - Requires resources 15

16 Outline Results Coherence Complexity Substrate Implementations Atomic Coherence 16

17 Substrate Implementations Aggressive (w/ nanophotonics b/c we want to minimize overhead) Aggressive (w/ extra features b/c it s easy w/o races) + + S + M I Atomic Substrate Coherence Substrate 17

18 Substrate Implementations Aggressive (w/ nanophotonics b/c we want to minimize overhead) Silicon Nanophotonics (Target Year ~2017) - Mutex = pulse of light - Mutexes continually circulate - Mutex Free/Taken = Light/Darkness Atomic Substrate 18

19 Aggressive Atomic Substrate $ $ $ λ0 λ1 λ λ0 λ1 λ63 Detectors $ ( ) $ $ $ $ $ $ $ $ Dateline Injectors $ $ $ $ = 1 mutex = 2 cm =1 5 GHz 4mutex λ = λ 4waveguides waveguide mutexes (1024 < # cache lines, so employ hash) (All 1024 mutexes pass by a node every 4 cycles) 2 cm 19

20 Photonic Operation Idle: Active: λ0 λ1 λ λ0 λ1 λ63 Detectors Injectors λ0 λ1 λ63 Detectors Injectors λ0 λ1 λ λ0 λ1 λ63 $ Injectors Detectors... λ0 λ1 λ Ring Resonator (like a λ Magnet) ~3.5 μm [HP] 20

21 Substrate Implementations Aggressive (b/c we want to minimize overhead) Aggressive (b/c it s easy w/o races) + + S + M I Atomic Substrate Coherence Substrate 21

22 Extension: Coherence Substrate It is easy to add protocol enhancements in the absence of races Proposal: Maintain shared sourcing states (O/F). F $ $ F State: (like a clean O state) I S S S S S $ $ $ $ vs $ I No F State: (evicted or not supported) I S $ S S S S $ $ $ $ Directory Directory 22

23 ShiftF F I I S F S $ $ $ $ Evict ShiftF Directory Fail ShiftF Atomic: { Evict-F Shift-F } Proposal: Maintain shared sourcing states (O/F). Method: Upon O/F block eviction, try to shift O/F state to sharer 23

24 Substrate Implementations Aggressive (b/c we want to minimize overhead) Aggressive (b/c its easy w/o races) + + S + M I Atomic Substrate Coherence Substrate 24

25 Outline Results Coherence Complexity Substrate Implementations Atomic Coherence 25

26 λ0 λ1 λ63 Experimental Setup λ0 λ1 λ $ $ $ $ $ $ $ $ $ $ $ $ Dateline $ $ $ $ Studies: Complexity Performance System Cores Interconnect Atomic Substrate Mutexes Atomicity Coherence 128, single-threaded, in-order, 5GHz Optical data & control (64 wg) 1024 (4 wg) 4 cycles revolution Guaranteed through L2 control permissions MOEFSI, directory, invalidate 26

27 Complexity Results (L2 transitions) # Unique L2 Transitions Static Analysis Non-Atomic Atomic MESI MOEFSI MOEFSI Atomic +4-9 = -5 MOEFSI Atomic + Shift F Dynamic Analysis # L2 Transitions: traditional MESI > atomic MOEFSI Atomic protocols are fully exercised by our random tester. 27

28 Performance Results Converting MOEFSI to atomic causes a slight slowdown * Relative to nonatomic MOEFSI ShiftF (more than) overcomes the slowdown Mutex circulation and hashing conflicts are contributors to slowdown 28

29 Atomic Coherence Conclusion Atomic Protocols are simpler protocols Atomic Protocols can have high performance Aggressive atomic substrate w/ nanophotonics Aggressive coherence substrate w/ ShiftF 29

30 Thanks! 30

31 Experimental Setup Component System Cores Interconnect L1 Caches L2 Caches Directory Memory Atomic Substrate Detail Mutexes 1024 Waveguides Rev. Period Coherence 128, single-threaded, in-order Optical (Corona bw scaled by ¼) 64 wg, < 4 cycles, 2 cycles/msg 64, 32 KB, 4-way 16, 2 MB, 16-way 16, 24-way 80 ns, 4 cycles/msg 4 wg < 4 cycles MOEFSI, directory, inv WORKLOADS Scientific/Commercial: 16 threads * 8 instances L1-Miss Trace-Driven (GEMS) 31

