Machine Cycle- 1: OFMC: Status signals IO/M=0, S 1 =1, S 0 =1

Size: px
Start display at page:

Download "Machine Cycle- 1: OFMC: Status signals IO/M=0, S 1 =1, S 0 =1"

Transcription

1 Lecture Rcond: This is a conditional return statement. It is also a part of the subroutine. Whenever this instruction is executed, μp checks the conditional flags. If the condition is found true then the μp returns to the main program by loading the (PC) with the return address stored at the top of the stack. If the condition is found not true then the next instruction of the subroutine will be executed. This is a single byte instruction. The operation code format is 1 1 C C C N There are 8 variations in this statement depending upon CCC. They are RNZ, RZ, RNC, RC, RPO, RPE, RP and RM. The addressing mode is register indirect because the return address is available in the memory location pointed by SP. The macro RTL implemented is, If CCC= TRUE (PCL) M [(SP)] (PCH) M [(SP) +1 ] (SP) (SP) + 2 Else Nothing. where (PCH,PCL) is the return address. If the condition tested is TRUE, then the 8-bit data (lower order 8-bit return address) from the top of the stack pointed by (SP) is moved to (PCL). The 8-bit data (higher order 8-bit return address) from next higher memory location whose address is one more than the content of (SP) is moved to (PCH). The content of the register (SP) is incremented by 2 in this

2 process so that it always point to the top of the stack. Control is transferred back to the main program. If the condition is not found TRUE, the control goes to the next instruction of subroutine in sequence. The macro RTL implementation flowchart is shown below: Machine Cycle- 1: T 1 : A 15 -A 8 (PCH), AD 7 -AD 0 (PCL), ALE = T 2 : RD = 0, (PC) (PC) +1, AD 7 -AD 0 M(AB) T 3 : RD = 1,, (IR) AD 7 -AD 0 T 4 : μp decodes the opcode. Rcond = 1. T 5 : If condition CCC is TRUE then T 6 : go for MC-2 else nothing. Machine Cycle- 2: MRMC: Status signals IO/M=0, S 1 =1, S 0 =0 T 2 : RD = 0, (SP) (SP) +1, AD 7 -AD 0 M(AB) T 3 : RD = 1,, (PCL) AD 7 -AD 0 Machine Cycle- 3: MRMC: Status signals IO/M=0, S 1 =1, S 0 =0 T 2 : RD = 0, (SP) (SP) +1, AD 7 -AD 0 M(AB) T 3 : RD = 1,, (PCH) AD 7 -AD 0

3 Thus, if condition is TRUE it requires 3 machine cycles and 12 states otherwise one machine cycle OFMC and 6 states. For 2MH 3 internal clock the time required is 6μsec or 3 μsec. 7. RST n: This is a single byte unconditional subroutine call instruction. The address of the subroutine is fixed depending upon the decimal number n in the instruction. The decimal number n can change from 0 to 7. The corresponding binary number (NNN) 2 is available as D 5 D 4 D 3 bits of the operation code. N N N n RST-n RST RST RST RST RST RST RST RST-7 The operation code format is 1 1 N N N N There are 8 variations of this instructions depending upon NNN as specified in the table above. The subroutine starting address is calculated as follows: Multiply the decimal number n by 8. Convert it to the corresponding 2 digit hexa decimal number (Y 1 Y 0 ) H (= 8 x n). Append

4 (00) H for the two most significant hexa digits (Y 3 Y 2 ) H so that a 16-bit address (Y 3 Y 2 Y 1 Y 0 ) H (00 Y 1 Y 0 ) H is obtained. E.g. the subroutine starting address for RST-5 is (8 x 5) D = 40 D = 28 H (0028) H. The macro RTL implemented is, M [(SP) -1 ] (PCH) M [(SP) - 2 ] (PCL) (SP) (SP) 2 (PC) (8 x n) where (PCH,PCL) is the return address. The higher order 8-bits of the return address are moved to the memory location whose address is one less than the content of (SP). The lower order 8-bits of the return address are moved to the memory location whose address is two less than the content of (SP). The content of the register (SP) is decremented by 2 in this process so that it always point to the top of the stack. Control is transferred to the instruction whose address is calculated according to number n specified in the instrcution. The addressing mode used is register indirect addressing mode because the return address has to be saved on the top of the stack pointed to by 16-bit register (SP). The macro RTL flow is as shown below: Machine Cycle- 1: T 1 : A 15 -A 8 (PCH), AD 7 -AD 0 (PCL), ALE = T 2 : RD = 0, (PC) (PC) +1, AD 7 -AD 0 M(AB)

