Fixed-Width Recursive Multipliers

Size: px
Start display at page:

Download "Fixed-Width Recursive Multipliers"

Transcription

1 Fixed-Width Recursive Multipliers Presented by: Kevin Biswas Supervisors: Dr. M. Ahmadi Dr. H. Wu Department of Electrical and Computer Engineering University of Windsor

2 Motivation & Objectives Outline Recursive Digital Multipliers Existing Truncation Methods Fixed-Width Recursive Multiplier Simulation Results Conclusions 1

3 Motivation Constant word size is required throughout arithmetic operations for many applications, i.e. DSP Multiplication is of biggest concern in DSP To cope with the problem, Fixed-Width Multipliers are utilized Fixed-width multipliers are usually obtained by applying truncation schemes to array or tree multipliers We find that the inherent structure of the digital recursive multiplier is also suitable for fixed-width applications 2

4 Objectives Present architecture of the fixed-width recursive multiplier Perform: Error analysis for different truncation schemes Gate complexity analysis 3

5 Recursive Digital Multipliers Recursive, or divide and conquer multiplication was proposed by Karatsuba and Ofman in 1962 Karatsuba-Ofman Algorithm (KOA) multiplies two long integers by executing multiplications and additions on their divided parts Fundamental principles of KOA is utilized in the recursive algorithm [Danysh and Swartzlander] 4

6 Recursive Digital Multipliers Mathematically, the recursive algorithm is established around the fact that any 2n x 2n bit multiplication can be carried out through four n x n bit sub-multiplications Considering two unsigned 2n-bit operands: Multiplicand: Multiplier: A = A H 2 n + A L X=X H 2 n + X L Product: Y = A X = (A H 2 n + A L ) (X H 2 n + X L ) = A H X H 2 2n + (A L X H + A H X L ) 2 n + A L X L 5

7 Recursive Digital Multipliers Block diagram representation for multiplication with a single level of recursion Y is the fixed-width rounded product of 2n bits 6

8 Recursive Digital Multipliers Of the 4 sub-multiples, the one contributing the least to the final product is A L X L Truncation schemes to be presented will target this particular component 7

9 Existing Truncation Methods Truncation schemes generally involve not generating the complete partial product matrix in a multiplication, and then applying a scheme to compensate for the error Correction schemes: - Constant Correction [Y. C. Lim] - Variable Correction [E. J. King and E. E. Swartzlander, Jr.] 8

10 Existing Truncation Methods Constant Correction A constant is added to the remaining columns of the partial products matrix based on average value of the bits which are not formed and expected value of rounding error Variable Correction Correction value is data dependent: - If all elements are zeros in the most significant column not formed, there is no correction - If all elements are ones, then a maximum correction value is used Variable correction results in a lower variance in error Constant correction is efficiently implemented with tree multipliers and variable correction with array multipliers 9

11 Fixed-Width Recursive Multiplier A data-dependent truncation method is proposed Original recursive multiplier can be represented in this way: 2n A H x X L A H x X H A L x X L A L x X H The component A L X L will be truncated 10

12 n 1 n 1 RESEARCH n 2 CENTRE 1 FOR INTEGRATED i A = MICROSYSTEMS - UNIVERSITY OF WINDSOR L an 12 + an a12 + a0 = ai2, i = 0 Fixed-Width Recursive Multiplier Assume A L and X L are n-bit unsigned binary numbers where: n 1 n 1 n 2 1 = = i L n n 0 i i= 0 A a 2 a 2 a 2 a a 2, n 1 n 1 n 2 1 = = j L n n 0 j j= 0 X x 2 x 2 x 2 x x 2. The product can be expressed as: n 1 n 1 A X = ( a x ) 2 L L i j i= 0 j= 0 i+ j 11

13 Fixed-Width Recursive Multiplier Truncation scheme involves first removing the least significant component of the recursive multiplier, A L X L For error compensation, most significant partial product bit of A L X L, a n-1 x n-1, is placed at bit position 2n-1 (which was the MSB position of A L X L ). 12

14 Fixed-Width Recursive Multiplier Inclusion of partial product bits a n-2 x n-2 and a n-3 x n-3 at bit positions 2n-2 and 2n-3, respectively, can provide additional correction, i.e.: C = a x 1 n-1 n-1 2 2n-1 C = a x 2 + a x 2 2n-1 2n-2 2 n 1 n 1 n 2 n 2 C = a x 2 + a x 2 + a x 2 2n-1 2n-2 2n-3 3 n 1 n 1 n 2 n 2 n 3 n 3 d C = a x d n-k n-k k = 1 2 2nk - Thus, mathematically, the term A L X L is approximated by the simpler correction expression, C d : d n 1 n 1 2nk - i+ j d = n-k n-k2 ( i j) 2 k= 1 i= 0 j= 0 C a x a x 13

15 Fixed-Width Recursive Multiplier The range of C and A L X L are also comparable: 2n n+ 1 0 ALX L ( ), 0 C 2 2n 1 It can be seen graphically that maximum value of C tends to approximate the maximum value of A L X L quite well for a large range of n Approximation improves as d increases 1 2n 1 2n 2 0 C 2 (2 + 2 ) d 2 n k 0 C d ( 2 ) k = 1 14

