Australian Carrier Frequencies: 2G, 3G, Next-G, 4G - What's the difference? 1G - Analog

Size: px
Start display at page:

Download "Australian Carrier Frequencies: 2G, 3G, Next-G, 4G - What's the difference? 1G - Analog"

Transcription

1 2G, 3G, Next-G, 4G - What's the difference? In this guide we're going to cover off the major differences between the different 'generation' networks and check out some of the technical aspects of the different technologies. You'll need to have some understanding of basic technological terms like megahertz. To make it easier we will link some of the terms back to our Understand the Jargon page. Australian Carrier Frequencies: Before we start: What exactly is a 'G' or 'Generation'? In a nutshell, each Generation is defined as a set of telephone network standards, which detail the technological implementation of a particular mobile phone system. 1G - Analog Introduced in 1987 by Telecom (known today as Telstra), Australia received its first cellular mobile phone network utilising a 1G analog system. The analog network was responsible for those bulky handheld 'bricks' that you might have had the displeasure of using and your wallet the displeasure of buying (originally retailed at around $4250).

2 The technology behind 1G was the AMPS (Advanced Mobile Phone System) network. Permanently switched off at the end of 1999, AMPS was a voice-only network operating on the 800MHz band. Being a primitive radio technology, AMPS operated in the same manner as a regular radio transmission, much like your UHF radio where the 800MHz band was split up into a number of channels (395 voice, 21 control) via FDMA (Frequency Division Multiple Access). Each channel was 30KHz wide and could support only one user at any time, meaning that the maximum number of mobile phone users per cell tower was 395. The tower assessed the signal strength of each user and assigned channels dynamically, ensuring that channels could be reused by multiple towers without interference. Problematic? Yes, and not just a limited number of users.. Just like your UHF radio, anyone with a radio scanner capable of receiving/transmitting on the 800MHz band could drop in on your call. Being analog, the 800MHz band was also susceptible to background noise and static caused by nearby electronic devices. However the simplicity of the AMPS design meant it did have one advantage over later 2G networks - coverage. An AMPS user could connect to a cell tower as far as the signal could be transmitted (often >40km depending on terrain). At its peak, the 1G network had around 2 million subscribers. 2G - Digital Fast forward to 1993 Telecom, now known as Telstra, introduces the digital network. The introduction came about to overcome many of the issues with the AMPS network highlighted above, with network congestion and security being the most important two motivators. With this new technology came many of the services we now take for granted - text messaging, multimedia messaging, internet access, etc, and also introduced us to the SIM card. This fancy new digital network is called GSM - Global System for Mobile Communication, and its technological backbone of choice is TDMA (similar to FDMA). The radio frequency band utilised by GSM is the 900MHz spectrum and later introduced on the 1800MHz band. So how is this network any better than AMPS? The secret lies in TDMA - Time Division Multiple Access. The FDMA component splits the 900MHz (actually 890MHz to 915MHz) band into 124 channels that are 200KHz wide. The 'time' component then comes into play in which each channel is split into eight 0.577us bursts,significantly increasing the maximum number of users at any one time. We don't hear a 'stuttering' of a persons voice thanks to the wonders of digital compression codecs, which we're not going to go into here.

3 Aside from more users per cell tower, the digital network offers many other important features: - digital encryption (64bit A5/1 stream cipher) - packet data (used for MMS/Internet access) - SMS text messaging - caller ID and other similar network features. Problems? You bet. Unlike its AMPS predecessor, GSM is limited severely in range. The TDMA technology behind the 2G network means that if a mobile phone cannot respond within its given timeslot (0.577us bursts) the phone tower will drop you and begin handling another call. Aside from this, packet data transmission rates on GSM are extremely slow, and if you're on Vodafone/3/Virgin/Optus you've probably had first hand experience on this when you go outside your networks defined 'coverage zone'. To overcome these two problems we're going to introduce two new networks - CDMA and EDGE. CDMA Code Division Multiple Access. This branch of 2G was introduced by Telstra in September 1999 as a replacement for customers who could receive a good signal on AMPS, but were outside GSM's limited range. The extended range is achieved by removing the 'time' based multiplexing with a code-based multiplexing. A lower frequency band (800MHz) also assisted in range by reduced path loss and attenuation. Picture a room full of people having conversations - under TDMA each person takes their turn talking (ie time division), conversely CDMA allows many people to talk at the same time but is the equivalent of each person speaking a different language, ie in a unique code. This of course isn't exactly how it works, if you want to know more there are some resources at the bottom of the page. EDGE Enhanced Data Rates for GSM Evolution. GSM introduced a GPRS based packet data network in 2001, with a max speed of around 60-80kbps (downlink), equating to a download speed of 10kB/s - slightly faster than dialup. EDGE was later introduced as a bolt-on protocol (no new technology was required) increasing the data rate of the 2G network to around 237kbps (29kB/s).