5 T 3 : RD = 1,, (IR) AD 7 -AD 0 T 4 : μp decodes the opcode. RST-n = 1. T 5 : Address (8 x n) is calculated and stored in (W,Z) register pair. T 6 : (SP) (SP) -1 Machine Cycle- 2: MWRMC: Status signals IO/M=0, S 1 =1, S 0 =1 T 2 : WR = 0, AD 7 -AD 0 (PCH) T 3 : WR = 1,, M(AB) AD 7 -AD 0, (SP) (SP) -1 Machine Cycle- 3: MWRMC: Status signals IO/M=0, S 1 =1, S 0 =1 T 2 : WR = 0, AD 7 -AD 0 (PCL) T 3 : WR = 1,, M(AB) AD 7 -AD 0, Machine Cycle- 4 or (Machine Cycle-1 of next instruction): T 1 : A 15 -A 8 (W), AD 7 -AD 0 (Z), ALE = T 2 : RD = 0, FEO [(PC) (W, Z) +1], AD 7 -AD 0 M(AB) Thus, it requires three machine cycles OFMC, & two MWRMC and total 12 states. Using a 2 MH 3 internal clock it requires 6μsec.

6 One important point while writing a subroutine program starting from the fixed location as calculated. Consider for example RST 5 & RST 6. The corresponding starting addresses of the subroutine are 0028 H for RST 5 & 0030 H for RST 6. There is RST 5.5 interrupt control signal input at pin no 9 of the μp. This also corresponding to an interrupt service routine starting from 002C H. These addresses are shown in fig C3 RST Y 1 Y 0 Y 3 Y 2 Y 1 Y 0 RST- 5 subroutine address 002A H Y 3 Y 2 002B H 00 No operation 002C H C3 RST D H Z 1 Z 0 Z 3 Z 2 Z 1 Z 0 RST 5 subroutine address 002E H Z 3 Z 2 002F H 00 No operation 0030 H C3 RST H X 1 X 0 X 3 X 2 X 1 X 0 RST- 6 subroutine address 0032 H X 3 Y H 00 The figure shows that there are only four bytes, possible for each subroutine link and it is difficult to write subroutine here. Therefore, an unconditional jump instruction if 3-byts is written here. First byte will be C3 H (jump Instruction) and 2 nd & 3 rd bytes will be the address of some memory locations which is the starting address of subroutine. This is known as subroutine link address 4 th byte is no operation.

7 8. PCHL: This is a single byte instruction. The operation code is N There is no variation of this instruction. The macro RTL implemented is, (PCL) (L) (PCH) (H) Or (PC) (H,L) The meaning of the instruction is Move the content of register (H) to the higher byte of program counter (PCH) and move the content of register (L) to lower byte of program counter (PCL). In this way the control is transferred to the memory location whose address is available in (H, L) register pair. This is called register indirect jump instruction. This is the only instruction available in 8085A which allows the user to obtain a jump address from a register pair. This instruction uses register addressing mode. Other jump instructions use immediate and register indirect addressing mode. This instruction is very useful in implementing select structure of the software program. The macro RTL flow is as shown below: Machine Cycle- 1: T 1 : A 15 -A 8 (PCH), AD 7 -AD 0 (PCL), ALE = T 2 : RD = 0, (PC) (PC) +1, AD 7 -AD 0 M(AB) T 3 : RD = 1,, (IR) AD 7 -AD 0 T 4 : μp decodes the opcode. PCHL = 1. T 5 : (PCL) (L) T 6 : (PCH) (H) Thus 6 states are required no flags affected.

Machine Cycle- 2 or (Machine Cycle-1 of next instruction):

Machine Cycle- 2 or (Machine Cycle-1 of next instruction): Lecture-29 17. CMA: (Complement accumulator) This is an ALP statement. The meaning of the instruction is Complement the content of accumulator bit by bit and store the result back into the accumulator.