16 Simulation Results Error Statistics: Comparison with existing fixed-width multipliers (6-bit) Fixed-Width Multiplier Type Mean Max. Positive Error Max. Negative Error Variance of Error Truncation True Rounding Constant Correction Constant Correction Variable Correction Recursive Multiplier (Removal of A L X L ) Recursive Multiplier (With proposed truncation scheme) Table I. Error Statistics (2n = 6) 15

17 Simulation Results Error Statistics: Comparison of different sized fixed-width recursive multipliers with 1, 2 and 3 correction bits 2n Number of Correction Bits Mean Error Max. Positive Error Max. Negative Error Variance of Error Table II. Fixed-Width Recursive Multiplier Error Statistics (2n = 6, 8, 10, 12) 16

18 Simulation Results Complexity Comparison: Savings in number of gates It is assumed that base multiplier for the recursive structure is array multiplier Estimate one full adder as 12 gates, one half adder as 4 gates 2n Original Recursive Multiplier Fixed-Width Recursive Multiplier No. of Gates No. of Gates % Savings Table III. Complexity Comparison 17

19 Simulation Results Proposed fixed-width recursive multiplier performs better than those (6-bit multipliers) presented in literature, in terms of computational accuracy Generally, use of more correction bits improves error statistics for all recursive multiplier sizes In terms of complexity, hardware savings are close to 25% when n is large Further hardware reduction is expected in fixed-width multipliers with multi-level recursion 18

20 Multi-level Recursive Multiplier Maximum complexity savings after truncation of least significant submultiple: Levels of Recursion Projected Max. Complexity Savings (%) Table IV. Complexity Savings for Multi-level Recursion 19

21 Conclusions A fixed-width recursive multiplier design has been proposed and simulated Truncation scheme which reduces gate complexity, while minimizing error, has been presented Computational accuracy can be improved with additional correction bits With multi-level recursive multipliers, hardware reduction could potentially reach 44% (3-level recursion) 20

22 Thank you for your attention! 21

23 References M. D.Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann Publishers, San Francisco, USA, Earl E. Swartzlander, Jr., Truncated multiplication with approximate rounding, Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp , Oct Y. C. Lim, Single-precision multiplier with reduced circuit complexity for signal processing applications, IEEE Transactions on Computers, vol. 41, 1992, pp M. J. Schulte and E. E. Swartzlander, Jr., Truncated multiplication with correction Constant, VLSI Signal Processing, VI, New York, IEEE Press, 1993, pp E. J. King and E. E. Swartzlander, Jr., Data-dependent truncation scheme for parallel multipliers, 31st Asilomar Conference on Signals, Circuits and Systems, Pacific Grove, CA, 1997, pp A. Karatsuba and Y. Ofman, "Multiplication of multidigit numbers on automata", Sov. Phys.-Dokl. (English Translation), vol. 7, pp , 1963 A.N. Danysh, and E.E. Swartzlander Jr., "A recursive fast multiplier", Asilomar Conference on Signals, Systems & Computers, vol. 1, pp ,

TRUNCATION SCHEMES FOR RECURSIVE MULTIPLIERS

TRUNCATION SCHEMES FOR RECURSIVE MULTIPLIERS 39 th Asilomar Conference on Signals, Systems and Computers TRUNCATION SCHEMES FOR RECURSIVE MULTIPLIERS Pedram Mokrian,, Huapeng Wu, Majid Ahmadi Research Centre for Integrated Microsystems Department

More information

Design and Implementation of Signed, Rounded and Truncated Multipliers using Modified Booth Algorithm for Dsp Systems.

Design and Implementation of Signed, Rounded and Truncated Multipliers using Modified Booth Algorithm for Dsp Systems. Design and Implementation of Signed, Rounded and Truncated Multipliers using Modified Booth Algorithm for Dsp Systems. K. Ram Prakash 1, A.V.Sanju 2 1 Professor, 2 PG scholar, Department of Electronics

More information

Carry Prediction and Selection for Truncated Multiplication

Carry Prediction and Selection for Truncated Multiplication Carry Prediction and Selection for Truncated Multiplication Romain Michard, Arnaud Tisserand and Nicolas Veyrat-Charvillon Arénaire project, LIP (CNRS ENSL INRIA UCBL) Ecole Normale Supérieure de Lyon

More information

Sum to Modified Booth Recoding Techniques For Efficient Design of the Fused Add-Multiply Operator

Sum to Modified Booth Recoding Techniques For Efficient Design of the Fused Add-Multiply Operator Sum to Modified Booth Recoding Techniques For Efficient Design of the Fused Add-Multiply Operator D.S. Vanaja 1, S. Sandeep 2 1 M. Tech scholar in VLSI System Design, Department of ECE, Sri VenkatesaPerumal

More information

Floating Point Square Root under HUB Format

Floating Point Square Root under HUB Format Floating Point Square Root under HUB Format Julio Villalba-Moreno Dept. of Computer Architecture University of Malaga Malaga, SPAIN jvillalba@uma.es Javier Hormigo Dept. of Computer Architecture University

More information

A High-Speed FPGA Implementation of an RSD- Based ECC Processor

A High-Speed FPGA Implementation of an RSD- Based ECC Processor A High-Speed FPGA Implementation of an RSD- Based ECC Processor Abstract: In this paper, an exportable application-specific instruction-set elliptic curve cryptography processor based on redundant signed

More information

OPTIMIZATION OF AREA COMPLEXITY AND DELAY USING PRE-ENCODED NR4SD MULTIPLIER.

