Instruction Frequency CPI. Load-store 55% 5. Arithmetic 30% 4. Branch 15% 4

Size: px
Start display at page:

Download "Instruction Frequency CPI. Load-store 55% 5. Arithmetic 30% 4. Branch 15% 4"

Transcription

1 PROBLEM 1: An application running on a 1GHz pipelined processor has the following instruction mix: Instruction Frequency CPI Load-store 55% 5 Arithmetic 30% 4 Branch 15% 4 a) Determine the overall CPI of the program. b) An embedded version of the processor that operates at 600 MHz is used to run the same application. In this version, the CPI of branch instruction becomes 6 while the other types CPI remain unchanged. A new compiler is used which eliminates 25% of the load-store instructions as well as 5% of the arithmetic instructions for this application. i. Determine the overall CPI of the program on the embedded processor with the new compiler. ii. Determine the factor by which the application on the embedded processor runs faster/slower. Solution: a) cycle/instruction b) First we calculate the new percentages for each type of instruction: i. Percentage of eliminated load-store from total instructions = Percentage of eliminated arithmetic from total instructions = Percentage of remaining instructions from total instructions = ( ) New percentage of load-store instructions 1

2 = New percentage of arithmetic instructions = New percentage of branch instructions = ii. (i.e the program now is slower) cycle/instr. ( ) PROBLEM 2: 1- Suppose a MIPS processor uses the simple 5-stage pipeline described in the text. Further suppose that: There is a single memory for both instructions and data which can do one read or write each cycle. No forwarding is used. An instruction cannot be fed into the pipeline until the hardware knows the instruction is to be executed certainly (no earlier than the end of the execution stage in case the current instruction is a branch). In the absence of hazards a new instruction can be fed into the pipeline each cycle. For the following MIPS code: lw R1, 0(R2) lw R3, 12(R4) add R5, R1, R3 beq R5, R5, L1 sw R5, 0(R3) L1: sw R5, 12(R4) 2

3 a) Show using a diagram, how many cycles does this code take to complete? b) Show using a diagram, how different hazard solving techniques can be used to decrease the total number of cycles for this program. Solution: a) As shown below, the code will take 15 cycles lw R1,0(R2) IF ID EX M WB lw R3,12(R4) IF ID EX M WB Add R5,R1,R3 IF ID EX M WB beq R5,R5,L1 IF ID EX M WB L1:sw R5,12(R4) IF ID EX M WB b) Using the following hazard solving techniques: Forwarding (to resolve some data hazards) Separate instruction and data memories (to resolve some structural hazards) Branch prediction Assuming branch prediction turns out to be correct, the code will take 11 cycles lw R1,0(R2) IF ID EX M WB lw R3,12(R4) IF ID EX M WB Add R5,R1,R3 IF ID EX M WB beq R5,R5,L1 IF ID EX M WB L1:sw R5,12(R4) IF ID EX M WB PROBLEM 3 3

4 2- A five-stage pipelined processor supports the following instruction types: Instruction Frequency Load 25% Store 15% Integer 30% Floating point 20% Branch 10% Assume the base CPI of the processor is equal to 1. Data hazards for floating point operations cause an average penalty of 0.9 stall cycles, branch instructions have a misprediction penalty of 1 stall cycle, while all other instructions run at maximum possible throughput. For branch instructions, the processor uses the predicted untaken scheme. If branch prediction turns out to be true 80% of the time, calculate the average CPI for this program. Solution: The average CPI = the base CPI + The average number of stalls per instruction = ( ) cycle/instr. 4

5 PROBLEM 4: a) Identify all WAR, WAW and RAW dependencies in the following instruction sequence: LD F2, 16(R6) ADDD F2, F2, F4 DIVD F6, F2, F0 SUBD F0, F2, F10 SD F6, 32(R3) b) Fill in the blank templates for executing this code with and without Tomasulo s Algorithm for this instruction sequence. Assume the following execution times: LW: 2 cycles ADD/SUB: 2 cycles BNEZ: 3 cycles MULT/DIV: 4 cycles For the original FP unit, assume one integer unit, one floating point multiply units, one F.P. add unit, one F.P. divide unit. For Tomasulo s, assume: Three FP ADD units, 2 FP MULT units, 6 load buffers and three store buffers. (Same units as in book example) Assume there is a cache miss causing a stall of 8 cycles on the execution of the 1 st LD. Assume FP adds/subs take 2 cycles, Mults take 10 cycles and Divides take 20 cycles. Assume the store is a cache hit and executes in one cycle. Assume many instructions can read from the register file simultaneously. For the Tomasulo example, recall that only one instruction can drive the CDB at a time. Solution: Without Tomasulo s Algorithm, and the processor is using Forwarding: LD F2,16(R6) IF ID EX MEM1 MEM2 WB ADDD F2,F2,F4 IF ID stall stall EX1 EX2 MEM WB 5

6 DIVD F6,F2,F0 IF stall stall ID stall EX1 EX2 EX3 EX4 MEM WB SUBD F0,F2,F10 stall stall IF stall ID stall stall stall EX1 EX2 MEM WB SD F6,32(R3) stall stall stall IF stall stall stall ID stall EX MEM1 MEM2 WB Notes: We considered we 1 execution unit and 1 memory unit and we had to respect this in order execution and in order completion to solve the stalls exactly as shown in slide 5 of the ILP chapter. With Tomasulo s Algorithm: We will use the same architecture shown in the lecture Instruction status: Exec Write Instruction j k Issue Comp Result Busy Address LD F2 16 R2 Load1 No ADDD F2 F2 F4 Load2 No DIVD F6 F2 F0 Load3 No SUBD F0 F2 F10 SD F6 32 R3 Add1 Add2 Add3 Mult1 Mult2 No NO No NO NO 0 FU Instruction status: Exec Write Instruction j k Issue Comp Result Busy Address LD F2 16 R2 1 2 Load1 Yes 16(R2) ADDD F2 F2 F4 Load2 No DIVD F^ F2 F0 Load3 No SUBD F0 F2 F10 SD F6 32 R3 Add1 Add2 Add3 Mult1 Mult2 No NO No NO NO 1 FU Load1 6