More information

N <B 2 > N+1 <B 3 > N+2

N <B 2 > N+1 <B 3 > N+2 Lecture-22: 9. LHLD ADDR: This is an ALP statement. LHLD is the mnemonic for LOAD (H,L) REGISTER PAIR DIRECT. The meaning of the instruction is Load the content of the memory location whose address is

More information

13. IN PORT: This is an ALP statement. PORT is the symbolic name given to 8-bit address of the input device available as a 2 nd byte of the

13. IN PORT: This is an ALP statement. PORT is the symbolic name given to 8-bit address of the input device available as a 2 nd byte of the Lecture-23 IN PORT & OUT PORT: Data is transferred from the microprocessor to an output device in an output transfer and from an input device to the microprocessor in an input transfer. Output devices

More information

Lecture-15 W-Z: Increment-Decrement Address Latch:

Lecture-15 W-Z: Increment-Decrement Address Latch: Lecture-15 W-Z: (W) and (Z) are two 8-bit temporary registers not accessible to the user. They are exclusively used for the internal operation by the microprocessor. These registers are used either to

More information

MACHINE CONTROL INSTRUCTIONS: 1. EI

MACHINE CONTROL INSTRUCTIONS: 1. EI Lecture-33 MACHINE CONTROL INSTRUCTIONS: 1. EI (Enable interrupts): The interrupt system is disabled just after RESET operation. There is an internal INTE F/F (Interrupt enable flipflop) which is reset

More information

Lecture-41 Interrupt I/O Transfer

Lecture-41 Interrupt I/O Transfer Lecture-41 Interrupt I/O Transfer Whenever any interrupt is recognized, it executes an interrupt machine cycle. If the VALID INT is true due to either TRAP or RST 7.5, or RST 6.5 or RST 5.5 then the interrupt

More information

Lecture-19 Instruction Set

Lecture-19 Instruction Set Lecture-19 Instruction Set MVI M, DATA: This is an ALP statement DATA is symbolic name given to the 2 nd byte of the instruction MVI is the mnemonic for move immediate. M in the operand field stands for

More information

2003 LXI H, 42F2H ; this instruction store 42F2 in to the HL pair POP H ; store data from top of the stack to HL pair

2003 LXI H, 42F2H ; this instruction store 42F2 in to the HL pair POP H ; store data from top of the stack to HL pair (1) What is stack? Explain stack related instruction with example OR Give function of stack. OR What is stack? Explain the stack operations using examples. The stack is a group of memory location in the

More information

8085 INSTRUCTION SET INSTRUCTION DETAILS

8085 INSTRUCTION SET INSTRUCTION DETAILS 8085 INSTRUCTION SET INSTRUCTION DETAILS DATA TRANSFER INSTRUCTIONS MOV Rd, Rs Copy from source to destination This instruction copies the contents of the source register Rs into the destination register

More information

Instruction Set Instruction set of 8085 can be classified in following groups: Data Transfer Instructions These instructions can perform data transfer operations between Registers of 8085 e.g. MOV 8085

More information

(2) Explain the addressing mode of OR What do you mean by addressing mode? Explain diff. addressing mode for 8085 with examples.

(2) Explain the addressing mode of OR What do you mean by addressing mode? Explain diff. addressing mode for 8085 with examples. (1) Explain instruction format and Opcode format of 8085 μp with example. OR With help of examples, explain the formation of opcodes of 8085 OR What is an instruction? List type of instruction based on

More information

Introduction to Assembly Language Programming (Instruction Set) 1/18/2011 1

Introduction to Assembly Language Programming (Instruction Set) 1/18/2011 1 Introduction to Assembly Language Programming (Instruction Set) 1/18/2011 1 High Level Language Compiler Assembly Language Assembler Machine Code Microprocessor Hardware 1/18/2011 2 8085A Instruction Set

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial :. PT_EE-EC_A_Microprocessor_968 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: -452462 CLASS TEST 28-9 Subject : Microprocessors

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. QUESTION BANK DEPARTMENT: EEE SUB CODE: EE2324 YR/ SEM:III/ VI SUB NAME: MICROPROCESSORS & MICROCONTROLLERS UNIT 2- PROGRAMMING OF 8085 MICROPROCESSORS

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

Pin Description, Status & Control Signals of 8085 Microprocessor

Pin Description, Status & Control Signals of 8085 Microprocessor Pin Description, Status & Control Signals of 8085 Microprocessor 1 Intel 8085 CPU Block Diagram 2 The 8085 Block Diagram Registers hold temporary data. Instruction register (IR) holds the currently executing

More information

INSTRUCTION SET OF 8085

INSTRUCTION SET OF 8085 INSTRUCTION SET OF 8085 Instruction Set of 8085 An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The entire group of instructions that a microprocessor