OPTIMIZATION OF AREA COMPLEXITY AND DELAY USING PRE-ENCODED NR4SD MULTIPLIER. OPTIMIZATION OF AREA COMPLEXITY AND DELAY USING PRE-ENCODED NR4SD MULTIPLIER. A.Anusha 1 R.Basavaraju 2 anusha201093@gmail.com 1 basava430@gmail.com 2 1 PG Scholar, VLSI, Bharath Institute of Engineering

More information

OPTIMIZING THE POWER USING FUSED ADD MULTIPLIER

OPTIMIZING THE POWER USING FUSED ADD MULTIPLIER Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 11, November 2014,

More information

VLSI Design Of a Novel Pre Encoding Multiplier Using DADDA Multiplier. Guntur(Dt),Pin:522017

VLSI Design Of a Novel Pre Encoding Multiplier Using DADDA Multiplier. Guntur(Dt),Pin:522017 VLSI Design Of a Novel Pre Encoding Multiplier Using DADDA Multiplier 1 Katakam Hemalatha,(M.Tech),Email Id: hema.spark2011@gmail.com 2 Kundurthi Ravi Kumar, M.Tech,Email Id: kundurthi.ravikumar@gmail.com

More information

Design of a Parallel Adder Circuit for a Heavy Computing Environment and the Performance Analysis of Multiplication Algorithm

Design of a Parallel Adder Circuit for a Heavy Computing Environment and the Performance Analysis of Multiplication Algorithm 2017 IEEE 7th International Advance Computing Conference Design of a Parallel Adder Circuit for a Heavy Computing Environment and the Performance Analysis of Multiplication Algorithm Jayanta Kumar Das

More information

High Speed Special Function Unit for Graphics Processing Unit

High Speed Special Function Unit for Graphics Processing Unit High Speed Special Function Unit for Graphics Processing Unit Abd-Elrahman G. Qoutb 1, Abdullah M. El-Gunidy 1, Mohammed F. Tolba 1, and Magdy A. El-Moursy 2 1 Electrical Engineering Department, Fayoum

More information

A novel technique for fast multiplication

A novel technique for fast multiplication INT. J. ELECTRONICS, 1999, VOL. 86, NO. 1, 67± 77 A novel technique for fast multiplication SADIQ M. SAIT², AAMIR A. FAROOQUI GERHARD F. BECKHOFF and In this paper we present the design of a new high-speed

More information

Implementation of Floating Point Multiplier Using Dadda Algorithm

Implementation of Floating Point Multiplier Using Dadda Algorithm Implementation of Floating Point Multiplier Using Dadda Algorithm Abstract: Floating point multiplication is the most usefull in all the computation application like in Arithematic operation, DSP application.

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014 DESIGN OF HIGH SPEED BOOTH ENCODED MULTIPLIER PRAVEENA KAKARLA* *Assistant Professor, Dept. of ECONE, Sree Vidyanikethan Engineering College, A.P., India ABSTRACT This paper presents the design and implementation

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering An Efficient Implementation of Double Precision Floating Point Multiplier Using Booth Algorithm Pallavi Ramteke 1, Dr. N. N. Mhala 2, Prof. P. R. Lakhe M.Tech [IV Sem], Dept. of Comm. Engg., S.D.C.E, [Selukate],

More information

Design and Implementation of IEEE-754 Decimal Floating Point Adder, Subtractor and Multiplier

Design and Implementation of IEEE-754 Decimal Floating Point Adder, Subtractor and Multiplier International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-4 Issue 1, October 2014 Design and Implementation of IEEE-754 Decimal Floating Point Adder, Subtractor and Multiplier

More information

Timing for Ripple Carry Adder

Timing for Ripple Carry Adder Timing for Ripple Carry Adder 1 2 3 Look Ahead Method 5 6 7 8 9 Look-Ahead, bits wide 10 11 Multiplication Simple Gradeschool Algorithm for 32 Bits (6 Bit Result) Multiplier Multiplicand AND gates 32

More information

Design and Implementation of CVNS Based Low Power 64-Bit Adder

Design and Implementation of CVNS Based Low Power 64-Bit Adder Design and Implementation of CVNS Based Low Power 64-Bit Adder Ch.Vijay Kumar Department of ECE Embedded Systems & VLSI Design Vishakhapatnam, India Sri.Sagara Pandu Department of ECE Embedded Systems

More information

DESIGN AND IMPLEMENTATION BY USING BIT LEVEL TRANSFORMATION OF ADDER TREES FOR MCMS USING VERILOG

DESIGN AND IMPLEMENTATION BY USING BIT LEVEL TRANSFORMATION OF ADDER TREES FOR MCMS USING VERILOG DESIGN AND IMPLEMENTATION BY USING BIT LEVEL TRANSFORMATION OF ADDER TREES FOR MCMS USING VERILOG 1 S. M. Kiranbabu, PG Scholar in VLSI Design, 2 K. Manjunath, Asst. Professor, ECE Department, 1 babu.ece09@gmail.com,