7 Instruction status: Exec Write Instruction j k Issue Comp Result Busy Address LD F2 16 R2 1 1 Load1 Yes 16(R2) ADDD F2 F2 F4 2 Load2 No DIVD F^ F2 F0 Load3 No SUBD F0 F2 F10 SD F6 32 R3 Add1 YES ADD F4 Load1 Add2 NO Mult1 NO 2 FU ADD1 Instruction status: Exec Write Instruction j k Issue Comp Result Busy Address ADDD F2 F2 F4 2 Load2 No SUBD F0 F2 F10 4 SD F6 32 R3 2 Add1 YES ADD MEM(1) F4 Add2 YES SUBD F10 ADD1 Mult1 YES DIVD F0 ADD1 4 FU ADD2 ADD1 MULT1 Instruction status: Exec Write Instruction j k Issue Comp Result Busy Address LD F2 16 R Load1 Yes 16(R2) ADDD F2 F2 F4 2 Load2 No SUBD F0 F2 F10 SD F6 32 R3 Add1 YES ADD F4 Load1 Add2 NO Mult1 YES DIVD F0 ADD1 3 FU ADD1 MULT1 ADDD F2 F2 F4 2 Load2 No SUBD F0 F2 F Add1 YES ADD MEM(1) F4 Add2 NO SUBD F10 ADD1 Mult1 YES DIVD F0 ADD1 5 FU ADD2 ADD1 MULT1 7

8 ADDD F2 F2 F4 2 6 Load2 No SUBD F0 F2 F Add1 YES ADD MEM(1) F4 Add2 NO SUBD F10 ADD1 Mult1 YES DIVD F0 ADD1 6 FU ADD2 ADD1 MULT1 SUBD F0 F2 F Add2 YES SUBD res1 F10 4 Mult1 YES DIVD res1 F0 7 FU ADD2 res1 MULT1 SUBD F0 F2 F Add2 YES SUBD res1 F10 3 Mult1 YES DIVD res1 F0 8 FU ADD2 (RES) MULT1 SUBD F0 F2 F Add2 NO SUBD res1 F10 3 Mult1 YES DIVD res1 F0 9 FU ADD2 (RES) MULT1 8

9 SUBD F0 F2 F Add1 NO 0 Add2 YES SUBD res1 F10 2 Mult1 YES DIVD res1 F0 10 FU ADD2 res1 MULT1 SUBD F0 F2 F Add2 No 1 Mult1 YES DIVD res1 F0 11 FU res2 res1 MULT1 DIVD F6 F2 F Load3 No SUBD F0 F2 F Add2 No 0 Mult1 YES DIVD res1 F0 12 FU res2 res1 MULT1 DIVD F6 F2 F Load3 No SUBD F0 F2 F Time: 2 Store Yes 32(R3) Res3 0 Add2 No 0 Mult1 No 13 FU res2 res1 Res3 9

10 DIVD F6 F2 F Load3 No SUBD F0 F2 F Time: 1 Store Yes 32(R3) Res3 0 Add2 No 0 Mult1 No 14 FU res2 res1 Res3 DIVD F6 F2 F Load3 No SUBD F0 F2 F Time: 0 Store Yes 32(R3) Res3 0 Add2 No 0 Mult1 No 15 FU res2 res1 Res3 10

11 PROBLEM 5: Consider the following code. (The... marks indicate instructions that are ignored in this example) LOOP1: ADDI R4, R0, #4... LOOP 2: SUBI R4, R4, #1... BNEZ R4, LOOP2... BEQZ R8, LOOP1... a) Focusing on the inner loop (LOOP2) only, analyze the branch behavior. Assume no other instruction changes the value of register R4. What percentage of the time is the BNEZ branch instruction taken and not taken? Consider LOOP2 is taken N times, so it is easy to deduce that the branch will be taken N times in each N+1 iterations, i.e. the loop will be taken N/N+1 and not taken 1/N+1 Consider LOOP2 is taken N times, so it is easy to deduce that the branch will be taken N times in each N+1 iterations, i.e. the loop will be taken N/N+1 and not taken 1/N+1 b) Choose the best static branch prediction scheme for the BNEZ instruction. What percentage of the time will this static branch prediction be correct for LOOP2? Using Branch taken, we will reach N correct iterations out of every N+1 decisions. c) Now consider dynamic branch prediction. Draw the state machine for a one-bit branch predictor. Be sure to clearly identify or define the meaning of each state. For the inner loop (LOOP2), what will be the misprediction rate of the one-bit branch predictor? 11

12 Taken Not Taken Taken Not Taken For 1 bit branch predictor the FSM should look as above, studying LOOP2 only, Iteration N N+1 Prediction Decision Not Taken Taken Taken Taken Taken Taken Taken Taken Final Decision Taken Taken Taken Taken Taken Taken Taken Taken Not So, we would take wrong decision 2 times out of every N+1 times d) Now draw the state diagram for a 2-bit dynamic branch predictor. Again, clearly label all states. What will be the misprediction rate of the 2- bit branch predictor for LOOP2? Iteration N N+1 Prediction Decision Not Not Taken Taken Taken Taken Taken Taken Taken Final Decision Taken Taken Taken Taken Taken Taken Taken Taken Not 12

13 e) Taking both loops in consideration, the state diagram for a 2,2 bit collator type dynamic branch predictor. We will not use 2,2 as it is not described in the lecture, so we will just take the relation between both loop1 and loop2. So, if we consider LOOP2 is executed N times every LOOP 1 Iteration. It is clear that for the 1 st loop iteration prediction will have 3 misses then it will be only 1 miss until the end of loop1 13

CS433 Midterm. Prof Josep Torrellas. October 19, Time: 1 hour + 15 minutes

CS433 Midterm. Prof Josep Torrellas. October 19, Time: 1 hour + 15 minutes CS433 Midterm Prof Josep Torrellas October 19, 2017 Time: 1 hour + 15 minutes Name: Instructions: 1. This is a closed-book, closed-notes examination. 2. The Exam has 4 Questions. Please budget your time.