More information

UNIT I. Differences between: Microcomputer, Microprocessor and Microcontroller

UNIT I. Differences between: Microcomputer, Microprocessor and Microcontroller UNIT I SYLLABUS INTRODUCTION TO 8085 Intel 8085 Microprocessor architecture signals Addressing modes Instruction classification Instruction set Timing diagram ALP format Programming 8085 8-bit and 16-bit

More information

8085 Microprocessor Architecture and Memory Interfacing. Microprocessor and Microcontroller Interfacing

8085 Microprocessor Architecture and Memory Interfacing. Microprocessor and Microcontroller Interfacing 8085 Microprocessor Architecture and Memory 1 Points to be Discussed 8085 Microprocessor 8085 Microprocessor (CPU) Block Diagram Control & Status Signals Interrupt Signals 8085 Microprocessor Signal Flow

More information

Lecture-55 System Interface:

Lecture-55 System Interface: Lecture-55 System Interface: To interface 8253 with 8085A processor, CS signal is to be generated. Whenever CS =0, chip is selected and depending upon A 1 and A 0 one of the internal registers is selected

More information

Lecture-12 INTERNAL ARCHITECTURE OF INTEL 8085: The Functional Block Diagram Of 8085 Is Shown In Fig 16.

Lecture-12 INTERNAL ARCHITECTURE OF INTEL 8085: The Functional Block Diagram Of 8085 Is Shown In Fig 16. Lecture-12 INTERNAL ARCHITECTURE OF INTEL 8085: The Functional Block Diagram Of 8085 Is Shown In Fig 16. It consists of five essential blocks. (1) ARITHMEDIC LOGIC SECTION (2) REGISTER SECTION (3) THE

More information

م.م. ماجد عيدان. Introduction to microprocessor and microcomputer

م.م. ماجد عيدان. Introduction to microprocessor and microcomputer Lect. (1) Introduction to microprocessor and microcomputer Reference Books: 1. Ramesh S. Gaonkar, "Microprocessor Architecture, Programming and Application with the 8085". 2. Anokh Singh, A.K. Chhabra,Fundamentals

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor Practical 1 Date : AIM : Introduction Of Microprocessor 8085. 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within µp to carry out the instruction, which has been decoded.

More information

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks)

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks) QUESTION BANK EE 6502 / Microprocessor and Microcontroller Unit I- 8085 Processor PART-A (2-Marks) YEAR/SEM : III/V 1. What is meant by Level triggered interrupt? Which are the interrupts in 8085 level

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL Microprocessor-IN Postal Correspondence Course 1 SAMPLE STUDY MATERIAL Instrumentation Engineering IN Postal Correspondence Course GATE & PSUs Microprocessor Microprocessor-IN Postal Correspondence Course

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor Practical 1 Date : AIM : Introduction Of Microprocessor 8085. 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within µp to carry out the instruction, which has been decoded.

More information

Basics of Microprocessor

Basics of Microprocessor Unit 1 Basics of Microprocessor 1. Microprocessor Microprocessor is a multipurpose programmable integrated device that has computing and decision making capability. This semiconductor IC is manufactured

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I THE 8085 & 8086 MICROPROCESSORS. PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I THE 8085 & 8086 MICROPROCESSORS. PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT I THE 8085 & 8086 MICROPROCESSORS PART A (2 Marks) 1. Give the significance of SIM and RIM instruction available in 8085. [NOV/DEC 2006] Instruction

More information

Lecture-19 MICROPROCESSOR INSTRUCTIONN SET: Each subsystem in a microprocessor based system the memory, the microprocessor and the input and output

Lecture-19 MICROPROCESSOR INSTRUCTIONN SET: Each subsystem in a microprocessor based system the memory, the microprocessor and the input and output Lecture-19 MICROPROCESSOR INSTRUCTIONN SET: Each subsystem in a microprocessor based system the memory, the microprocessor and the input and output devices- can be thought of in terms of the registers

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Architecture of 8085 microprocessor

Architecture of 8085 microprocessor Architecture of 8085 microprocessor 8085 consists of various units and each unit performs its own functions. The various units of a microprocessor are listed below Accumulator Arithmetic and logic Unit

More information

Microprocessor Architecture

Microprocessor Architecture Microprocessor - 8085 Architecture 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration

More information

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly.

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly. Unit I 8085 and 8086 PROCESSOR Introduction to microprocessor A microprocessor is a clock-driven semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale

More information

The functional block diagram of 8085A is shown in fig.4.1.