4 Image: rfcafe.com 3G - The Mobile Broadband Revolution Introducing the 2100MHz network. Three Mobile in conjunction with Telstra brought the 3G standard to life in 2005, servicing major metropolitan areas initially and over the following years expanding coverage to 50% of the Australian population. Leased out to Optus/Vodafone/Virgin, the 2100MHz combined with a 900MHz network forms the basis of all non-telstra mobile broadband services, servicing around 94% of Australian residences. The 3G standard utilises a new technology called UMTS as its core network architecture - Universal Mobile Telecommunications System. This network combines aspects of the 2G network with some new technology and protocols to deliver a significantly faster data rate. The base technology of UMTS is the WCDMA air interface which is technologically similar to CDMA introduced earlier, where multiple users can transmit on the same frequency by use of a code based multiplexing. Wideband CDMA (WCDMA) takes this concept and stretches the frequency band to 5MHz. The system also involves significant algorithmic and mathematical improvements in signal transmission, allowing more efficient transmissions at a lower wattage (250mW compared to 2W for 2G networks). The new network also employs a much more secure encryption algorithm when transmitting over the air. 3G uses a 128-bit A5/3 stream cipher which, unlike A5/1 used in GSM (which can be cracked in near real-time using a ciphertext-only attack), has no known practical weaknesses. So how is 3G faster than EDGE? UMTS employs a protocol called HSPA - High Speed Packet Access, which is a combination of HSDPA

5 (downlink) and HSUPA (uplink) protocols. The Telstra HSDPA network supports category 10 devices (speeds up to 14.4Mbps down) however most devices are only capable of category 7/8 transmission (7.2Mbps down), and its HSUPA network supports category 6 (5.76Mbps up). These protocols have an improved transport layer by a complex arrangement of physical layer channels (HS-SCCH, HS-DPCCH and HS-PDSCH). The technological implementation of HSPA will not be discussed here but for a basic explanation feel free to watch the below video. The only major limitation of the 3G network is, not surprisingly, coverage. As stated earlier the 2100MHz network is available to around 50% of Australia's population and when combined with a 900MHz UMTS network available to about 94%. As expected, the higher 2100MHz component suffers far more attenuation and FSPL and is often considered a 'short range' mobile network which is why a lower 900MHz network is required to service many regional and rural areas. Next-G - 3G on Steroids To overcome the coverage limitations of regular 3G, Telstra introduced its Next-G network (considered a '3.5G' network) in late 2006, operating on the 850MHz spectrum. The lower radio frequency coupled with a far greater number of phone towers is responsible for Telstra's Next-G network being over twice the geographical size (around 2.2 million square km) of any other network, and servicing 99% of Australian residences. Aside from coverage, the other major selling point behind the Next-G network is its blisteringly fast network speed. Rated up to 42Mbps (up to 5.25MB/s) the network has the ability to operate faster than the theoretical maximum of most high speed cable internet services. This is the result of an enhanced packet data network - HSPA+ which was implemented in 2008 as an upgrade to large portions of the Telstra network. HSPA+ also known as Evolved HSPA, utilises Dual Carrier technology and 64QAM modulation order to deliver these high speeds. HSPA+ is responsible for the 'Elite' and 'Ultimate' series modems released in 2010, with the Elite capable of up to 21Mbps, and the Ultimate up to 42Mbps. The Ultimate series modems theoretically double the speed of the Elite device by the utilisation of Dual Carrier HSPA+. This big increase in speed is achieved by the use of dual antennas, you can think of an Ultimate modem as having two Elite modems in the one unit. Combining this technology with MIMO "Multiple In Multiple Out" architecture we can hope to see speeds increased to 84Mbps (ie doubling the 42Mbps) on the Telstra Next-G network in the near future.