More information

Advanced Computer Architecture CMSC 611 Homework 3. Due in class Oct 17 th, 2012

Advanced Computer Architecture CMSC 611 Homework 3. Due in class Oct 17 th, 2012 Advanced Computer Architecture CMSC 611 Homework 3 Due in class Oct 17 th, 2012 (Show your work to receive partial credit) 1) For the following code snippet list the data dependencies and rewrite the code

More information

ELE 818 * ADVANCED COMPUTER ARCHITECTURES * MIDTERM TEST *

ELE 818 * ADVANCED COMPUTER ARCHITECTURES * MIDTERM TEST * ELE 818 * ADVANCED COMPUTER ARCHITECTURES * MIDTERM TEST * SAMPLE 1 Section: Simple pipeline for integer operations For all following questions we assume that: a) Pipeline contains 5 stages: IF, ID, EX,

More information

Instruction-Level Parallelism and Its Exploitation

Instruction-Level Parallelism and Its Exploitation Chapter 2 Instruction-Level Parallelism and Its Exploitation 1 Overview Instruction level parallelism Dynamic Scheduling Techniques es Scoreboarding Tomasulo s s Algorithm Reducing Branch Cost with Dynamic

More information

Recall from Pipelining Review. Lecture 16: Instruction Level Parallelism and Dynamic Execution #1: Ideas to Reduce Stalls

Recall from Pipelining Review. Lecture 16: Instruction Level Parallelism and Dynamic Execution #1: Ideas to Reduce Stalls CS252 Graduate Computer Architecture Recall from Pipelining Review Lecture 16: Instruction Level Parallelism and Dynamic Execution #1: March 16, 2001 Prof. David A. Patterson Computer Science 252 Spring

More information

ILP concepts (2.1) Basic compiler techniques (2.2) Reducing branch costs with prediction (2.3) Dynamic scheduling (2.4 and 2.5)

ILP concepts (2.1) Basic compiler techniques (2.2) Reducing branch costs with prediction (2.3) Dynamic scheduling (2.4 and 2.5) Instruction-Level Parallelism and its Exploitation: PART 1 ILP concepts (2.1) Basic compiler techniques (2.2) Reducing branch costs with prediction (2.3) Dynamic scheduling (2.4 and 2.5) Project and Case

More information

Page 1. Recall from Pipelining Review. Lecture 16: Instruction Level Parallelism and Dynamic Execution #1: Ideas to Reduce Stalls

Page 1. Recall from Pipelining Review. Lecture 16: Instruction Level Parallelism and Dynamic Execution #1: Ideas to Reduce Stalls CS252 Graduate Computer Architecture Recall from Pipelining Review Lecture 16: Instruction Level Parallelism and Dynamic Execution #1: March 16, 2001 Prof. David A. Patterson Computer Science 252 Spring

More information

Four Steps of Speculative Tomasulo cycle 0

Four Steps of Speculative Tomasulo cycle 0 HW support for More ILP Hardware Speculative Execution Speculation: allow an instruction to issue that is dependent on branch, without any consequences (including exceptions) if branch is predicted incorrectly

More information

CISC 662 Graduate Computer Architecture. Lecture 10 - ILP 3

CISC 662 Graduate Computer Architecture. Lecture 10 - ILP 3 CISC 662 Graduate Computer Architecture Lecture 10 - ILP 3 Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Multi-cycle Instructions in the Pipeline (Floating Point)

Multi-cycle Instructions in the Pipeline (Floating Point) Lecture 6 Multi-cycle Instructions in the Pipeline (Floating Point) Introduction to instruction level parallelism Recap: Support of multi-cycle instructions in a pipeline (App A.5) Recap: Superpipelining

More information

CPE 631 Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation

CPE 631 Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation Aleksandar Milenković, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Outline Tomasulo

More information

CS433 Homework 2 (Chapter 3)

CS433 Homework 2 (Chapter 3) CS433 Homework 2 (Chapter 3) Assigned on 9/19/2017 Due in class on 10/5/2017 Instructions: 1. Please write your name and NetID clearly on the first page. 2. Refer to the course fact sheet for policies

More information

CS433 Homework 2 (Chapter 3)

CS433 Homework 2 (Chapter 3) CS Homework 2 (Chapter ) Assigned on 9/19/2017 Due in class on 10/5/2017 Instructions: 1. Please write your name and NetID clearly on the first page. 2. Refer to the course fact sheet for policies on collaboration..

More information

COSC4201 Instruction Level Parallelism Dynamic Scheduling

COSC4201 Instruction Level Parallelism Dynamic Scheduling COSC4201 Instruction Level Parallelism Dynamic Scheduling Prof. Mokhtar Aboelaze Parts of these slides are taken from Notes by Prof. David Patterson (UCB) Outline Data dependence and hazards Exposing parallelism

More information

Page 1. Recall from Pipelining Review. Lecture 15: Instruction Level Parallelism and Dynamic Execution

Page 1. Recall from Pipelining Review. Lecture 15: Instruction Level Parallelism and Dynamic Execution CS252 Graduate Computer Architecture Recall from Pipelining Review Lecture 15: Instruction Level Parallelism and Dynamic Execution March 11, 2002 Prof. David E. Culler Computer Science 252 Spring 2002

More information

CS252 Graduate Computer Architecture Lecture 6. Recall: Software Pipelining Example

CS252 Graduate Computer Architecture Lecture 6. Recall: Software Pipelining Example CS252 Graduate Computer Architecture Lecture 6 Tomasulo, Implicit Register Renaming, Loop-Level Parallelism Extraction Explicit Register Renaming John Kubiatowicz Electrical Engineering and Computer Sciences

More information

CPE 631 Lecture 11: Instruction Level Parallelism and Its Dynamic Exploitation

CPE 631 Lecture 11: Instruction Level Parallelism and Its Dynamic Exploitation Lecture 11: Instruction Level Parallelism and Its Dynamic Exploitation Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Outline Instruction

More information

Metodologie di Progettazione Hardware-Software

Metodologie di Progettazione Hardware-Software Metodologie di Progettazione Hardware-Software Advanced Pipelining and Instruction-Level Paralelism Metodologie di Progettazione Hardware/Software LS Ing. Informatica 1 ILP Instruction-level Parallelism