The functional block diagram of 8085A is shown in fig.4.1. Lecture-13 Internal Architecture of Intel 05A The functional block diagram of 05A is shown in fig.4.1. INTA INTR RST7.5 RST5.5 RST6.5 TRAP SOD SID INTERRUPT SERIAL I/O (Internal Bus) FR(S) IR() B() C()

More information

Chapter Family Microcontrollers Instruction Set

Chapter Family Microcontrollers Instruction Set Chapter 4 8051 Family Microcontrollers Instruction Set Lesson 5 Program Flow Control and Interrupt Flow Control Instructions 2 Branch instructions- Jump to new value of Program Counter (PC) LJMP address16

More information

(1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction:

(1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction: (1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction: Instruction is the command given by the programmer to the Microprocessor to Perform the Specific

More information

Unit 1 8 BIT MICROPROCESSOR ARCHITECTURE

Unit 1 8 BIT MICROPROCESSOR ARCHITECTURE Unit 1 8 BIT MICROPROCESSOR ARCHITECTURE 8085 -Internal Architecture - Addressing modes - Instruction set -Timing diagrams -Interrupts-Assembly language Programming 1. Internal Architecture of 8085 Microprocessor

More information

Assembly Language Programming of 8085

Assembly Language Programming of 8085 Assembly Language Programming of 8085 Topics 1. Introduction 2. Programming model of 8085 3. Instruction set of 8085 4. Example Programs 5. Addressing modes of 8085 6. Instruction & Data Formats of 8085

More information

EE309: Computer Organization, Architecture and MicroProcessors. sumantra/courses/up/up.html GND HIGH ORDER ADDRESS BUS

EE309: Computer Organization, Architecture and MicroProcessors.   sumantra/courses/up/up.html GND HIGH ORDER ADDRESS BUS CMP:8085 Primer-1 EE309: Computer Organization, rchitecture and MicroProcessors http://www.ee.iitb.ac.in/ sumantra/courses/up/up.html The 8085 Chip F LGS: S Z x x P x cy EXTERNLLY INITITED SIGNLS SERIL

More information

MICROPROCESSOR BASICS AND RELATED TERMS

MICROPROCESSOR BASICS AND RELATED TERMS MICROPROCESSOR BASICS AND RELATED TERMS Microprocessor: Programmable integrated device that has computing ability and decision making capacity. It is the CPU of computer. A multipurpose, programmable,

More information

Q. P. Code : b. Draw and explain the block dig of a computer with microprocessor as CPU.

Q. P. Code : b. Draw and explain the block dig of a computer with microprocessor as CPU. Q. P. Code : 08235 (2½ Hours) [Total Marks: 75] N. B.: (1) All questions are compulsory. (2) Make suitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

COPYRIGHT IS NOT RESERVED BY AUTHORS. AUTHORS ARE NOT RESPONSIBLE FOR ANY LEGAL ISSUES ARISING OUT OF ANY COPYRIGHT DEMANDS

COPYRIGHT IS NOT RESERVED BY AUTHORS. AUTHORS ARE NOT RESPONSIBLE FOR ANY LEGAL ISSUES ARISING OUT OF ANY COPYRIGHT DEMANDS COPYRIGHT IS NOT RESERVED BY AUTHORS. AUTHORS ARE NOT RESPONSIBLE FOR ANY LEGAL ISSUES ARISING OUT OF ANY COPYRIGHT DEMANDS AND/OR REPRINT ISSUES CONTAINED IN THIS MATERIALS. THIS IS NOT MEANT FOR ANY

More information

Subject Code: Model Answer Page No: /25

Subject Code: Model Answer Page No: /25 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output 8085 SATISH CHANDRA What is a Microprocessor? The word comes from the combination micro and processor. Processor means a device that processes whatever. In this context, processor means a device that processes

More information

Assembly Language Programming of 8085

Assembly Language Programming of 8085 Assembly Language Programming of 8085 1. Introduction A microprocessor executes instructions given by the user Instructions should be in a language known to the microprocessor Microprocessor understands

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK Subject Code : EC307 Subject Name : Microprocessor and Interfacing Year & Sem : III Year, V Sem

More information

Micro-Operations. execution of a sequence of steps, i.e., cycles

Micro-Operations. execution of a sequence of steps, i.e., cycles Micro-Operations Instruction execution execution of a sequence of steps, i.e., cycles Fetch, Indirect, Execute & Interrupt cycles Cycle - a sequence of micro-operations Micro-operations data transfer between