More information

Optimized Modified Booth Recorder for Efficient Design of the Operator

Optimized Modified Booth Recorder for Efficient Design of the Operator Optimized Modified Booth Recorder for Efficient Design of the Operator 1 DEEPTHI MALLELA, M.TECH.,VLSI 2 VEERABABU A, ASSISTANT PROFESSOR,DEPT.OF ECE 3 SRINIVASULU K,HOD,DEPT. OF ECE 1,2,3 NARASIMHA REDDY

More information

Bit-Level Optimization of Adder-Trees for Multiple Constant Multiplications for Efficient FIR Filter Implementation

Bit-Level Optimization of Adder-Trees for Multiple Constant Multiplications for Efficient FIR Filter Implementation Bit-Level Optimization of Adder-Trees for Multiple Constant Multiplications for Efficient FIR Filter Implementation 1 S. SRUTHI, M.Tech, Vlsi System Design, 2 G. DEVENDAR M.Tech, Asst.Professor, ECE Department,

More information

Reducing Computational Time using Radix-4 in 2 s Complement Rectangular Multipliers

Reducing Computational Time using Radix-4 in 2 s Complement Rectangular Multipliers Reducing Computational Time using Radix-4 in 2 s Complement Rectangular Multipliers Y. Latha Post Graduate Scholar, Indur institute of Engineering & Technology, Siddipet K.Padmavathi Associate. Professor,

More information

In this lesson you will learn: how to add and multiply positive binary integers how to work with signed binary numbers using two s complement how fixed and floating point numbers are used to represent

More information

Power Optimized Programmable Truncated Multiplier and Accumulator Using Reversible Adder

Power Optimized Programmable Truncated Multiplier and Accumulator Using Reversible Adder Power Optimized Programmable Truncated Multiplier and Accumulator Using Reversible Adder Syeda Mohtashima Siddiqui M.Tech (VLSI & Embedded Systems) Department of ECE G Pulla Reddy Engineering College (Autonomous)

More information

CS 64 Week 1 Lecture 1. Kyle Dewey

CS 64 Week 1 Lecture 1. Kyle Dewey CS 64 Week 1 Lecture 1 Kyle Dewey Overview Bitwise operation wrap-up Two s complement Addition Subtraction Multiplication (if time) Bitwise Operation Wrap-up Shift Left Move all the bits N positions to

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

More information

An Optimum Design of FFT Multi-Digit Multiplier and Its VLSI Implementation

An Optimum Design of FFT Multi-Digit Multiplier and Its VLSI Implementation An Optimum Design of FFT Multi-Digit Multiplier and Its VLSI Implementation Syunji Yazaki Kôki Abe Abstract We designed a VLSI chip of FFT multiplier based on simple Cooly Tukey FFT using a floating-point

More information

International Journal of Engineering and Techniques - Volume 4 Issue 2, April-2018

International Journal of Engineering and Techniques - Volume 4 Issue 2, April-2018 RESEARCH ARTICLE DESIGN AND ANALYSIS OF RADIX-16 BOOTH PARTIAL PRODUCT GENERATOR FOR 64-BIT BINARY MULTIPLIERS K.Deepthi 1, Dr.T.Lalith Kumar 2 OPEN ACCESS 1 PG Scholar,Dept. Of ECE,Annamacharya Institute

More information

II. MOTIVATION AND IMPLEMENTATION

II. MOTIVATION AND IMPLEMENTATION An Efficient Design of Modified Booth Recoder for Fused Add-Multiply operator Dhanalakshmi.G Applied Electronics PSN College of Engineering and Technology Tirunelveli dhanamgovind20@gmail.com Prof.V.Gopi

More information

EE 109 Unit 6 Binary Arithmetic

EE 109 Unit 6 Binary Arithmetic EE 109 Unit 6 Binary Arithmetic 1 2 Semester Transition Point At this point we are going to start to transition in our class to look more at the hardware organization and the low-level software that is

More information

Design and Analysis of Kogge-Stone and Han-Carlson Adders in 130nm CMOS Technology

Design and Analysis of Kogge-Stone and Han-Carlson Adders in 130nm CMOS Technology Design and Analysis of Kogge-Stone and Han-Carlson Adders in 130nm CMOS Technology Senthil Ganesh R & R. Kalaimathi 1 Assistant Professor, Electronics and Communication Engineering, Info Institute of Engineering,

More information

Run-Time Reconfigurable multi-precision floating point multiplier design based on pipelining technique using Karatsuba-Urdhva algorithms

Run-Time Reconfigurable multi-precision floating point multiplier design based on pipelining technique using Karatsuba-Urdhva algorithms Run-Time Reconfigurable multi-precision floating point multiplier design based on pipelining technique using Karatsuba-Urdhva algorithms 1 Shruthi K.H., 2 Rekha M.G. 1M.Tech, VLSI design and embedded system,

More information

Basic Arithmetic (adding and subtracting)