More information

ELEC 5200/6200 Computer Architecture and Design Fall 2016 Lecture 9: Instruction Level Parallelism

ELEC 5200/6200 Computer Architecture and Design Fall 2016 Lecture 9: Instruction Level Parallelism ELEC 5200/6200 Computer Architecture and Design Fall 2016 Lecture 9: Instruction Level Parallelism Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University,

More information

Adapted from David Patterson s slides on graduate computer architecture

Adapted from David Patterson s slides on graduate computer architecture Mei Yang Adapted from David Patterson s slides on graduate computer architecture Introduction Basic Compiler Techniques for Exposing ILP Advanced Branch Prediction Dynamic Scheduling Hardware-Based Speculation

More information

CISC 662 Graduate Computer Architecture Lecture 13 - CPI < 1

CISC 662 Graduate Computer Architecture Lecture 13 - CPI < 1 CISC 662 Graduate Computer Architecture Lecture 13 - CPI < 1 Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

CS433 Homework 3 (Chapter 3)

CS433 Homework 3 (Chapter 3) CS433 Homework 3 (Chapter 3) Assigned on 10/3/2017 Due in class on 10/17/2017 Instructions: 1. Please write your name and NetID clearly on the first page. 2. Refer to the course fact sheet for policies

More information

Superscalar Architectures: Part 2

Superscalar Architectures: Part 2 Superscalar Architectures: Part 2 Dynamic (Out-of-Order) Scheduling Lecture 3.2 August 23 rd, 2017 Jae W. Lee (jaewlee@snu.ac.kr) Computer Science and Engineering Seoul NaMonal University Download this

More information

Processor: Superscalars Dynamic Scheduling

Processor: Superscalars Dynamic Scheduling Processor: Superscalars Dynamic Scheduling Z. Jerry Shi Assistant Professor of Computer Science and Engineering University of Connecticut * Slides adapted from Blumrich&Gschwind/ELE475 03, Peh/ELE475 (Princeton),

More information

What is ILP? Instruction Level Parallelism. Where do we find ILP? How do we expose ILP?

What is ILP? Instruction Level Parallelism. Where do we find ILP? How do we expose ILP? What is ILP? Instruction Level Parallelism or Declaration of Independence The characteristic of a program that certain instructions are, and can potentially be. Any mechanism that creates, identifies,

More information

CPE 631 Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation

CPE 631 Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Outline Instruction

More information

Review: Evaluating Branch Alternatives. Lecture 3: Introduction to Advanced Pipelining. Review: Evaluating Branch Prediction

Review: Evaluating Branch Alternatives. Lecture 3: Introduction to Advanced Pipelining. Review: Evaluating Branch Prediction Review: Evaluating Branch Alternatives Lecture 3: Introduction to Advanced Pipelining Two part solution: Determine branch taken or not sooner, AND Compute taken branch address earlier Pipeline speedup

More information

Reduction of Data Hazards Stalls with Dynamic Scheduling So far we have dealt with data hazards in instruction pipelines by:

Reduction of Data Hazards Stalls with Dynamic Scheduling So far we have dealt with data hazards in instruction pipelines by: Reduction of Data Hazards Stalls with Dynamic Scheduling So far we have dealt with data hazards in instruction pipelines by: Result forwarding (register bypassing) to reduce or eliminate stalls needed

More information

Exploiting ILP with SW Approaches. Aleksandar Milenković, Electrical and Computer Engineering University of Alabama in Huntsville

Exploiting ILP with SW Approaches. Aleksandar Milenković, Electrical and Computer Engineering University of Alabama in Huntsville Lecture : Exploiting ILP with SW Approaches Aleksandar Milenković, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Outline Basic Pipeline Scheduling and Loop

More information

Lecture 8 Dynamic Branch Prediction, Superscalar and VLIW. Computer Architectures S

Lecture 8 Dynamic Branch Prediction, Superscalar and VLIW. Computer Architectures S Lecture 8 Dynamic Branch Prediction, Superscalar and VLIW Computer Architectures 521480S Dynamic Branch Prediction Performance = ƒ(accuracy, cost of misprediction) Branch History Table (BHT) is simplest

More information

Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 1)

Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 1) Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 1) ILP vs. Parallel Computers Dynamic Scheduling (Section 3.4, 3.5) Dynamic Branch Prediction (Section 3.3) Hardware Speculation and Precise

More information

Hardware-based Speculation

Hardware-based Speculation Hardware-based Speculation M. Sonza Reorda Politecnico di Torino Dipartimento di Automatica e Informatica 1 Introduction Hardware-based speculation is a technique for reducing the effects of control dependences

More information

Static vs. Dynamic Scheduling

Static vs. Dynamic Scheduling Static vs. Dynamic Scheduling Dynamic Scheduling Fast Requires complex hardware More power consumption May result in a slower clock Static Scheduling Done in S/W (compiler) Maybe not as fast Simpler processor

More information

Page # CISC 662 Graduate Computer Architecture. Lecture 8 - ILP 1. Pipeline CPI. Pipeline CPI (I) Michela Taufer

Page # CISC 662 Graduate Computer Architecture. Lecture 8 - ILP 1. Pipeline CPI. Pipeline CPI (I) Michela Taufer CISC 662 Graduate Computer Architecture Lecture 8 - ILP 1 Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

Review: Compiler techniques for parallelism Loop unrolling Ÿ Multiple iterations of loop in software:

Review: Compiler techniques for parallelism Loop unrolling Ÿ Multiple iterations of loop in software: CS152 Computer Architecture and Engineering Lecture 17 Dynamic Scheduling: Tomasulo March 20, 2001 John Kubiatowicz (http.cs.berkeley.edu/~kubitron) lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/

More information

For this problem, consider the following architecture specifications: Functional Unit Type Cycles in EX Number of Functional Units

For this problem, consider the following architecture specifications: Functional Unit Type Cycles in EX Number of Functional Units CS333: Computer Architecture Spring 006 Homework 3 Total Points: 49 Points (undergrad), 57 Points (graduate) Due Date: Feb. 8, 006 by 1:30 pm (See course information handout for more details on late submissions)