6 Image courtesy of wikipedia If you'd like a simple explanation of Next-G, I'd recommend this (somewhat corny) video series produced by Telstrahttp:// 4G - LTE-Advanced Initially available in major cities, airports and selected regional areas in October 2011, Telstra's 4G network offers significantly faster speeds, lower latency, and reduced network congestion. The 4G network is based on LTE-Advanced - 3GPP Long Term Evolution. LTE is a series of upgrades to existing UMTS technology and will be rolled out on Telstra's existing 1800MHz frequency band. This new network boosts peak downloads speeds up to 100Mbps and 50Mbps upload, latency reduced from around 300ms to less than 100ms, and significantly lower congestion. For more technical details on peak 4G speeds check out our fastest 4G speed guide. Most areas in Australia 4G has a 15MHz bandwidth and operates on the following frequency ranges: Tower Tx: MHz Tower Rx: MHz New South Wales and Victoria have a much smaller bandwidth of 10MHz and operate on the following frequencies: Tower Tx: MHz Tower Rx: MHz 4G bandwidth (ie the width of frequencies we can send and receive on) is critical in supporting high speed and a high number of users. Because in order for your connection not to get confused with someone else's, each user is allocated a small sliver of frequencies that they can transmit on and nobody else can. You'll notice this most during peak usage hours, where as more people start using the tower it will reduce the width of your (and everyone else's) sliver of frequencies, resulting in each person getting a reduced download/upload speed. Naturally this is a very simplified explanation (for more info read up on OFDMA and SCFDMA) but for our

7 purposes it will suffice. When will I get 4G? Telstra 4G is advertised as available within 5km of CBD areas and airports offering speeds between 2Mbps and 40Mbps. When launched the network was limited to major towns and cities, but since late 2011 the network has expanded to include most major regional towns, with plans to cover about 66% of the Australian population by mid-2013 by deploying 1000 new base stations. The Telstra Next-G 850MHz network will no doubt remain the backbone of Australian mobile coverage, with LTE 1800MHz serving in high density residential and metro areas effectively creating a 'hybrid' network. Multimode and multi-frequency 4G modems such as the Telstra 320U USB allow seamless transition between 4G and Next-G networks when on the move, often a slight pause or delay is the most you'll notice when your modem switches over to the other network. Why 1800MHz? Given the big reduction in coverage you might be wondering why Telstra chose to deploy its 4G network on the 1800MHz band. Like most decisions the biggest factor governing the choice is money. Already licensed by Telstra, the underutilised 1800MHz network was previously used to provide 2G voice calling and text messaging services, and 2G EDGE data services (often indicated by the 'E' symbol on your phone). By converting this band from 2G over to 4G, the network can be deployed with drastically reduced cost and time to market. Instead of building new cell towers, the existing 1800MHz antennas could be swapped with antennas designed for MIMO LTE services and other hardware changes kept to a minimum. The limited choice of available mobile spectrum means that for the next few years 1800MHz will remain the band of choice for 4G services. Around 2015 the 700MHz "digital dividend" band will become available and we can expect to see a much higher performing 4G network with far greater coverage, speed and signal penetration. What about backhaul? With a massive increase in speed, how can the cell tower transmit and retrieve all this extra data from the Internet? Your 4G connection is only as fast as what the phone tower can provide you. Older EDGE or HSPA networks can get away with E1 or optical fibre backhaul links (ie the link that connects the tower into the wider