Basic Arithmetic (adding and subtracting) Basic Arithmetic (adding and subtracting) Digital logic to show add/subtract Boolean algebra abstraction of physical, analog circuit behavior 1 0 CPU components ALU logic circuits logic gates transistors

More information

FLOATING POINT ADDERS AND MULTIPLIERS

FLOATING POINT ADDERS AND MULTIPLIERS Concordia University FLOATING POINT ADDERS AND MULTIPLIERS 1 Concordia University Lecture #4 In this lecture we will go over the following concepts: 1) Floating Point Number representation 2) Accuracy

More information

A Review on Optimizing Efficiency of Fixed Point Multiplication using Modified Booth s Algorithm

A Review on Optimizing Efficiency of Fixed Point Multiplication using Modified Booth s Algorithm A Review on Optimizing Efficiency of Fixed Point Multiplication using Modified Booth s Algorithm Mahendra R. Bhongade, Manas M. Ramteke, Vijay G. Roy Author Details Mahendra R. Bhongade, Department of

More information

9 Multiplication and Division

9 Multiplication and Division 9 Multiplication and Division Multiplication is done by doing shifts and additions. Multiplying two (unsigned) numbers of n bits each results in a product of 2n bits. Example: 0110 x 0011 (6x3) At start,

More information

VARUN AGGARWAL

VARUN AGGARWAL ECE 645 PROJECT SPECIFICATION -------------- Design A Microprocessor Functional Unit Able To Perform Multiplication & Division Professor: Students: KRIS GAJ LUU PHAM VARUN AGGARWAL GMU Mar. 2002 CONTENTS

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

A High Speed Binary Floating Point Multiplier Using Dadda Algorithm

A High Speed Binary Floating Point Multiplier Using Dadda Algorithm 455 A High Speed Binary Floating Point Multiplier Using Dadda Algorithm B. Jeevan, Asst. Professor, Dept. of E&IE, KITS, Warangal. jeevanbs776@gmail.com S. Narender, M.Tech (VLSI&ES), KITS, Warangal. narender.s446@gmail.com

More information

COMP 122/L Lecture 2. Kyle Dewey

COMP 122/L Lecture 2. Kyle Dewey COMP 122/L Lecture 2 Kyle Dewey Outline Operations on binary values AND, OR, XOR, NOT Bit shifting (left, two forms of right) Addition Subtraction Twos complement Bitwise Operations Bitwise AND Similar

More information

Chapter 3: part 3 Binary Subtraction

Chapter 3: part 3 Binary Subtraction Chapter 3: part 3 Binary Subtraction Iterative combinational circuits Binary adders Half and full adders Ripple carry and carry lookahead adders Binary subtraction Binary adder-subtractors Signed binary

More information

DESIGN AND IMPLEMENTATION OF FAST DECIMAL MULTIPLIER USING SMSD ENCODING TECHNIQUE

DESIGN AND IMPLEMENTATION OF FAST DECIMAL MULTIPLIER USING SMSD ENCODING TECHNIQUE RESEARCH ARTICLE OPEN ACCESS DESIGN AND IMPLEMENTATION OF FAST DECIMAL MULTIPLIER USING SMSD ENCODING TECHNIQUE S.Sirisha PG Scholar Department of Electronics and Communication Engineering AITS, Kadapa,

More information

Design a floating-point fused add-subtract unit using verilog

Design a floating-point fused add-subtract unit using verilog Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2013, 5 (3):278-282 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Design

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #6 Spring 2015 1. With x = 1111 1111 1111 1111 1011 0011 0101 0011 2 and y = 0000 0000 0000 0000 0000 0010 1101 0111 2 representing two s

More information

International Journal of Research in Computer and Communication Technology, Vol 4, Issue 11, November- 2015

International Journal of Research in Computer and Communication Technology, Vol 4, Issue 11, November- 2015 Design of Dadda Algorithm based Floating Point Multiplier A. Bhanu Swetha. PG.Scholar: M.Tech(VLSISD), Department of ECE, BVCITS, Batlapalem. E.mail:swetha.appari@gmail.com V.Ramoji, Asst.Professor, Department

More information

FPGA IMPLEMENTATION OF FLOATING POINT ADDER AND MULTIPLIER UNDER ROUND TO NEAREST

FPGA IMPLEMENTATION OF FLOATING POINT ADDER AND MULTIPLIER UNDER ROUND TO NEAREST FPGA IMPLEMENTATION OF FLOATING POINT ADDER AND MULTIPLIER UNDER ROUND TO NEAREST SAKTHIVEL Assistant Professor, Department of ECE, Coimbatore Institute of Engineering and Technology Abstract- FPGA is

More information

Chapter 10 Binary Arithmetics

Chapter 10 Binary Arithmetics 27..27 Chapter Binary Arithmetics Dr.-Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science

More information

Implementing FIR Filters

Implementing FIR Filters Implementing FIR Filters in FLEX Devices February 199, ver. 1.01 Application Note 73 FIR Filter Architecture This section describes a conventional FIR filter design and how the design can be optimized