More information

Updated Exercises by Diana Franklin

Updated Exercises by Diana Franklin C-82 Appendix C Pipelining: Basic and Intermediate Concepts Updated Exercises by Diana Franklin C.1 [15/15/15/15/25/10/15] Use the following code fragment: Loop: LD R1,0(R2) ;load R1 from address

More information

EECC551 Exam Review 4 questions out of 6 questions

EECC551 Exam Review 4 questions out of 6 questions EECC551 Exam Review 4 questions out of 6 questions (Must answer first 2 questions and 2 from remaining 4) Instruction Dependencies and graphs In-order Floating Point/Multicycle Pipelining (quiz 2) Improving

More information

Instruction Level Parallelism

Instruction Level Parallelism Instruction Level Parallelism The potential overlap among instruction execution is called Instruction Level Parallelism (ILP) since instructions can be executed in parallel. There are mainly two approaches

More information

Chapter 3: Instruction Level Parallelism (ILP) and its exploitation. Types of dependences

Chapter 3: Instruction Level Parallelism (ILP) and its exploitation. Types of dependences Chapter 3: Instruction Level Parallelism (ILP) and its exploitation Pipeline CPI = Ideal pipeline CPI + stalls due to hazards invisible to programmer (unlike process level parallelism) ILP: overlap execution

More information

Hardware-based speculation (2.6) Multiple-issue plus static scheduling = VLIW (2.7) Multiple-issue, dynamic scheduling, and speculation (2.

Hardware-based speculation (2.6) Multiple-issue plus static scheduling = VLIW (2.7) Multiple-issue, dynamic scheduling, and speculation (2. Instruction-Level Parallelism and its Exploitation: PART 2 Hardware-based speculation (2.6) Multiple-issue plus static scheduling = VLIW (2.7) Multiple-issue, dynamic scheduling, and speculation (2.8)

More information

Scoreboard information (3 tables) Four stages of scoreboard control

Scoreboard information (3 tables) Four stages of scoreboard control Scoreboard information (3 tables) Instruction : issued, read operands and started execution (dispatched), completed execution or wrote result, Functional unit (assuming non-pipelined units) busy/not busy

More information

Minimizing Data hazard Stalls by Forwarding Data Hazard Classification Data Hazards Present in Current MIPS Pipeline

Minimizing Data hazard Stalls by Forwarding Data Hazard Classification Data Hazards Present in Current MIPS Pipeline Instruction Pipelining Review: MIPS In-Order Single-Issue Integer Pipeline Performance of Pipelines with Stalls Pipeline Hazards Structural hazards Data hazards Minimizing Data hazard Stalls by Forwarding

More information

Page 1. CISC 662 Graduate Computer Architecture. Lecture 8 - ILP 1. Pipeline CPI. Pipeline CPI (I) Pipeline CPI (II) Michela Taufer

Page 1. CISC 662 Graduate Computer Architecture. Lecture 8 - ILP 1. Pipeline CPI. Pipeline CPI (I) Pipeline CPI (II) Michela Taufer CISC 662 Graduate Computer Architecture Lecture 8 - ILP 1 Michela Taufer Pipeline CPI http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson

More information

Website for Students VTU NOTES QUESTION PAPERS NEWS RESULTS

Website for Students VTU NOTES QUESTION PAPERS NEWS RESULTS Advanced Computer Architecture- 06CS81 Hardware Based Speculation Tomasulu algorithm and Reorder Buffer Tomasulu idea: 1. Have reservation stations where register renaming is possible 2. Results are directly

More information

Lecture 4: Introduction to Advanced Pipelining

Lecture 4: Introduction to Advanced Pipelining Lecture 4: Introduction to Advanced Pipelining Prepared by: Professor David A. Patterson Computer Science 252, Fall 1996 Edited and presented by : Prof. Kurt Keutzer Computer Science 252, Spring 2000 KK

More information

Load1 no Load2 no Add1 Y Sub Reg[F2] Reg[F6] Add2 Y Add Reg[F2] Add1 Add3 no Mult1 Y Mul Reg[F2] Reg[F4] Mult2 Y Div Reg[F6] Mult1

Load1 no Load2 no Add1 Y Sub Reg[F2] Reg[F6] Add2 Y Add Reg[F2] Add1 Add3 no Mult1 Y Mul Reg[F2] Reg[F4] Mult2 Y Div Reg[F6] Mult1 Instruction Issue Execute Write result L.D F6, 34(R2) L.D F2, 45(R3) MUL.D F0, F2, F4 SUB.D F8, F2, F6 DIV.D F10, F0, F6 ADD.D F6, F8, F2 Name Busy Op Vj Vk Qj Qk A Load1 no Load2 no Add1 Y Sub Reg[F2]

More information

ECE 505 Computer Architecture

ECE 505 Computer Architecture ECE 505 Computer Architecture Pipelining 2 Berk Sunar and Thomas Eisenbarth Review 5 stages of RISC IF ID EX MEM WB Ideal speedup of pipelining = Pipeline depth (N) Practically Implementation problems

More information

Instruction Level Parallelism. Taken from

Instruction Level Parallelism. Taken from Instruction Level Parallelism Taken from http://www.cs.utsa.edu/~dj/cs3853/lecture5.ppt Outline ILP Compiler techniques to increase ILP Loop Unrolling Static Branch Prediction Dynamic Branch Prediction

More information

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes.

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. The Processor Pipeline Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. Pipeline A Basic MIPS Implementation Memory-reference instructions Load Word (lw) and Store Word (sw) ALU instructions

More information

Instruction Pipelining Review

Instruction Pipelining Review Instruction Pipelining Review Instruction pipelining is CPU implementation technique where multiple operations on a number of instructions are overlapped. An instruction execution pipeline involves a number

More information

Good luck and have fun!

Good luck and have fun! Midterm Exam October 13, 2014 Name: Problem 1 2 3 4 total Points Exam rules: Time: 90 minutes. Individual test: No team work! Open book, open notes. No electronic devices, except an unprogrammed calculator.