Atomic Coherence in Gem5 with a Neural Network Application

Atomic Coherence in Gem5 with a Neural Network Application Atomic Coherence in Gem5 with a Neural Network Application Brian Guttag, Ravi Raju, Carly Schulz, Heng Zhuo Inspired by Dana Vantrease s Atomic Coherence: Leveraging Nanophotonics to Build Race-Free Cache

More information

Lecture 2: Snooping and Directory Protocols. Topics: Snooping wrap-up and directory implementations

Lecture 2: Snooping and Directory Protocols. Topics: Snooping wrap-up and directory implementations Lecture 2: Snooping and Directory Protocols Topics: Snooping wrap-up and directory implementations 1 Split Transaction Bus So far, we have assumed that a coherence operation (request, snoops, responses,

More information

EECS 598: Integrating Emerging Technologies with Computer Architecture. Lecture 14: Photonic Interconnect

EECS 598: Integrating Emerging Technologies with Computer Architecture. Lecture 14: Photonic Interconnect 1 EECS 598: Integrating Emerging Technologies with Computer Architecture Lecture 14: Photonic Interconnect Instructor: Ron Dreslinski Winter 2016 1 1 Announcements 2 Remaining lecture schedule 3/15: Photonics

More information

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering CS 152 Computer Architecture and Engineering Lecture 18: Directory-Based Cache Protocols John Wawrzynek EECS, University of California at Berkeley http://inst.eecs.berkeley.edu/~cs152 Administrivia 2 Recap:

More information

Lecture 11: Snooping Cache Coherence: Part II. CMU : Parallel Computer Architecture and Programming (Spring 2012)

Lecture 11: Snooping Cache Coherence: Part II. CMU : Parallel Computer Architecture and Programming (Spring 2012) Lecture 11: Snooping Cache Coherence: Part II CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012) Announcements Assignment 2 due tonight 11:59 PM - Recall 3-late day policy Assignment

More information

COEN-4730 Computer Architecture Lecture 08 Thread Level Parallelism and Coherence

COEN-4730 Computer Architecture Lecture 08 Thread Level Parallelism and Coherence 1 COEN-4730 Computer Architecture Lecture 08 Thread Level Parallelism and Coherence Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University Credits: Slides adapted from presentations

More information

Lecture 11: Cache Coherence: Part II. Parallel Computer Architecture and Programming CMU /15-618, Spring 2015

Lecture 11: Cache Coherence: Part II. Parallel Computer Architecture and Programming CMU /15-618, Spring 2015 Lecture 11: Cache Coherence: Part II Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Tunes Bang Bang (My Baby Shot Me Down) Nancy Sinatra (Kill Bill Volume 1 Soundtrack) It

More information

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network Shared Memory Multis Processor Processor Processor i Processor n Symmetric Shared Memory Architecture (SMP) cache cache cache cache Interconnection Network Main Memory I/O System Cache Coherence Cache

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 12: Cache Coherence

CS252 Spring 2017 Graduate Computer Architecture. Lecture 12: Cache Coherence CS252 Spring 2017 Graduate Computer Architecture Lecture 12: Cache Coherence Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Last Time in Lecture 11 Memory Systems DRAM

More information

Cache Coherence. CMU : Parallel Computer Architecture and Programming (Spring 2012)

Cache Coherence. CMU : Parallel Computer Architecture and Programming (Spring 2012) Cache Coherence CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012) Shared memory multi-processor Processors read and write to shared variables - More precisely: processors issues

More information

Lecture 3: Snooping Protocols. Topics: snooping-based cache coherence implementations

Lecture 3: Snooping Protocols. Topics: snooping-based cache coherence implementations Lecture 3: Snooping Protocols Topics: snooping-based cache coherence implementations 1 Design Issues, Optimizations When does memory get updated? demotion from modified to shared? move from modified in

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory-Based Protocols Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152

More information

Lecture 25: Multiprocessors. Today s topics: Snooping-based cache coherence protocol Directory-based cache coherence protocol Synchronization

Lecture 25: Multiprocessors. Today s topics: Snooping-based cache coherence protocol Directory-based cache coherence protocol Synchronization Lecture 25: Multiprocessors Today s topics: Snooping-based cache coherence protocol Directory-based cache coherence protocol Synchronization 1 Snooping-Based Protocols Three states for a block: invalid,

More information

Atomic Coherence: Leveraging Nanophotonics to Build Race-Free Cache Coherence Protocols

Atomic Coherence: Leveraging Nanophotonics to Build Race-Free Cache Coherence Protocols Atomic Coherence: Leveraging Nanophotonics to Build Race-Free Cache Coherence Protocols Dana Vantrease Univ of Wisconsin - Madison Madison, WI Email: danav@cs.wisc.edu Mikko H. Lipasti Univ of Wisconsin