More information

Automatic VHDL Model Generation of Parameterized FIR Filters

Automatic VHDL Model Generation of Parameterized FIR Filters Automatic VHDL Model Generation of Parameterized FIR Filters E. George Walters III 1, John Glossner 2, and Michael J. Schulte 1 1 Computer Architecture and Arithmetic Laboratory, Computer Science and Engineering

More information

Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier

Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier Sahdev D. Kanjariya VLSI & Embedded Systems Design Gujarat Technological University PG School Ahmedabad,

More information

An Efficient Implementation of Floating Point Multiplier

An Efficient Implementation of Floating Point Multiplier An Efficient Implementation of Floating Point Multiplier Mohamed Al-Ashrafy Mentor Graphics Mohamed_Samy@Mentor.com Ashraf Salem Mentor Graphics Ashraf_Salem@Mentor.com Wagdy Anis Communications and Electronics

More information

How a Digital Binary Adder Operates

How a Digital Binary Adder Operates Overview of a Binary Adder How a Digital Binary Adder Operates By: Shawn R Moser A binary adder is a digital electronic component that is used to perform the addition of two binary numbers and return the

More information

Two-Level CLA for 4-bit Adder. Two-Level CLA for 4-bit Adder. Two-Level CLA for 16-bit Adder. A Closer Look at CLA Delay

Two-Level CLA for 4-bit Adder. Two-Level CLA for 4-bit Adder. Two-Level CLA for 16-bit Adder. A Closer Look at CLA Delay Two-Level CLA for 4-bit Adder Individual carry equations C 1 = g 0 +p 0, C 2 = g 1 +p 1 C 1,C 3 = g 2 +p 2 C 2, = g 3 +p 3 C 3 Fully expanded (infinite hardware) CLA equations C 1 = g 0 +p 0 C 2 = g 1

More information

Binary Adders. Ripple-Carry Adder

Binary Adders. Ripple-Carry Adder Ripple-Carry Adder Binary Adders x n y n x y x y c n FA c n - c 2 FA c FA c s n MSB position Longest delay (Critical-path delay): d c(n) = n d carry = 2n gate delays d s(n-) = (n-) d carry +d sum = 2n

More information

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider Tamkang Journal of Science and Engineering, Vol. 3, No., pp. 29-255 (2000) 29 Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider Jen-Shiun Chiang, Hung-Da Chung and Min-Show

More information

Review of Last lecture. Review ALU Design. Designing a Multiplier Shifter Design Review. Booth s algorithm. Today s Outline

Review of Last lecture. Review ALU Design. Designing a Multiplier Shifter Design Review. Booth s algorithm. Today s Outline Today s Outline San Jose State University EE176-SJSU Computer Architecture and Organization Lecture 5 HDL, ALU, Shifter, Booth Algorithm Multiplier & Divider Instructor: Christopher H. Pham Review of Last

More information

THE LOGIC OF COMPOUND STATEMENTS

THE LOGIC OF COMPOUND STATEMENTS CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS Copyright Cengage Learning. All rights reserved. SECTION 2.5 Application: Number Systems and Circuits for Addition Copyright Cengage Learning. All rights reserved.

More information

A High Speed Design of 32 Bit Multiplier Using Modified CSLA

A High Speed Design of 32 Bit Multiplier Using Modified CSLA Journal From the SelectedWorks of Journal October, 2014 A High Speed Design of 32 Bit Multiplier Using Modified CSLA Vijaya kumar vadladi David Solomon Raju. Y This work is licensed under a Creative Commons

More information

Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator

Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator A.Sindhu 1, K.PriyaMeenakshi 2 PG Student [VLSI], Dept. of ECE, Muthayammal Engineering College, Rasipuram, Tamil Nadu,

More information

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

More information

DESIGN AND IMPLEMENTATION OF VLSI SYSTOLIC ARRAY MULTIPLIER FOR DSP APPLICATIONS

DESIGN AND IMPLEMENTATION OF VLSI SYSTOLIC ARRAY MULTIPLIER FOR DSP APPLICATIONS International Journal of Computing Academic Research (IJCAR) ISSN 2305-9184 Volume 2, Number 4 (August 2013), pp. 140-146 MEACSE Publications http://www.meacse.org/ijcar DESIGN AND IMPLEMENTATION OF VLSI

More information

Outline. Fast Inversion Architectures over GF(2 233 ) using pre-com puted Exponentiation Matrices. SCD Nov , 2011.

Outline. Fast Inversion Architectures over GF(2 233 ) using pre-com puted Exponentiation Matrices. SCD Nov , 2011. Outline Introduction Inversion over Binary fields GF(2^m) Multiplication over GF(2^m)/F(x) fields Fast architectures based on pre-computed matrices Results and conclusions SCD2011 - Nov. 17-18, 2011. Murcia

More information

Double Precision Floating-Point Multiplier using Coarse-Grain Units

Double Precision Floating-Point Multiplier using Coarse-Grain Units Double Precision Floating-Point Multiplier using Coarse-Grain Units Rui Duarte INESC-ID/IST/UTL. rduarte@prosys.inesc-id.pt Mário Véstias INESC-ID/ISEL/IPL. mvestias@deetc.isel.ipl.pt Horácio Neto INESC-ID/IST/UTL