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : LS2_EE_S_Microprocessors_2688 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: -452462 CLASS TEST 28-9 ELECTRICAL ENGINEERING

More information

MSMF GATE CENTRE. Sub: MICROPROCESSORS. Time: 50min Date: Marks:33

MSMF GATE CENTRE. Sub: MICROPROCESSORS. Time: 50min Date: Marks:33 MSMF GATE CENTRE Sub: MICROPROCESSORS Time: 50min Date:20-12-16 Marks:33 1. Which interrupt has highest priority in 8085 microprocessor? a) INTR b) RST 4.5 c) RST 6.5 d) RST 7.5 2. In 8085 microprocessor,

More information

EXPERIMENT NO. 1 THE MKT 8085 MICROPROCESSOR TRAINER

EXPERIMENT NO. 1 THE MKT 8085 MICROPROCESSOR TRAINER OBJECT: EXPERIMENT NO. 1 THE MKT 8085 MICROPROCESSOR TRAINER To understand the structure and operating instruction of the microprocessor trainer. INTRODUCTION: The MKT 8085 is a single-board microcomputer,

More information

LIST OF PROGRAMS. Prg. Name of the Program. 1 Study of Pin Diagram of Study of Architecture of Study of 8085 Kit.

LIST OF PROGRAMS. Prg. Name of the Program. 1 Study of Pin Diagram of Study of Architecture of Study of 8085 Kit. LIST OF PROGRAMS Prg. Name of the Program No. 1 Study of Pin Diagram of 8085 2 Study of Architecture of 8085 3 Study of 8085 Kit 4 Reverse Order 5 Exchange of memory blocks 6 Absolute Difference 7 Even

More information

8/26/2010. Introduction to 8085 BLOCK DIAGRAM OF INTEL Introduction to Introduction to Three Units of 8085

8/26/2010. Introduction to 8085 BLOCK DIAGRAM OF INTEL Introduction to Introduction to Three Units of 8085 BLOCK DIAGRAM OF INTEL 8085 GURSHARAN SINGH TATLA Introduction to 8085 It was introduced in 1977. It is 8-bit microprocessor. Its actual name is 8085 A. It is single NMOS device. It contains 6200 transistors

More information

12-Dec-11. Gursharan Singh Maninder Kaur. Introduction to 8085 BLOCK DIAGRAM OF INTEL Introduction to Introduction to 8085

12-Dec-11. Gursharan Singh Maninder Kaur. Introduction to 8085 BLOCK DIAGRAM OF INTEL Introduction to Introduction to 8085 mailme@gursharansingh.in BLOCK DIAGRAM OF INTEL 8085 mailme@maninderkaur.in Introduction to 8085 It was introduced in 1977. It is 8-bit microprocessor. Its actual name is 8085 A. It is single NMOS device.

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

Write A General Form Of The Assembly

Write A General Form Of The Assembly Write A General Form Of The Assembly Instruction Of 8085 Official Full-Text Publication: An Introduction to Microprocessor 8085 on ResearchGate, the professional network for scientists. Therefore, it is

More information

For more notes of DAE

For more notes of DAE Created by ARSLAN AHMED SHAAD ( 1163135 ) AND MUHMMAD BILAL ( 1163122 ) VISIT : www.vbforstudent.com Also visit : www.techo786.wordpress.com For more notes of DAE CHAPTER #6 Intel 8088/86 System Timing

More information

Chapter 7 Central Processor Unit (S08CPUV2)

Chapter 7 Central Processor Unit (S08CPUV2) Chapter 7 Central Processor Unit (S08CPUV2) 7.1 Introduction This section provides summary information about the registers, addressing modes, and instruction set of the CPU of the HCS08 Family. For a more

More information

Unit II Basic Computer Organization

Unit II Basic Computer Organization 1. Define the term. Internal Organization-The internal organization of a digital system is defined by the sequence of microoperations it performs on data stored in its registers. Program- A program is

More information

Its Assembly language programming

Its Assembly language programming 8085 Architecture & Its Assembly language programming Dr A Sahu Dept of Computer Science & Engineering IIT Guwahati 8085 Era and Features 8085 Outline Block diagram (Data Path) Bus Structure Register Structure

More information

27 December 2016 Pramod Ghimire. Slide 1 of 16

27 December 2016 Pramod Ghimire. Slide 1 of 16 8259-Programmable Interrupt Controller (8259-PIC) Slide 1 of 16 Programmable Interface Device A Programmable interface device is designed to perform various input/output functions. Such a device can be