More information

Cache Coherence. (Architectural Supports for Efficient Shared Memory) Mainak Chaudhuri

Cache Coherence. (Architectural Supports for Efficient Shared Memory) Mainak Chaudhuri Cache Coherence (Architectural Supports for Efficient Shared Memory) Mainak Chaudhuri mainakc@cse.iitk.ac.in 1 Setting Agenda Software: shared address space Hardware: shared memory multiprocessors Cache

More information

Multiple Issue and Static Scheduling. Multiple Issue. MSc Informatics Eng. Beyond Instruction-Level Parallelism

Multiple Issue and Static Scheduling. Multiple Issue. MSc Informatics Eng. Beyond Instruction-Level Parallelism Computing Systems & Performance Beyond Instruction-Level Parallelism MSc Informatics Eng. 2012/13 A.J.Proença From ILP to Multithreading and Shared Cache (most slides are borrowed) When exploiting ILP,

More information

4 Chip Multiprocessors (I) Chip Multiprocessors (ACS MPhil) Robert Mullins

4 Chip Multiprocessors (I) Chip Multiprocessors (ACS MPhil) Robert Mullins 4 Chip Multiprocessors (I) Robert Mullins Overview Coherent memory systems Introduction to cache coherency protocols Advanced cache coherency protocols, memory systems and synchronization covered in the

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Cache Coherence - Directory Cache Coherence Prof. Michel A. Kinsy Shared Memory Multiprocessor Processor Cores Local Memories Memory Bus P 1 Snoopy Cache Physical Memory P

More information

Lecture 25: Multiprocessors

Lecture 25: Multiprocessors Lecture 25: Multiprocessors Today s topics: Virtual memory wrap-up Snooping-based cache coherence protocol Directory-based cache coherence protocol Synchronization 1 TLB and Cache Is the cache indexed

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Cache Coherence. Bryan Mills, PhD. Slides provided by Rami Melhem

Cache Coherence. Bryan Mills, PhD. Slides provided by Rami Melhem Cache Coherence Bryan Mills, PhD Slides provided by Rami Melhem Cache coherence Programmers have no control over caches and when they get updated. x = 2; /* initially */ y0 eventually ends up = 2 y1 eventually

More information

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types Chapter 5 Multiprocessor Cache Coherence Thread-Level Parallelism 1: read 2: read 3: write??? 1 4 From ILP to TLP Memory System is Coherent If... ILP became inefficient in terms of Power consumption Silicon

More information

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 10: Cache Coherence: Part I Parallel Computer Architecture and Programming Cache design review Let s say your code executes int x = 1; (Assume for simplicity x corresponds to the address 0x12345604

More information

Shared Memory SMP and Cache Coherence (cont) Adapted from UCB CS252 S01, Copyright 2001 USB

Shared Memory SMP and Cache Coherence (cont) Adapted from UCB CS252 S01, Copyright 2001 USB Shared SMP and Cache Coherence (cont) Adapted from UCB CS252 S01, Copyright 2001 USB 1 Review: Snoopy Cache Protocol Write Invalidate Protocol: Multiple readers, single writer Write to shared data: an

More information

Lecture 7: Implementing Cache Coherence. Topics: implementation details

Lecture 7: Implementing Cache Coherence. Topics: implementation details Lecture 7: Implementing Cache Coherence Topics: implementation details 1 Implementing Coherence Protocols Correctness and performance are not the only metrics Deadlock: a cycle of resource dependencies,

More information

Lecture 8: Snooping and Directory Protocols. Topics: split-transaction implementation details, directory implementations (memory- and cache-based)

Lecture 8: Snooping and Directory Protocols. Topics: split-transaction implementation details, directory implementations (memory- and cache-based) Lecture 8: Snooping and Directory Protocols Topics: split-transaction implementation details, directory implementations (memory- and cache-based) 1 Split Transaction Bus So far, we have assumed that a

More information

Module 9: "Introduction to Shared Memory Multiprocessors" Lecture 16: "Multiprocessor Organizations and Cache Coherence" Shared Memory Multiprocessors

Module 9: Introduction to Shared Memory Multiprocessors Lecture 16: Multiprocessor Organizations and Cache Coherence Shared Memory Multiprocessors Shared Memory Multiprocessors Shared memory multiprocessors Shared cache Private cache/dancehall Distributed shared memory Shared vs. private in CMPs Cache coherence Cache coherence: Example What went

More information

Lecture 7: PCM, Cache coherence. Topics: handling PCM errors and writes, cache coherence intro