More information

ADDERS AND MULTIPLIERS

ADDERS AND MULTIPLIERS Concordia University FLOATING POINT ADDERS AND MULTIPLIERS 1 Concordia University Lecture #4 In this lecture we will go over the following concepts: 1) Floating Point Number representation 2) Accuracy

More information

Design and Implementation of an Eight Bit Multiplier Using Twin Precision Technique and Baugh-Wooley Algorithm

Design and Implementation of an Eight Bit Multiplier Using Twin Precision Technique and Baugh-Wooley Algorithm International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 1 Design and Implementation of an Eight Bit Multiplier Using Twin Precision Technique and Baugh-Wooley Algorithm

More information

A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications

A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications Metin Mete Özbilen 1 and Mustafa Gök 2 1 Mersin University, Engineering Faculty, Department of Computer Science,

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN AND VERIFICATION OF FAST 32 BIT BINARY FLOATING POINT MULTIPLIER BY INCREASING

More information

Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number. Chapter 3

Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number. Chapter 3 Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 3.1 Introduction The various sections

More information

IMPLEMENTATION OF TWIN PRECISION TECHNIQUE FOR MULTIPLICATION

IMPLEMENTATION OF TWIN PRECISION TECHNIQUE FOR MULTIPLICATION IMPLEMENTATION OF TWIN PRECISION TECHNIQUE FOR MULTIPLICATION SUNITH KUMAR BANDI #1, M.VINODH KUMAR *2 # ECE department, M.V.G.R College of Engineering, Vizianagaram, Andhra Pradesh, INDIA. 1 sunithjc@gmail.com

More information

CMPE223/CMSE222 Digital Logic Design. Positional representation

CMPE223/CMSE222 Digital Logic Design. Positional representation CMPE223/CMSE222 Digital Logic Design Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Positional representation First consider integers Begin with positive only

More information

A Simple Method to Improve the throughput of A Multiplier

A Simple Method to Improve the throughput of A Multiplier International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 9-16 International Research Publication House http://www.irphouse.com A Simple Method to

More information

Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications

Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications , Vol 7(4S), 34 39, April 204 ISSN (Print): 0974-6846 ISSN (Online) : 0974-5645 Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications B. Vignesh *, K. P. Sridhar

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

AN IMPROVED FUSED FLOATING-POINT THREE-TERM ADDER. Mohyiddin K, Nithin Jose, Mitha Raj, Muhamed Jasim TK, Bijith PS, Mohamed Waseem P

AN IMPROVED FUSED FLOATING-POINT THREE-TERM ADDER. Mohyiddin K, Nithin Jose, Mitha Raj, Muhamed Jasim TK, Bijith PS, Mohamed Waseem P AN IMPROVED FUSED FLOATING-POINT THREE-TERM ADDER Mohyiddin K, Nithin Jose, Mitha Raj, Muhamed Jasim TK, Bijith PS, Mohamed Waseem P ABSTRACT A fused floating-point three term adder performs two additions

More information

Number Systems. Readings: , Problem: Implement simple pocket calculator Need: Display, adders & subtractors, inputs

Number Systems. Readings: , Problem: Implement simple pocket calculator Need: Display, adders & subtractors, inputs Number Systems Readings: 3-3.3.3, 3.3.5 Problem: Implement simple pocket calculator Need: Display, adders & subtractors, inputs Display: Seven segment displays Inputs: Switches Missing: Way to implement

More information

ISSN: (Online) Volume 2, Issue 10, October 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 10, October 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 10, October 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Arithmetic Logic Unit. Digital Computer Design

Arithmetic Logic Unit. Digital Computer Design Arithmetic Logic Unit Digital Computer Design Arithmetic Circuits Arithmetic circuits are the central building blocks of computers. Computers and digital logic perform many arithmetic functions: addition,

More information

32-bit Signed and Unsigned Advanced Modified Booth Multiplication using Radix-4 Encoding Algorithm

32-bit Signed and Unsigned Advanced Modified Booth Multiplication using Radix-4 Encoding Algorithm 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology 32-bit Signed and Unsigned Advanced Modified Booth Multiplication using Radix-4 Encoding

More information

Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor, EC Department, Bhabha College of Engineering

Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor, EC Department, Bhabha College of Engineering A Review: Design of 16 bit Arithmetic and Logical unit using Vivado 14.7 and Implementation on Basys 3 FPGA Board Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor,

More information

Delay Optimised 16 Bit Twin Precision Baugh Wooley Multiplier

Delay Optimised 16 Bit Twin Precision Baugh Wooley Multiplier Delay Optimised 16 Bit Twin Precision Baugh Wooley Multiplier Vivek. V. Babu 1, S. Mary Vijaya Lense 2 1 II ME-VLSI DESIGN & The Rajaas Engineering College Vadakkangulam, Tirunelveli 2 Assistant Professor

More information

Design and Implementation of VLSI 8 Bit Systolic Array Multiplier

Design and Implementation of VLSI 8 Bit Systolic Array Multiplier Design and Implementation of VLSI 8 Bit Systolic Array Multiplier Khumanthem Devjit Singh, K. Jyothi MTech student (VLSI & ES), GIET, Rajahmundry, AP, India Associate Professor, Dept. of ECE, GIET, Rajahmundry,