8 network), but LTE services require a far more advanced Ethernet-based backhaul link. The transition from circuit-switched to packet switched (IP based) networks affords better QoS (through MPLS and other link/network layer protocols) and significant reductions in latency. MIMO 4G uses a technology called MIMO "Multiple In Multiple Out" where your modem uses two separate antennas at once to deliver super fast speeds. Normal 3G and Next-G signals are broadcast vertically polarised, where the wave travels "up and down". LTE MIMO waves are slant polarised where each wave is rotated 45 degrees from the horizontal, mirrored so the first is at 45 degrees and the other at 135 degrees. This smart little trick is called polarisation diversity and allows your modem to distinguish two independent streams of data over the same frequency allocated by the cell tower. Because our modem has two internal antennas each responsible for receiving one stream of data, it is absolutely crucial we have two separate external antennas. We cannot use a 'Y' patch lead or some other trick to connect both ports of the modem into one antenna, nor can we connect both external antennas into one port. It is important to know MIMO is switched on and off by the modem. The decision whether to use MIMO is negotiated with the cell tower, whereby the quality of the received and transmitted signals are assessed (a metric known as CQI). When signal strength or quality is low it's difficult for the modem to distinguish between

9 the two data streams, so when signal levels drop below a certain threshold level, MIMO is switched off and the modem operates with only one antenna (Port 1 on Sierra Wireless modems). Source: By::...R.Swaminathan/आर स व म न थन DIV-ENGINEER/ड व जनऱ इ ज ननयर BSNL/NAGAPATTINAM/TN. Cell:: nathanbsnl@gmail.com

Wireless Communication

Wireless Communication Wireless Communication Hwajung Lee Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Wireless Communications Bluetooth Wi-Fi Mobile Communications LTE LTE-Advanced Mobile Communications

More information

Wireless systems overview

Wireless systems overview Wireless systems overview Evolution of systems from 1G to 4G 1G, 4G major features Specifications comparison 5G communication systems Summary Wireless Systems 2016 Evolution of cellular networks WiMAX

More information

Wireless Communication

Wireless Communication Wireless Communication Hwajung Lee Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Wireless Communications Bluetooth Wi-Fi Mobile Communications LTE LTE-Advanced Mobile Communications

More information

LTE : The Future of Mobile Broadband Technology

LTE : The Future of Mobile Broadband Technology LTE : The Future of Mobile Broadband Technology Erick Setiawan tukangbajaksawah@gmail.com 1 Become a necessity today, where the wireless broadband technology needed to meet increasing expectations in terms

More information

INTRODUCTION TO LTE. ECE MOBILE COMMUNICATION Monday, 25 June 2018

INTRODUCTION TO LTE. ECE MOBILE COMMUNICATION Monday, 25 June 2018 INTRODUCTION TO LTE ECE 2526 - MOBILE COMMUNICATION Monday, 25 June 2018 1 WHAT IS LTE? 1. LTE stands for Long Term Evolution and it was started as a project in 2004 by the Third Generation Partnership

More information

GLOSSARY OF CELLUAR TERMS

GLOSSARY OF CELLUAR TERMS GLOSSARY OF CELLUAR TERMS Air Interface: It is the operating system of a wireless network.. Airtime: The amount of time a person spends talking on their cellular device. AMPS: Advanced mobile phone service

More information

Chapter 5. Voice Network Concepts. Voice Network Concepts. Voice Communication Concepts and Technology

Chapter 5. Voice Network Concepts. Voice Network Concepts. Voice Communication Concepts and Technology Chapter 5 Voice Communication Concepts and Technology Voice Network Concepts Telephone switchboard - Circa 1898 Voice Network Concepts Telephone calls are connected from source via circuit switching. Circuit

More information

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA technology and deployment status

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA technology and deployment status 1 Introduction Harri Holma and Antti Toskala 1.1 WCDMA technology and deployment status The first Third Generation Partnership Project (3GPP) Wideband Code Division Multiple Access (WCDMA) networks were

More information

INTRODUCTION TO WIRELESS COMMUNICATION

INTRODUCTION TO WIRELESS COMMUNICATION OVERVIEW INTRODUCTION TO WIRELESS COMMUNICATION EVOLUTION FROM 1G TO 4G SYSTEM 5-G WIRELESS SYSTEM FUNCTIONAL ARCHITECTURE FOR 5G MOBILE NETWORKS THE 4A PARADIGM FEATURES OF 5G TECHNOLOGY 5G APPLICATION