Lecture 7: PCM, Cache coherence. Topics: handling PCM errors and writes, cache coherence intro Lecture 7: M, ache coherence Topics: handling M errors and writes, cache coherence intro 1 hase hange Memory Emerging NVM technology that can replace Flash and DRAM Much higher density; much better scalability;

More information

Multiprocessors & Thread Level Parallelism

Multiprocessors & Thread Level Parallelism Multiprocessors & Thread Level Parallelism COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Introduction

More information

ESE 545 Computer Architecture Symmetric Multiprocessors and Snoopy Cache Coherence Protocols CA SMP and cache coherence

ESE 545 Computer Architecture Symmetric Multiprocessors and Snoopy Cache Coherence Protocols CA SMP and cache coherence Computer Architecture ESE 545 Computer Architecture Symmetric Multiprocessors and Snoopy Cache Coherence Protocols 1 Shared Memory Multiprocessor Memory Bus P 1 Snoopy Cache Physical Memory P 2 Snoopy

More information

Lecture 30: Multiprocessors Flynn Categories, Large vs. Small Scale, Cache Coherency Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 30: Multiprocessors Flynn Categories, Large vs. Small Scale, Cache Coherency Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 30: Multiprocessors Flynn Categories, Large vs. Small Scale, Cache Coherency Professor Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Flynn Categories SISD (Single Instruction Single

More information

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 5. Multiprocessors and Thread-Level Parallelism

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Module 9: Addendum to Module 6: Shared Memory Multiprocessors Lecture 17: Multiprocessor Organizations and Cache Coherence. The Lecture Contains:

Module 9: Addendum to Module 6: Shared Memory Multiprocessors Lecture 17: Multiprocessor Organizations and Cache Coherence. The Lecture Contains: The Lecture Contains: Shared Memory Multiprocessors Shared Cache Private Cache/Dancehall Distributed Shared Memory Shared vs. Private in CMPs Cache Coherence Cache Coherence: Example What Went Wrong? Implementations

More information

Aleksandar Milenkovich 1

Aleksandar Milenkovich 1 Parallel Computers Lecture 8: Multiprocessors Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Definition: A parallel computer is a collection

More information

Token Coherence. Milo M. K. Martin Dissertation Defense

Token Coherence. Milo M. K. Martin Dissertation Defense Token Coherence Milo M. K. Martin Dissertation Defense Wisconsin Multifacet Project http://www.cs.wisc.edu/multifacet/ University of Wisconsin Madison (C) 2003 Milo Martin Overview Technology and software

More information

Performance study example ( 5.3) Performance study example

Performance study example ( 5.3) Performance study example erformance study example ( 5.3) Coherence misses: - True sharing misses - Write to a shared block - ead an invalid block - False sharing misses - ead an unmodified word in an invalidated block CI for commercial

More information

Cache Coherence. Introduction to High Performance Computing Systems (CS1645) Esteban Meneses. Spring, 2014

Cache Coherence. Introduction to High Performance Computing Systems (CS1645) Esteban Meneses. Spring, 2014 Cache Coherence Introduction to High Performance Computing Systems (CS1645) Esteban Meneses Spring, 2014 Supercomputer Galore Starting around 1983, the number of companies building supercomputers exploded:

More information

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU /15-618, Spring 2015

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU /15-618, Spring 2015 Lecture 10: Cache Coherence: Part I Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Tunes Marble House The Knife (Silent Shout) Before starting The Knife, we were working

More information

Aleksandar Milenkovic, Electrical and Computer Engineering University of Alabama in Huntsville

Aleksandar Milenkovic, Electrical and Computer Engineering University of Alabama in Huntsville Lecture 18: Multiprocessors Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Parallel Computers Definition: A parallel computer is a collection

More information

Parallel Computer Architecture Spring Shared Memory Multiprocessors Memory Coherence

Parallel Computer Architecture Spring Shared Memory Multiprocessors Memory Coherence Parallel Computer Architecture Spring 2018 Shared Memory Multiprocessors Memory Coherence Nikos Bellas Computer and Communications Engineering Department University of Thessaly Parallel Computer Architecture

More information

Page 1. SMP Review. Multiprocessors. Bus Based Coherence. Bus Based Coherence. Characteristics. Cache coherence. Cache coherence

Page 1. SMP Review. Multiprocessors. Bus Based Coherence. Bus Based Coherence. Characteristics. Cache coherence. Cache coherence SMP Review Multiprocessors Today s topics: SMP cache coherence general cache coherence issues snooping protocols Improved interaction lots of questions warning I m going to wait for answers granted it