More information

A New Architecture for 2 s Complement Gray Encoded Array Multiplier

A New Architecture for 2 s Complement Gray Encoded Array Multiplier A New Architecture for s Complement Gray Encoded Array Multiplier Eduardo Costa Sergio Bampi José Monteiro UCPel, Pelotas, Brazil UFRGS, P. Alegre, Brazil IST/INESC, Lisboa, Portugal ecosta@atlas.ucpel.tche.br

More information

FPGA Implementation of a High Speed Multiplier Employing Carry Lookahead Adders in Reduction Phase

FPGA Implementation of a High Speed Multiplier Employing Carry Lookahead Adders in Reduction Phase FPGA Implementation of a High Speed Multiplier Employing Carry Lookahead Adders in Reduction Phase Abhay Sharma M.Tech Student Department of ECE MNNIT Allahabad, India ABSTRACT Tree Multipliers are frequently

More information

IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL

IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL Tharanidevi.B 1, Jayaprakash.R 2 Assistant Professor, Dept. of ECE, Bharathiyar Institute of Engineering for Woman, Salem, TamilNadu,

More information

Implementation of Double Precision Floating Point Multiplier on FPGA

Implementation of Double Precision Floating Point Multiplier on FPGA Implementation of Double Precision Floating Point Multiplier on FPGA A.Keerthi 1, K.V.Koteswararao 2 PG Student [VLSI], Dept. of ECE, Sree Vidyanikethan Engineering College, Tirupati, India 1 Assistant

More information

LOW POWER PROBABILISTIC FLOATING POINT MULTIPLIER DESIGN

LOW POWER PROBABILISTIC FLOATING POINT MULTIPLIER DESIGN LOW POWER PROBABILISTIC FLOATING POINT MULTIPLIER DESIGN Aman Gupta,,*, Satyam Mandavalli, Vincent J. Mooney $,,*,, Keck-Voon Ling,*, Arindam Basu, Henry Johan $,* and Budianto Tandianus $,* International

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 6c High-Speed Multiplication - III Spring 2017 Koren Part.6c.1 Array Multipliers The two basic operations - generation

More information

RADIX-4 AND RADIX-8 MULTIPLIER USING VERILOG HDL

RADIX-4 AND RADIX-8 MULTIPLIER USING VERILOG HDL RADIX-4 AND RADIX-8 MULTIPLIER USING VERILOG HDL P. Thayammal 1, R.Sudhashree 2, G.Rajakumar 3 P.G.Scholar, Department of VLSI, Francis Xavier Engineering College, Tirunelveli 1 P.G.Scholar, Department

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 90 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (10 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a)

More information

Outline. Introduction to Structured VLSI Design. Signed and Unsigned Integers. 8 bit Signed/Unsigned Integers

Outline. Introduction to Structured VLSI Design. Signed and Unsigned Integers. 8 bit Signed/Unsigned Integers Outline Introduction to Structured VLSI Design Integer Arithmetic and Pipelining Multiplication in the digital domain HW mapping Pipelining optimization Joachim Rodrigues Signed and Unsigned Integers n-1

More information

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 58-65 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Fused Floating Point Arithmetic

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN OF QUATERNARY ADDER FOR HIGH SPEED APPLICATIONS MS. PRITI S. KAPSE 1, DR.

More information

Advanced Computer Architecture-CS501

Advanced Computer Architecture-CS501 Advanced Computer Architecture Lecture No. 34 Reading Material Vincent P. Heuring & Harry F. Jordan Chapter 6 Computer Systems Design and Architecture 6.1, 6.2 Summary Introduction to ALSU Radix Conversion

More information

Implementation and Comparative Analysis between Devices for Double Precision Interval Arithmetic Radix 4 Wallace tree Multiplication

Implementation and Comparative Analysis between Devices for Double Precision Interval Arithmetic Radix 4 Wallace tree Multiplication Implementation and Comparative Analysis between Devices for Double Precision Interval Arithmetic Radix 4 Wallace tree Multiplication Krutika Ranjankumar Bhagwat #1, Dr. Tejas V. Shah * 2, Prof. Deepali

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

High Speed Multiplication Using BCD Codes For DSP Applications

High Speed Multiplication Using BCD Codes For DSP Applications High Speed Multiplication Using BCD Codes For DSP Applications Balasundaram 1, Dr. R. Vijayabhasker 2 PG Scholar, Dept. Electronics & Communication Engineering, Anna University Regional Centre, Coimbatore,

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 6b High-Speed Multiplication - II Spring 2017 Koren Part.6b.1 Accumulating the Partial Products After generating partial

More information

Binary Arithmetic. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T.

Binary Arithmetic. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. Binary Arithmetic Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. MIT 6.004 Fall 2018 Reminder: Encoding Positive Integers Bit i in a binary representation (in right-to-left order)

More information

Karatsuba with Rectangular Multipliers for FPGAs

Karatsuba with Rectangular Multipliers for FPGAs Karatsuba with Rectangular Multipliers for FPGAs Martin Kumm, Oscar Gustafsson, Florent de Dinechin, Johannes Kappauf, and Peter Zipf University of Kassel, Digital Technology Group, Germany Linköping University,

More information