More information

Dynamic Scheduling. Better than static scheduling Scoreboarding: Tomasulo algorithm:

Dynamic Scheduling. Better than static scheduling Scoreboarding: Tomasulo algorithm: LECTURE - 13 Dynamic Scheduling Better than static scheduling Scoreboarding: Used by the CDC 6600 Useful only within basic block WAW and WAR stalls Tomasulo algorithm: Used in IBM 360/91 for the FP unit

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 3 Instruction-Level Parallelism and Its Exploitation 1 Branch Prediction Basic 2-bit predictor: For each branch: Predict taken or not

More information

Computer Architecture Homework Set # 3 COVER SHEET Please turn in with your own solution

Computer Architecture Homework Set # 3 COVER SHEET Please turn in with your own solution CSCE 6 (Fall 07) Computer Architecture Homework Set # COVER SHEET Please turn in with your own solution Eun Jung Kim Write your answers on the sheets provided. Submit with the COVER SHEET. If you need

More information

Lecture-13 (ROB and Multi-threading) CS422-Spring

Lecture-13 (ROB and Multi-threading) CS422-Spring Lecture-13 (ROB and Multi-threading) CS422-Spring 2018 Biswa@CSE-IITK Cycle 62 (Scoreboard) vs 57 in Tomasulo Instruction status: Read Exec Write Exec Write Instruction j k Issue Oper Comp Result Issue

More information

Lecture 9: Case Study MIPS R4000 and Introduction to Advanced Pipelining Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 9: Case Study MIPS R4000 and Introduction to Advanced Pipelining Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 9: Case Study MIPS R4000 and Introduction to Advanced Pipelining Professor Randy H. Katz Computer Science 252 Spring 1996 RHK.SP96 1 Review: Evaluating Branch Alternatives Two part solution: Determine

More information

EE557--FALL 1999 MAKE-UP MIDTERM 1. Closed books, closed notes

EE557--FALL 1999 MAKE-UP MIDTERM 1. Closed books, closed notes NAME: STUDENT NUMBER: EE557--FALL 1999 MAKE-UP MIDTERM 1 Closed books, closed notes Q1: /1 Q2: /1 Q3: /1 Q4: /1 Q5: /15 Q6: /1 TOTAL: /65 Grade: /25 1 QUESTION 1(Performance evaluation) 1 points We are

More information

CS 2410 Mid term (fall 2015) Indicate which of the following statements is true and which is false.

CS 2410 Mid term (fall 2015) Indicate which of the following statements is true and which is false. CS 2410 Mid term (fall 2015) Name: Question 1 (10 points) Indicate which of the following statements is true and which is false. (1) SMT architectures reduces the thread context switch time by saving in

More information

DYNAMIC INSTRUCTION SCHEDULING WITH SCOREBOARD

DYNAMIC INSTRUCTION SCHEDULING WITH SCOREBOARD DYNAMIC INSTRUCTION SCHEDULING WITH SCOREBOARD Slides by: Pedro Tomás Additional reading: Computer Architecture: A Quantitative Approach, 5th edition, Chapter 3, John L. Hennessy and David A. Patterson,

More information

Complications with long instructions. CMSC 411 Computer Systems Architecture Lecture 6 Basic Pipelining 3. How slow is slow?

Complications with long instructions. CMSC 411 Computer Systems Architecture Lecture 6 Basic Pipelining 3. How slow is slow? Complications with long instructions CMSC 411 Computer Systems Architecture Lecture 6 Basic Pipelining 3 Long Instructions & MIPS Case Study So far, all MIPS instructions take 5 cycles But haven't talked

More information

Super Scalar. Kalyan Basu March 21,

Super Scalar. Kalyan Basu March 21, Super Scalar Kalyan Basu basu@cse.uta.edu March 21, 2007 1 Super scalar Pipelines A pipeline that can complete more than 1 instruction per cycle is called a super scalar pipeline. We know how to build

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 3. Instruction-Level Parallelism and Its Exploitation

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 3. Instruction-Level Parallelism and Its Exploitation Computer Architecture A Quantitative Approach, Fifth Edition Chapter 3 Instruction-Level Parallelism and Its Exploitation Introduction Pipelining become universal technique in 1985 Overlaps execution of

More information

CENG 3531 Computer Architecture Spring a. T / F A processor can have different CPIs for different programs.

CENG 3531 Computer Architecture Spring a. T / F A processor can have different CPIs for different programs. Exam 2 April 12, 2012 You have 80 minutes to complete the exam. Please write your answers clearly and legibly on this exam paper. GRADE: Name. Class ID. 1. (22 pts) Circle the selected answer for T/F and

More information

The basic structure of a MIPS floating-point unit

The basic structure of a MIPS floating-point unit Tomasulo s scheme The algorithm based on the idea of reservation station The reservation station fetches and buffers an operand as soon as it is available, eliminating the need to get the operand from

More information

ILP: Instruction Level Parallelism

ILP: Instruction Level Parallelism ILP: Instruction Level Parallelism Tassadaq Hussain Riphah International University Barcelona Supercomputing Center Universitat Politècnica de Catalunya Introduction Introduction Pipelining become universal

More information

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e Instruction Level Parallelism Appendix C and Chapter 3, HP5e Outline Pipelining, Hazards Branch prediction Static and Dynamic Scheduling Speculation Compiler techniques, VLIW Limits of ILP. Implementation

More information

The Evolution of Microprocessors. Per Stenström

The Evolution of Microprocessors. Per Stenström The Evolution of Microprocessors Per Stenström Processor (Core) Processor (Core) Processor (Core) L1 Cache L1 Cache L1 Cache L2 Cache Microprocessor Chip Memory Evolution of Microprocessors Multicycle

More information

CS425 Computer Systems Architecture

CS425 Computer Systems Architecture CS425 Computer Systems Architecture Fall 2018 Static Instruction Scheduling 1 Techniques to reduce stalls CPI = Ideal CPI + Structural stalls per instruction + RAW stalls per instruction + WAR stalls per

More information

Pipelining: Issue instructions in every cycle (CPI 1) Compiler scheduling (static scheduling) reduces impact of dependences