More information

Building the Business Case for Mobile Broadband The HSPA Evolution Path

Building the Business Case for Mobile Broadband The HSPA Evolution Path MIKE WRIGHT Executive Director Wireless Engineering & Operations Building the Business Case for Mobile Broadband The HSPA Evolution Path Broadband World Forum 2009 Australia a wireless snapshot >100% mobile

More information

GSMA MOBILE WORLD CONGRESS 2013 CONTENT OR TECHNOLOGY: WHAT ARE THE TRENDS DRIVING DATA DEMAND MIKE WRIGHT, EXECUTIVE DIRECTOR NETWORKS

GSMA MOBILE WORLD CONGRESS 2013 CONTENT OR TECHNOLOGY: WHAT ARE THE TRENDS DRIVING DATA DEMAND MIKE WRIGHT, EXECUTIVE DIRECTOR NETWORKS GSMA MOBILE WORLD CONGRESS 2013 CONTENT OR TECHNOLOGY: WHAT ARE THE TRENDS DRIVING DATA DEMAND MIKE WRIGHT, EXECUTIVE DIRECTOR NETWORKS THE CHALLENGE The World s 6th largest land mass 9th lowest population

More information

HSPA+ R8. February 2009

HSPA+ R8. February 2009 HSPA+ R8 February 2009 Disclaimer Nothing in this presentation is an offer to sell any of the parts referenced herein. This presentation may reference and/or show images of parts and/or devices utilizing

More information

3G Technical Evolution as an evolving broadband solution

3G Technical Evolution as an evolving broadband solution ITU-D Regional Development Forum for the Asia Pacific Region NGN and Broadband, Opportunities and Challenges Yogyakarta, Indonesia, 27 29 July 2009 3G Technical Evolution as an evolving broadband solution

More information

Introduction to Mobile Broadband (imb)

Introduction to Mobile Broadband (imb) Introduction to Mobile Broadband (imb) Teaching By Asst.Prof.Dr. Suwat Pattaramalai suwat.pat@kmutt.ac.th Tel. 02-470-9079 Material: http://webstaff.kmutt.ac.th/~suwat.pat/ 3GPP WiMAX FORUM Introduction

More information

4G Mobile Communications

4G Mobile Communications 4G Mobile Communications Welcome to 4G The term 4G is used broadly to include several types of broadband wireless access communication systems, not only cellular telephone systems. One of the terms to

More information

Big Picture. ~10 years between generations

Big Picture. ~10 years between generations Big Picture ~10 years between generations 7 Who is Who? Mobile Operators ITU Members ITU GSM, W-CDMA, UMTS IS-95), IS-41, IS- 2000, IS-835 Third Generation Patnership Project (3GPP) CWTS (China) Third

More information

Ch.16 - Wireless WAN System Architectures

Ch.16 - Wireless WAN System Architectures Ch.16 - Wireless WAN System Architectures 1 Wireless WAN 2 GSM via PSTN 3 GSM via ISDN 4 GPRS 5 Mobitex 6 CDPD 7 PPDC 8 UMTS 9 Future Systems 10 Systems Summary 1 11 Systems Summary 2 1 This section will

More information

Mobile WiMAX in the Evolving Wireless Broadband Landscape

Mobile WiMAX in the Evolving Wireless Broadband Landscape Mobile WiMAX in the Evolving Wireless Broadband Landscape TECHNOLOGY BACKGROUNDER Introduction Even with the surprising variety of wireless broadband technologies available today, Mobile WiMAX (IEEE 802.16e)

More information

Imagining Tomorrow's Wireless Landscape

Imagining Tomorrow's Wireless Landscape Imagining Tomorrow's Wireless Landscape Wireless Broadband Evolution Rasmus Hellberg, PhD Director, Technical Marketing Qualcomm Wireless Broadband Evolution 3G offers excellent mobile broadband today

More information

COPYRIGHTED MATERIAL. Introduction. Edited by Harri Holma and Antti Toskala. 1.1 WCDMA Early Phase

COPYRIGHTED MATERIAL. Introduction. Edited by Harri Holma and Antti Toskala. 1.1 WCDMA Early Phase 1 Introduction Harri Holma and Antti Toskala 1.1 WCDMA Early Phase The research work towards third generation (3G) mobile systems started in the early 1990s. The aim was to develop a radio system capable