More information

EECS 570 Lecture 11. Directory-based Coherence. Winter 2019 Prof. Thomas Wenisch

EECS 570 Lecture 11. Directory-based Coherence. Winter 2019 Prof. Thomas Wenisch Directory-based Coherence Winter 2019 Prof. Thomas Wenisch http://www.eecs.umich.edu/courses/eecs570/ Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin, Narayanasamy, Nowatzyk, Reinhardt,

More information

Chapter 9 Multiprocessors

Chapter 9 Multiprocessors ECE200 Computer Organization Chapter 9 Multiprocessors David H. lbonesi and the University of Rochester Henk Corporaal, TU Eindhoven, Netherlands Jari Nurmi, Tampere University of Technology, Finland University

More information

Lecture 13. Shared memory: Architecture and programming

Lecture 13. Shared memory: Architecture and programming Lecture 13 Shared memory: Architecture and programming Announcements Special guest lecture on Parallel Programming Language Uniform Parallel C Thursday 11/2, 2:00 to 3:20 PM EBU3B 1202 See www.cse.ucsd.edu/classes/fa06/cse260/lectures/lec13

More information

Homework 6. BTW, This is your last homework. Assigned today, Tuesday, April 10 Due time: 11:59PM on Monday, April 23. CSCI 402: Computer Architectures

Homework 6. BTW, This is your last homework. Assigned today, Tuesday, April 10 Due time: 11:59PM on Monday, April 23. CSCI 402: Computer Architectures Homework 6 BTW, This is your last homework 5.1.1-5.1.3 5.2.1-5.2.2 5.3.1-5.3.5 5.4.1-5.4.2 5.6.1-5.6.5 5.12.1 Assigned today, Tuesday, April 10 Due time: 11:59PM on Monday, April 23 1 CSCI 402: Computer

More information

Introduction to Multiprocessors (Part II) Cristina Silvano Politecnico di Milano

Introduction to Multiprocessors (Part II) Cristina Silvano Politecnico di Milano Introduction to Multiprocessors (Part II) Cristina Silvano Politecnico di Milano Outline The problem of cache coherence Snooping protocols Directory-based protocols Prof. Cristina Silvano, Politecnico

More information

Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution

Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution Ravi Rajwar and Jim Goodman University of Wisconsin-Madison International Symposium on Microarchitecture, Dec. 2001 Funding

More information

Shared Symmetric Memory Systems

Shared Symmetric Memory Systems Shared Symmetric Memory Systems Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Verification of Cache Coherency Formal Test Generation

Verification of Cache Coherency Formal Test Generation Dr. Monica Farkash NXP Semiconductors, Inc. EE 382M-11, Department of Electrical and Computer Engineering The University of Texas at Austin 1 Cache Coherency Caches and their coherency Challenge Verification

More information

Review: Multiprocessor. CPE 631 Session 21: Multiprocessors (Part 2) Potential HW Coherency Solutions. Bus Snooping Topology

Review: Multiprocessor. CPE 631 Session 21: Multiprocessors (Part 2) Potential HW Coherency Solutions. Bus Snooping Topology Review: Multiprocessor CPE 631 Session 21: Multiprocessors (Part 2) Department of Electrical and Computer Engineering University of Alabama in Huntsville Basic issues and terminology Communication: share

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

CMSC 611: Advanced Computer Architecture

CMSC 611: Advanced Computer Architecture CMSC 611: Advanced Computer Architecture Shared Memory Most slides adapted from David Patterson. Some from Mohomed Younis Interconnection Networks Massively processor networks (MPP) Thousands of nodes

More information

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Coherence Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L25-1 Coherence Avoids Stale Data Multicores have multiple private caches for performance Need to provide the illusion

More information

Lecture 7: PCM Wrap-Up, Cache coherence. Topics: handling PCM errors and writes, cache coherence intro

Lecture 7: PCM Wrap-Up, Cache coherence. Topics: handling PCM errors and writes, cache coherence intro Lecture 7: M Wrap-Up, ache coherence Topics: handling M errors and writes, cache coherence intro 1 Optimizations for Writes (Energy, Lifetime) Read a line before writing and only write the modified bits

More information

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University Material from: Parallel Computer Organization and Design by Debois,

More information

CMSC Computer Architecture Lecture 15: Memory Consistency and Synchronization. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 15: Memory Consistency and Synchronization. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 15: Memory Consistency and Synchronization Prof. Yanjing Li University of Chicago Administrative Stuff! Lab 5 (multi-core) " Basic requirements: out later today