Pipelining: Issue instructions in every cycle (CPI 1) Compiler scheduling (static scheduling) reduces impact of dependences Dynamic Scheduling Pipelining: Issue instructions in every cycle (CPI 1) Compiler scheduling (static scheduling) reduces impact of dependences Increased compiler complexity, especially when attempting

More information

吳俊興高雄大學資訊工程學系. October Example to eleminate WAR and WAW by register renaming. Tomasulo Algorithm. A Dynamic Algorithm: Tomasulo s Algorithm

吳俊興高雄大學資訊工程學系. October Example to eleminate WAR and WAW by register renaming. Tomasulo Algorithm. A Dynamic Algorithm: Tomasulo s Algorithm EEF011 Computer Architecture 計算機結構 吳俊興高雄大學資訊工程學系 October 2004 Example to eleminate WAR and WAW by register renaming Original DIV.D ADD.D S.D SUB.D MUL.D F0, F2, F4 F6, F0, F8 F6, 0(R1) F8, F10, F14 F6,

More information

Branch prediction ( 3.3) Dynamic Branch Prediction

Branch prediction ( 3.3) Dynamic Branch Prediction prediction ( 3.3) Static branch prediction (built into the architecture) The default is to assume that branches are not taken May have a design which predicts that branches are taken It is reasonable to

More information

Compiler Optimizations. Lecture 7 Overview of Superscalar Techniques. Memory Allocation by Compilers. Compiler Structure. Register allocation

Compiler Optimizations. Lecture 7 Overview of Superscalar Techniques. Memory Allocation by Compilers. Compiler Structure. Register allocation Lecture 7 Overview of Superscalar Techniques CprE 581 Computer Systems Architecture, Fall 2013 Reading: Textbook, Ch. 3 Complexity-Effective Superscalar Processors, PhD Thesis by Subbarao Palacharla, Ch.1

More information

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds?

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds? Chapter 4: Assessing and Understanding Performance 1. Define response (execution) time. 2. Define throughput. 3. Describe why using the clock rate of a processor is a bad way to measure performance. Provide

More information

CSE 820 Graduate Computer Architecture. week 6 Instruction Level Parallelism. Review from Last Time #1

CSE 820 Graduate Computer Architecture. week 6 Instruction Level Parallelism. Review from Last Time #1 CSE 820 Graduate Computer Architecture week 6 Instruction Level Parallelism Based on slides by David Patterson Review from Last Time #1 Leverage Implicit Parallelism for Performance: Instruction Level

More information

Lecture 6 MIPS R4000 and Instruction Level Parallelism. Computer Architectures S

Lecture 6 MIPS R4000 and Instruction Level Parallelism. Computer Architectures S Lecture 6 MIPS R4000 and Instruction Level Parallelism Computer Architectures 521480S Case Study: MIPS R4000 (200 MHz, 64-bit instructions, MIPS-3 instruction set) 8 Stage Pipeline: first half of fetching

More information

Slide Set 8. for ENCM 501 in Winter Steve Norman, PhD, PEng

Slide Set 8. for ENCM 501 in Winter Steve Norman, PhD, PEng Slide Set 8 for ENCM 501 in Winter 2018 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary March 2018 ENCM 501 Winter 2018 Slide Set 8 slide

More information

5008: Computer Architecture

5008: Computer Architecture 5008: Computer Architecture Chapter 2 Instruction-Level Parallelism and Its Exploitation CA Lecture05 - ILP (cwliu@twins.ee.nctu.edu.tw) 05-1 Review from Last Lecture Instruction Level Parallelism Leverage

More information

HY425 Lecture 05: Branch Prediction

HY425 Lecture 05: Branch Prediction HY425 Lecture 05: Branch Prediction Dimitrios S. Nikolopoulos University of Crete and FORTH-ICS October 19, 2011 Dimitrios S. Nikolopoulos HY425 Lecture 05: Branch Prediction 1 / 45 Exploiting ILP in hardware

More information

As the amount of ILP to exploit grows, control dependences rapidly become the limiting factor.

As the amount of ILP to exploit grows, control dependences rapidly become the limiting factor. Hiroaki Kobayashi // As the amount of ILP to exploit grows, control dependences rapidly become the limiting factor. Branches will arrive up to n times faster in an n-issue processor, and providing an instruction

More information

Hardware-based Speculation

Hardware-based Speculation Hardware-based Speculation Hardware-based Speculation To exploit instruction-level parallelism, maintaining control dependences becomes an increasing burden. For a processor executing multiple instructions

More information

Solutions to exercises on Instruction Level Parallelism

Solutions to exercises on Instruction Level Parallelism Solutions to exercises on Instruction Level Parallelism J. Daniel García Sánchez (coordinator) David Expósito Singh Javier García Blas Computer Architecture ARCOS Group Computer Science and Engineering

More information

Instruction Level Parallelism. ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction

Instruction Level Parallelism. ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction Instruction Level Parallelism ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction Basic Block A straight line code sequence with no branches in except to the entry and no branches

More information

Getting CPI under 1: Outline

Getting CPI under 1: Outline CMSC 411 Computer Systems Architecture Lecture 12 Instruction Level Parallelism 5 (Improving CPI) Getting CPI under 1: Outline More ILP VLIW branch target buffer return address predictor superscalar more

More information

T T T T T T N T T T T T T T T N T T T T T T T T T N T T T T T T T T T T T N.