More information

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA in Third-Generation Systems

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA in Third-Generation Systems 1 Introduction Harri Holma and Antti Toskala 1.1 WCDMA in Third-Generation Systems Analog cellular systems are commonly referred to as first-generation systems. The digital systems, such as Global System

More information

Mobile Broadband Comparison. CDMA Development Group March 2008

Mobile Broadband Comparison. CDMA Development Group March 2008 Mobile Broadband Comparison CDMA Development Group March 2008 Assumptions and Notes for the Technology Comparison This document compares the performance of existing and future mobile communications systems

More information

Switching, Mobile Phones, Cable, Beginning Data Link Layer. CS158a Chris Pollett Feb 21, 2007.

Switching, Mobile Phones, Cable, Beginning Data Link Layer. CS158a Chris Pollett Feb 21, 2007. Switching, Mobile Phones, Cable, Beginning Data Link Layer CS158a Chris Pollett Feb 21, 2007. Outline Switching Mobile Phones Cable Start of Data Link Layer Switching We will now examine how the switching

More information

Lecture - 01 Evolution of Wireless Communication Technologies

Lecture - 01 Evolution of Wireless Communication Technologies Principles of Modern CDMA/MIMO/OFDM Wireless Communications Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 01 Evolution of Wireless Communication

More information

> CDMA2000 Differentiators. Superior Voice & Data Technology. Stephane LeDreau, Vice President Business Development

> CDMA2000 Differentiators. Superior Voice & Data Technology. Stephane LeDreau, Vice President Business Development > CDMA2000 Differentiators Superior Voice & Data Technology Stephane LeDreau, Vice President Business Development CDMA2000 Technology Advantages > Improved spectrum utilization compared to UMTS > Unique

More information

Third generation WCDMA radio evolution

Third generation WCDMA radio evolution WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 2003; 3:987 992 (DOI: 10.1002/wcm.134) Third generation WCDMA radio evolution Harri Holma*,y and Antti Toskala Nokia Networks, IP

More information

Mobile Broadband Communications

Mobile Broadband Communications Mobile Broadband Communications (WiMAX & LTE) Teaching By Asst.Prof.Dr. Suwat Pattaramalai suwat.pat@kmutt.ac.th Tel. 02-470-9079 3GPP WiMAX FORUM Mobile Broadband Communications Contents Part I Fundamentals

More information

MAXIMIZING THE WIRELESS OPPORTUNITY TO CLOSE THE DIGITAL GAP

MAXIMIZING THE WIRELESS OPPORTUNITY TO CLOSE THE DIGITAL GAP MAXIMIZING THE WIRELESS OPPORTUNITY TO CLOSE THE DIGITAL GAP Alin-Vladimir Stanescu Government Affairs Europe, Qualcomm Bucharest, 19 October 2009 1 More Than 1.5 Billion People Have Access to Over 535

More information

Rab Nawaz Jadoon. Cellular Systems - II DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology

Rab Nawaz Jadoon. Cellular Systems - II DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology Cellular Systems - II Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication UMTS Architecture A UMTS network consist

More information

Business Drivers for Selecting LTE Technology. HSPA+ & LTE Executive Briefing, Jan 27, 2009 Hank Kafka, Vice President, Network Architecture, AT&T

Business Drivers for Selecting LTE Technology. HSPA+ & LTE Executive Briefing, Jan 27, 2009 Hank Kafka, Vice President, Network Architecture, AT&T Business Drivers for Selecting LTE Technology HSPA+ & LTE Executive Briefing, Jan 27, 2009 Hank Kafka, Vice President, Network Architecture, AT&T Why LTE? HSPA, HSPA+ provides great data speeds with impressive

More information

4G Technology in contrast with other G Technologies Raja Solanki,Vineeet Godara, Prashant Solanki, Dhronacharya Engineering College,Gurgaon,India

4G Technology in contrast with other G Technologies Raja Solanki,Vineeet Godara, Prashant Solanki, Dhronacharya Engineering College,Gurgaon,India Technology in contrast with other G Technologies Raja Solanki,Vineeet Godara, Prashant Solanki, Dhronacharya Engineering College,Gurgaon,India Abstract-Wireless services have the highest demand in internet