More information

Computer Architecture

Computer Architecture 18-447 Computer Architecture CSCI-564 Advanced Computer Architecture Lecture 29: Consistency & Coherence Lecture 20: Consistency and Coherence Bo Wu Prof. Onur Mutlu Colorado Carnegie School Mellon University

More information

Processor Architecture

Processor Architecture Processor Architecture Shared Memory Multiprocessors M. Schölzel The Coherence Problem s may contain local copies of the same memory address without proper coordination they work independently on their

More information

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM (PART 1)

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM (PART 1) 1 MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM (PART 1) Chapter 5 Appendix F Appendix I OUTLINE Introduction (5.1) Multiprocessor Architecture Challenges in Parallel Processing Centralized Shared Memory

More information

Module 10: "Design of Shared Memory Multiprocessors" Lecture 20: "Performance of Coherence Protocols" MOESI protocol.

Module 10: Design of Shared Memory Multiprocessors Lecture 20: Performance of Coherence Protocols MOESI protocol. MOESI protocol Dragon protocol State transition Dragon example Design issues General issues Evaluating protocols Protocol optimizations Cache size Cache line size Impact on bus traffic Large cache line

More information

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University

EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University EN2910A: Advanced Computer Architecture Topic 05: Coherency of Memory Hierarchy Prof. Sherief Reda School of Engineering Brown University Material from: Parallel Computer Organization and Design by Debois,

More information

Parallel Computer Architecture Lecture 5: Cache Coherence. Chris Craik (TA) Carnegie Mellon University

Parallel Computer Architecture Lecture 5: Cache Coherence. Chris Craik (TA) Carnegie Mellon University 18-742 Parallel Computer Architecture Lecture 5: Cache Coherence Chris Craik (TA) Carnegie Mellon University Readings: Coherence Required for Review Papamarcos and Patel, A low-overhead coherence solution

More information

CMSC 611: Advanced. Distributed & Shared Memory

CMSC 611: Advanced. Distributed & Shared Memory CMSC 611: Advanced Computer Architecture Distributed & Shared Memory Centralized Shared Memory MIMD Processors share a single centralized memory through a bus interconnect Feasible for small processor

More information

Lecture 5: Directory Protocols. Topics: directory-based cache coherence implementations

Lecture 5: Directory Protocols. Topics: directory-based cache coherence implementations Lecture 5: Directory Protocols Topics: directory-based cache coherence implementations 1 Flat Memory-Based Directories Block size = 128 B Memory in each node = 1 GB Cache in each node = 1 MB For 64 nodes

More information

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

Cache Coherence. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Coherence Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L5- Coherence Avoids Stale Data Multicores have multiple private caches for performance Need to provide the illusion

More information

Meet in the Middle: Leveraging Optical Interconnection Opportunities in Chip Multi Processors

Meet in the Middle: Leveraging Optical Interconnection Opportunities in Chip Multi Processors Meet in the Middle: Leveraging Optical Interconnection Opportunities in Chip Multi Processors Sandro Bartolini* Department of Information Engineering, University of Siena, Italy bartolini@dii.unisi.it

More information

Handout 3 Multiprocessor and thread level parallelism

Handout 3 Multiprocessor and thread level parallelism Handout 3 Multiprocessor and thread level parallelism Outline Review MP Motivation SISD v SIMD (SIMT) v MIMD Centralized vs Distributed Memory MESI and Directory Cache Coherency Synchronization and Relaxed

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Shared-Memory Multi-Processors Shared-Memory Multiprocessors Multiple threads use shared memory (address space) SysV Shared Memory or Threads in software Communication implicit

More information

Parallel Computers. CPE 631 Session 20: Multiprocessors. Flynn s Tahonomy (1972) Why Multiprocessors?

Parallel Computers. CPE 631 Session 20: Multiprocessors. Flynn s Tahonomy (1972) Why Multiprocessors? Parallel Computers CPE 63 Session 20: Multiprocessors Department of Electrical and Computer Engineering University of Alabama in Huntsville Definition: A parallel computer is a collection of processing

More information

The Cache Write Problem

The Cache Write Problem Cache Coherency A multiprocessor and a multicomputer each comprise a number of independent processors connected by a communications medium, either a bus or more advanced switching system, such as a crossbar

More information

Speculative Synchronization: Applying Thread Level Speculation to Parallel Applications. University of Illinois

Speculative Synchronization: Applying Thread Level Speculation to Parallel Applications. University of Illinois Speculative Synchronization: Applying Thread Level Speculation to Parallel Applications José éf. Martínez * and Josep Torrellas University of Illinois ASPLOS 2002 * Now at Cornell University Overview Allow