More information

Chapter Introduction Chapter 1. a) Address translation b) Protection c) Program relocation. type's "««"** ***** ** various

Chapter Introduction Chapter 1. a) Address translation b) Protection c) Program relocation. type's ««** ***** ** various 72 Introduction Chapter 1 a) Address translation b) Protection c) Program relocation Chapter 2 type's "««"** ***** ** various 1.17 Discuss the main features' of typical coprocessors. o ' rhc diffcrcncc

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

History and Basic Processor Architecture

History and Basic Processor Architecture History and Basic Processor Architecture History of Computers Module 1 Section 1 What Is a Computer? An electronic machine, operating under the control of instructions stored in its own memory, that can

More information

4) In response to the the 8259A sets the highest priority ISR, bit and reset the corresponding IRR bit. The 8259A also places

4) In response to the the 8259A sets the highest priority ISR, bit and reset the corresponding IRR bit. The 8259A also places Lecture-52 Interrupt sequence: The powerful features of the 8259A in a system are its programmability and the interrupt routine address capability. It allows direct or indirect jumping to the specific

More information

Practical Course File For

Practical Course File For Practical Course File For Microprocessor (IT 473) B.Tech (IT) IV-SEM Department of IT University Institute of Engineering & Technology Panjab University, Chandigarh Page 1 INTRODUCTION... 4 EXPERIMENT-1:

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING Serial : 1. JP_EE_Microprocessor_130618 CLASS TEST Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-45124612 ELECTRICAL ENGINEERING

More information

Darshan Institute of Engineering & Technology for Diploma Studies Unit - 1

Darshan Institute of Engineering & Technology for Diploma Studies Unit - 1 Darshan Institute of Engineering & Technology for Diploma Studies Unit - 1 1. Draw and explain 4 bit binary arithmetic or adder circuit diagram. A binary parallel adder is digital function that produces

More information

Advanced Computer Architecture

Advanced Computer Architecture Advanced Computer Architecture Lecture No. 22 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 5 Computer Systems Design and Architecture 5.3 Summary Microprogramming Working of a General Microcoded

More information

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller of 8085 microprocessor 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration 8-bit

More information

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 15 Addressing and Subroutine

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 15 Addressing and Subroutine Computer Organization & Assembly Language Programming CSE 2312 Lecture 15 Addressing and Subroutine 1 Sections in 8088 Code TEXT section, for the processor instructions. DATA section for the initialization

More information

1 The ARC processor (data path and control)

1 The ARC processor (data path and control) 1 The ARC processor (data path and control) 1 The ARC processor (data path and control)... 1 1.1 Introduction... 2 1.2 Main part of data path... 2 1.3 Data path... 2 1.4 Controller... 3 1.4.1 Micro instruction

More information

MICROPROCESSOR B.Tech. th ECE

MICROPROCESSOR B.Tech. th ECE MICROPROCESSOR B.Tech. th ECE Submitted by: Er. Amita Sharma Dept. of ECE 11/24/2014 2 Microprocessor Architecture The microprocessor can be programmed to perform functions on given data by writing specific

More information

LABORATORY MANUAL. PROGRAMME: B.Tech SEMESTER /YEAR: 3rd year 5th Semester SUBJECT CODE: CS592 SUBJECT NAME: Microprocessor & Microcontroller Lab

LABORATORY MANUAL. PROGRAMME: B.Tech SEMESTER /YEAR: 3rd year 5th Semester SUBJECT CODE: CS592 SUBJECT NAME: Microprocessor & Microcontroller Lab LABORATORY MANUAL PROGRAMME: B.Tech SEMESTER /YEAR: 3rd year 5th Semester SUBJECT CODE: CS592 SUBJECT NAME: Microprocessor & Microcontroller Lab DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING INSTITUTE OF

More information

The 8085 Instruction Set

The 8085 Instruction Set 1 of 8 2/9/2011 5:14 PM The 8085 Instruction Set As I promised, in an earlier lesson, I am going to go through an in-depth explaination of ALL the 8085 instructions. Intel 88888 000 88888 5555555 A 8 8

More information

Microprocessor, Microcomputer and Associated Languages

Microprocessor, Microcomputer and Associated Languages 1 Microprocessor, Microcomputer and Associated Languages 1. On which model is based the basic architecture of a digital computer? Ans. The basic architecture of a digital computer is based on Von Neumann