T T T T T T N T T T T T T T T N T T T T T T T T T N T T T T T T T T T T T N. A1: Architecture (25 points) Consider these four possible branch predictors: (A) Static backward taken, forward not taken (B) 1-bit saturating counter (C) 2-bit saturating counter (D) Global predictor

More information

CSE 502 Graduate Computer Architecture. Lec 8-10 Instruction Level Parallelism

CSE 502 Graduate Computer Architecture. Lec 8-10 Instruction Level Parallelism CSE 502 Graduate Computer Architecture Lec 8-10 Instruction Level Parallelism Larry Wittie Computer Science, StonyBrook University http://www.cs.sunysb.edu/~cse502 and ~lw Slides adapted from David Patterson,

More information

Predict Not Taken. Revisiting Branch Hazard Solutions. Filling the delay slot (e.g., in the compiler) Delayed Branch

Predict Not Taken. Revisiting Branch Hazard Solutions. Filling the delay slot (e.g., in the compiler) Delayed Branch branch taken Revisiting Branch Hazard Solutions Stall Predict Not Taken Predict Taken Branch Delay Slot Branch I+1 I+2 I+3 Predict Not Taken branch not taken Branch I+1 IF (bubble) (bubble) (bubble) (bubble)

More information

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard Computer Architecture and Organization Pipeline: Control Hazard Lecturer: Prof. Yifeng Zhu Fall, 2015 Portions of these slides are derived from: Dave Patterson UCB Lec 15.1 Pipelining Outline Introduction

More information

ADVANCED COMPUTER ARCHITECTURES: Prof. C. SILVANO Written exam 11 July 2011

ADVANCED COMPUTER ARCHITECTURES: Prof. C. SILVANO Written exam 11 July 2011 ADVANCED COMPUTER ARCHITECTURES: 088949 Prof. C. SILVANO Written exam 11 July 2011 SURNAME NAME ID EMAIL SIGNATURE EX1 (3) EX2 (3) EX3 (3) EX4 (5) EX5 (5) EX6 (4) EX7 (5) EX8 (3+2) TOTAL (33) EXERCISE

More information

3.16 Historical Perspective and References

3.16 Historical Perspective and References Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 247 Power4 Power5 Power6 Power7 Introduced 2001 2004 2007 2010 Initial clock rate (GHz) 1.3 1.9 4.7 3.6 Transistor count (M) 174 276 790

More information

CISC 662 Graduate Computer Architecture Lecture 11 - Hardware Speculation Branch Predictions

CISC 662 Graduate Computer Architecture Lecture 11 - Hardware Speculation Branch Predictions CISC 662 Graduate Computer Architecture Lecture 11 - Hardware Speculation Branch Predictions Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis6627 Powerpoint Lecture Notes from John Hennessy

More information

Outline Review: Basic Pipeline Scheduling and Loop Unrolling Multiple Issue: Superscalar, VLIW. CPE 631 Session 19 Exploiting ILP with SW Approaches

Outline Review: Basic Pipeline Scheduling and Loop Unrolling Multiple Issue: Superscalar, VLIW. CPE 631 Session 19 Exploiting ILP with SW Approaches Session xploiting ILP with SW Approaches lectrical and Computer ngineering University of Alabama in Huntsville Outline Review: Basic Pipeline Scheduling and Loop Unrolling Multiple Issue: Superscalar,

More information

CS 614 COMPUTER ARCHITECTURE II FALL 2004

CS 614 COMPUTER ARCHITECTURE II FALL 2004 CS 64 COMPUTER ARCHITECTURE II FALL 004 DUE : October, 005 HOMEWORK II READ : - Portions of Chapters 5, 7, 8 and 9 of the Sima book and - Portions of Chapter 3, 4 and Appendix A of the Hennessy book ASSIGNMENT:

More information

CMSC411 Fall 2013 Midterm 2 Solutions

CMSC411 Fall 2013 Midterm 2 Solutions CMSC411 Fall 2013 Midterm 2 Solutions 1. (12 pts) Memory hierarchy a. (6 pts) Suppose we have a virtual memory of size 64 GB, or 2 36 bytes, where pages are 16 KB (2 14 bytes) each, and the machine has

More information

Chapter 3 (CONT II) Instructor: Josep Torrellas CS433. Copyright J. Torrellas 1999,2001,2002,2007,

Chapter 3 (CONT II) Instructor: Josep Torrellas CS433. Copyright J. Torrellas 1999,2001,2002,2007, Chapter 3 (CONT II) Instructor: Josep Torrellas CS433 Copyright J. Torrellas 1999,2001,2002,2007, 2013 1 Hardware-Based Speculation (Section 3.6) In multiple issue processors, stalls due to branches would

More information

EE557--FALL 2000 MIDTERM 2. Open books and notes

EE557--FALL 2000 MIDTERM 2. Open books and notes NAME: Solutions STUDENT NUMBER: EE557--FALL 2000 MIDTERM 2 Open books and notes Time limit: 1hour and 20 minutes MAX. No extension. Q1: /12 Q2: /8 Q3: /9 Q4: /8 Q5: /8 Q6: /5 TOTAL: /50 Grade: /25 1 QUESTION

More information

CMSC 411 Computer Systems Architecture Lecture 6 Basic Pipelining 3. Complications With Long Instructions

CMSC 411 Computer Systems Architecture Lecture 6 Basic Pipelining 3. Complications With Long Instructions CMSC 411 Computer Systems Architecture Lecture 6 Basic Pipelining 3 Long Instructions & MIPS Case Study Complications With Long Instructions So far, all MIPS instructions take 5 cycles But haven't talked

More information

Course on Advanced Computer Architectures

Course on Advanced Computer Architectures Surname (Cognome) Name (Nome) POLIMI ID Number Signature (Firma) SOLUTION Politecnico di Milano, July 9, 2018 Course on Advanced Computer Architectures Prof. D. Sciuto, Prof. C. Silvano EX1 EX2 EX3 Q1

More information

CS152 Computer Architecture and Engineering March 13, 2008 Out of Order Execution and Branch Prediction Assigned March 13 Problem Set #4 Due March 25

CS152 Computer Architecture and Engineering March 13, 2008 Out of Order Execution and Branch Prediction Assigned March 13 Problem Set #4 Due March 25 CS152 Computer Architecture and Engineering March 13, 2008 Out of Order Execution and Branch Prediction Assigned March 13 Problem Set #4 Due March 25 http://inst.eecs.berkeley.edu/~cs152/sp08 The problem

More information

Multicycle ALU Operations 2/28/2011. Diversified Pipelines The Path Toward Superscalar Processors. Limitations of Our Simple 5 stage Pipeline

Multicycle ALU Operations 2/28/2011. Diversified Pipelines The Path Toward Superscalar Processors. Limitations of Our Simple 5 stage Pipeline //11 Limitations of Our Simple stage Pipeline Diversified Pipelines The Path Toward Superscalar Processors HPCA, Spring 11 Assumes single cycle EX stage for all instructions This is not feasible for Complex

More information