More information

Lecture 24: Board Notes: Cache Coherency

Lecture 24: Board Notes: Cache Coherency Lecture 24: Board Notes: Cache Coherency Part A: What makes a memory system coherent? Generally, 3 qualities that must be preserved (SUGGESTIONS?) (1) Preserve program order: - A read of A by P 1 will

More information

Overview: Shared Memory Hardware. Shared Address Space Systems. Shared Address Space and Shared Memory Computers. Shared Memory Hardware

Overview: Shared Memory Hardware. Shared Address Space Systems. Shared Address Space and Shared Memory Computers. Shared Memory Hardware Overview: Shared Memory Hardware Shared Address Space Systems overview of shared address space systems example: cache hierarchy of the Intel Core i7 cache coherency protocols: basic ideas, invalidate and

More information

Overview: Shared Memory Hardware

Overview: Shared Memory Hardware Overview: Shared Memory Hardware overview of shared address space systems example: cache hierarchy of the Intel Core i7 cache coherency protocols: basic ideas, invalidate and update protocols false sharing

More information

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems Multiprocessors II: CC-NUMA DSM DSM cache coherence the hardware stuff Today s topics: what happens when we lose snooping new issues: global vs. local cache line state enter the directory issues of increasing

More information

Special Topics. Module 14: "Directory-based Cache Coherence" Lecture 33: "SCI Protocol" Directory-based Cache Coherence: Sequent NUMA-Q.

Special Topics. Module 14: Directory-based Cache Coherence Lecture 33: SCI Protocol Directory-based Cache Coherence: Sequent NUMA-Q. Directory-based Cache Coherence: Special Topics Sequent NUMA-Q SCI protocol Directory overhead Cache overhead Handling read miss Handling write miss Handling writebacks Roll-out protocol Snoop interaction

More information

Lecture 24: Thread Level Parallelism -- Distributed Shared Memory and Directory-based Coherence Protocol

Lecture 24: Thread Level Parallelism -- Distributed Shared Memory and Directory-based Coherence Protocol Lecture 24: Thread Level Parallelism -- Distributed Shared Memory and Directory-based Coherence Protocol CSE 564 Computer Architecture Fall 2016 Department of Computer Science and Engineering Yonghong

More information

Midterm Exam 02/09/2009

Midterm Exam 02/09/2009 Portland State University Department of Electrical and Computer Engineering ECE 588/688 Advanced Computer Architecture II Winter 2009 Midterm Exam 02/09/2009 Answer All Questions PSU ID#: Please Turn Over

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 24 Mahadevan Gomathisankaran April 29, 2010 04/29/2010 Lecture 24 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache.

Multiprocessors. Flynn Taxonomy. Classifying Multiprocessors. why would you want a multiprocessor? more is better? Cache Cache Cache. Multiprocessors why would you want a multiprocessor? Multiprocessors and Multithreading more is better? Cache Cache Cache Classifying Multiprocessors Flynn Taxonomy Flynn Taxonomy Interconnection Network

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1: Introduction ourse organization: 4 lectures on cache coherence and consistency 2 lectures on transactional memory 2 lectures on interconnection networks 4 lectures on caches 4 lectures on memory

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 23 Mahadevan Gomathisankaran April 27, 2010 04/27/2010 Lecture 23 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

CMSC 411 Computer Systems Architecture Lecture 21 Multiprocessors 3

CMSC 411 Computer Systems Architecture Lecture 21 Multiprocessors 3 MS 411 omputer Systems rchitecture Lecture 21 Multiprocessors 3 Outline Review oherence Write onsistency dministrivia Snooping Building Blocks Snooping protocols and examples oherence traffic and performance

More information

Parallel Architecture. Hwansoo Han

Parallel Architecture. Hwansoo Han Parallel Architecture Hwansoo Han Performance Curve 2 Unicore Limitations Performance scaling stopped due to: Power Wire delay DRAM latency Limitation in ILP 3 Power Consumption (watts) 4 Wire Delay Range

More information

Shared Memory Architectures. Approaches to Building Parallel Machines

Shared Memory Architectures. Approaches to Building Parallel Machines Shared Memory Architectures Arvind Krishnamurthy Fall 2004 Approaches to Building Parallel Machines P 1 Switch/Bus P n Scale (Interleaved) First-level $ P 1 P n $ $ (Interleaved) Main memory Shared Cache

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 11: Reducing Hit Time Cache Coherence Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering and Computer Science Source: Lecture based