More information

INTRODUCTION OF MICROPROCESSOR& INTERFACING DEVICES Introduction to Microprocessor Evolutions of Microprocessor

INTRODUCTION OF MICROPROCESSOR& INTERFACING DEVICES Introduction to Microprocessor Evolutions of Microprocessor Course Title Course Code MICROPROCESSOR & ASSEMBLY LANGUAGE PROGRAMMING DEC415 Lecture : Practical: 2 Course Credit Tutorial : 0 Total : 5 Course Learning Outcomes At end of the course, students will be

More information

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture)

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture) COSC 243 Instruction Sets And Addressing Modes 1 Overview This Lecture Source Chapters 12 & 13 (10 th editition) Textbook uses x86 and ARM (we use 6502) Next 2 Lectures Assembly language programming 2

More information

UNIT 1 REFERENCE 1 PREPARED BY S.RAVINDRAKUMAR, LECT/ECE, CHETTINAD COLLEGE OF ENGG AND TECH, KARUR

UNIT 1 REFERENCE 1 PREPARED BY S.RAVINDRAKUMAR, LECT/ECE, CHETTINAD COLLEGE OF ENGG AND TECH, KARUR UNIT 1 REFERENCE 1 PROGRAMMING THE 8085 DEVELOPMENT OF PROGRAM A program is a sequence of instructions written to tell a computer to perform a specific function. The instructions are selected from the

More information

Subroutines and the Stack

Subroutines and the Stack 3 31 Objectives: A subroutine is a reusable program module A main program can call or jump to the subroutine one or more times The stack is used in several ways when subroutines are called In this lab

More information

GATE Exercises on Microprocessors

GATE Exercises on Microprocessors 1 GATE Exercises on Microprocessors Abstract This problem set has questions taken from GATE papers over the last twenty years. Teachers can use the problem set for courses tutorials. 1) The clock frequency

More information

Introduction to Programming

Introduction to Programming Introduction to Programming Chapter 2 Microcontrollers Objectives Describe the difference between source code and machine code. Define opcode, operand, and address of an operand. Explain the purpose of

More information

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data Von Neumann Architecture The von Neumann architecture is a computer design model that uses a processing unit and a separate storage to hold both instructions and data To run a machine, program and data

More information

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss Grundlagen Microcontroller Processor Core Günther Gridling Bettina Weiss 1 Processor Core Architecture Instruction Set Lecture Overview 2 Processor Core Architecture Computes things > ALU (Arithmetic Logic

More information

Types of Interrupts:

Types of Interrupts: Interrupt structure Introduction Interrupt is signals send by an external device to the processor, to request the processor to perform a particular task or work. Mainly in the microprocessor based system

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version:

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: SISTEMI EMBEDDED Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: 20170516 Processing Unit A processor reads program instructions from the computer s memory and executes

More information

G. Pullaiah College of Engineering and Technology: Kurnool Department Of Electronics and Communication Engineering

G. Pullaiah College of Engineering and Technology: Kurnool Department Of Electronics and Communication Engineering G. Pullaiah College of Engineering and Technology: Kurnool Department Of Electronics and Communication Engineering LECTURE NOTES MICROPROCESSORS AND INTERFACING PREPARED BY V.SHANTHI ASST PROFESSOR DEPT

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 03 Low Power Mode and Port Interrupts Goals: Bonus: Pre Lab Questions:

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information

Lecture Note On Microprocessor and Microcontroller Theory and Applications

Lecture Note On Microprocessor and Microcontroller Theory and Applications Lecture Note On Microprocessor and Microcontroller Theory and Applications MODULE: 1 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip

More information

Digital IP Cell 8-bit Microcontroller PE80

Digital IP Cell 8-bit Microcontroller PE80 1. Description The is a Z80 compliant processor soft-macro - IP block that can be implemented in digital or mixed signal ASIC designs. The Z80 and its derivatives and clones make up one of the most commonly

More information

The MARIE Architecture

The MARIE Architecture The MARIE Machine Architecture that is Really Intuitive and Easy. We now define the ISA (Instruction Set Architecture) of the MARIE. This forms the functional specifications for the CPU. Basic specifications

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT ELECTRONICS AND COMMUNICATION ENGINEERING CS 2252-MICROPROCESSOR AND MICROCONTROLLER COURSE NOTES UNIT I 8085 MICROPROCESSOR OBJECTIVES:.* Study

More information

Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP

Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 3022: Embedded Systems Discussion Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP Eng. Eman R. Habib February, 2014 2 Embedded

More information