More information

Page 1. Lecture 12: Multiprocessor 2: Snooping Protocol, Directory Protocol, Synchronization, Consistency. Bus Snooping Topology

Page 1. Lecture 12: Multiprocessor 2: Snooping Protocol, Directory Protocol, Synchronization, Consistency. Bus Snooping Topology CS252 Graduate Computer Architecture Lecture 12: Multiprocessor 2: Snooping Protocol, Directory Protocol, Synchronization, Consistency Review: Multiprocessor Basic issues and terminology Communication:

More information

Exam-2 Scope. 3. Shared memory architecture, distributed memory architecture, SMP, Distributed Shared Memory and Directory based coherence

Exam-2 Scope. 3. Shared memory architecture, distributed memory architecture, SMP, Distributed Shared Memory and Directory based coherence Exam-2 Scope 1. Memory Hierarchy Design (Cache, Virtual memory) Chapter-2 slides memory-basics.ppt Optimizations of Cache Performance Memory technology and optimizations Virtual memory 2. SIMD, MIMD, Vector,

More information

Portland State University ECE 588/688. Cache Coherence Protocols

Portland State University ECE 588/688. Cache Coherence Protocols Portland State University ECE 588/688 Cache Coherence Protocols Copyright by Alaa Alameldeen 2018 Conditions for Cache Coherence Program Order. A read by processor P to location A that follows a write

More information

Thread- Level Parallelism. ECE 154B Dmitri Strukov

Thread- Level Parallelism. ECE 154B Dmitri Strukov Thread- Level Parallelism ECE 154B Dmitri Strukov Introduc?on Thread- Level parallelism Have mul?ple program counters and resources Uses MIMD model Targeted for?ghtly- coupled shared- memory mul?processors

More information

Cache Coherence and Atomic Operations in Hardware

Cache Coherence and Atomic Operations in Hardware Cache Coherence and Atomic Operations in Hardware Previously, we introduced multi-core parallelism. Today we ll look at 2 things: 1. Cache coherence 2. Instruction support for synchronization. And some

More information

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

Multiprocessor Cache Coherency. What is Cache Coherence?

Multiprocessor Cache Coherency. What is Cache Coherence? Multiprocessor Cache Coherency CS448 1 What is Cache Coherence? Two processors can have two different values for the same memory location 2 1 Terminology Coherence Defines what values can be returned by

More information

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

PARALLEL MEMORY ARCHITECTURE

PARALLEL MEMORY ARCHITECTURE PARALLEL MEMORY ARCHITECTURE Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 6 is due tonight n The last

More information

Computer Architecture Memory hierarchies and caches

Computer Architecture Memory hierarchies and caches Computer Architecture Memory hierarchies and caches S Coudert and R Pacalet January 23, 2019 Outline Introduction Localities principles Direct-mapped caches Increasing block size Set-associative caches

More information

ECE 757 Review: Parallel Processors

ECE 757 Review: Parallel Processors ECE 757 Review: Parallel Processors Prof. Mikko Lipasti Lecture notes based in part on slides created by John Shen, Mark Hill, David Wood, Guri Sohi, Jim Smith, Erika Gunadi, Mitch Hayenga, Vignyan Reddy,

More information

CSC/ECE 506: Computer Architecture and Multiprocessing Program 3: Simulating DSM Coherence Due: Tuesday, Nov 22, 2016

CSC/ECE 506: Computer Architecture and Multiprocessing Program 3: Simulating DSM Coherence Due: Tuesday, Nov 22, 2016 CSC/ECE 506: Computer Architecture and Multiprocessing Program 3: Simulating DSM Coherence Due: Tuesday, Nov 22, 2016 1. Overall Problem Description In this project, you will add new features to a trace-driven

More information

Brief Background in Fiber Optics

Brief Background in Fiber Optics The Future of Photonics in Upcoming Processors ECE 4750 Fall 08 Brief Background in Fiber Optics Light can travel down an optical fiber if it is completely confined Determined by Snells Law Various modes

More information

CS/ECE 757: Advanced Computer Architecture II (Parallel Computer Architecture) Symmetric Multiprocessors Part 1 (Chapter 5)

CS/ECE 757: Advanced Computer Architecture II (Parallel Computer Architecture) Symmetric Multiprocessors Part 1 (Chapter 5) CS/ECE 757: Advanced Computer Architecture II (Parallel Computer Architecture) Symmetric Multiprocessors Part 1 (Chapter 5) Copyright 2001 Mark D. Hill University of Wisconsin-Madison Slides are derived

More information