More information

Unit title: Mobile Technology: Device Connectivity (SCQF level 5) Outcome 1

Unit title: Mobile Technology: Device Connectivity (SCQF level 5) Outcome 1 1 Outcome 1 A description of mobile device internet connectivity using two current Wi-Fi methods. A description of mobile device internet connectivity using two current GSM mobile telephony methods. A

More information

Abstract of the Book

Abstract of the Book Book Keywords IEEE 802.16, IEEE 802.16m, mobile WiMAX, 4G, IMT-Advanced, 3GPP LTE, 3GPP LTE-Advanced, Broadband Wireless, Wireless Communications, Cellular Systems, Network Architecture Abstract of the

More information

DELIVERING MULTIMEDIA CONTENT FOR THE FUTURE GENERATION MOBILE NETWORKS

DELIVERING MULTIMEDIA CONTENT FOR THE FUTURE GENERATION MOBILE NETWORKS Research Article DELIVERING MULTIMEDIA CONTENT FOR THE FUTURE GENERATION MOBILE NETWORKS S. Swarna Parvathi, Dr. K. S. Eswarakumar Address for Correspondence S. Swarna Parvathi, PhD Scholar Department

More information

Mobile broadband wireless access. - Connecting all EU citizens against economic downturn

Mobile broadband wireless access. - Connecting all EU citizens against economic downturn Mobile broadband wireless access. - Connecting all EU citizens against economic downturn Mats Nilsson VP head of European Affairs 20 October 2009 Mobile broadband is serving the political agenda mobile

More information

COMP327 Mobile Computing Session: Lecture Set 5 - Wireless Communication Part 2

COMP327 Mobile Computing Session: Lecture Set 5 - Wireless Communication Part 2 COMP327 Mobile Computing Session: 2016-2017 Lecture Set 5 - Wireless Communication Part 2 51 SIM (Subscriber Identity Modules) Smart cards that are inserted into the GSM phone to identify the user Stores

More information

Hands-On Modern Mobile and Long Term Evolution LTE

Hands-On Modern Mobile and Long Term Evolution LTE Hands-On LTE Course Description With 3G mobile technologies already rolled out by over 200 operators in over 80 countries, standards bodies, manufacturers and operators are looking towards the next generation

More information

WIRELESS TRANSMISSION

WIRELESS TRANSMISSION WIRELESS TRANSMISSION Name: R.A.K.M.Ranaweera. Registration No: 07/AS/CI/O22 Department: Computing and Information Technology. Contact: 0718478566 Date: 25/08/2001 Email: 4kasun@gmail.com Wireless Transmission

More information

Performance Challenge of 3G over Satellite Methods for Increasing Revenue & Quality of Experience. February 2018

Performance Challenge of 3G over Satellite Methods for Increasing Revenue & Quality of Experience. February 2018 Performance Challenge of 3G over Satellite Methods for Increasing Revenue & Quality of Experience February 2018 Mobile telephony has been in existence for over 40 years. The first generation (1G) developed

More information

Pilsung AB Taegyun A Fathur AB Afif A Hari A Gary A Dhika AB April AB Mulya AB Yusuf AB Anin A Rizka B Dion AB Siska AB Mirel AB Hani AB Airita AB Next Generation Network Soft Switch Long-Term Evolution

More information

Mobile and Sensor Systems

Mobile and Sensor Systems Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Protocols and Wireless Systems Dr Cecilia Mascolo In this lecture We will describe medium access control protocols and wireless systems

More information

NETWORK DIAGNOSTICS Testing HSDPA, HSUPA for 3G mobile apps

NETWORK DIAGNOSTICS Testing HSDPA, HSUPA for 3G mobile apps NETWORK DIAGNOSTICS Testing HSDPA, HSUPA for 3G mobile apps By Simon Binar Protocol Monitoring Division Tektronix Inc. The market for broadband cellular data services is rapidly evolving. From its deployment

More information

Mobile Broadband Evolution. Securing the future of Mobile Broadband for the GSM community LTE White Paper

Mobile Broadband Evolution. Securing the future of Mobile Broadband for the GSM community LTE White Paper LTE White Paper Background The GSM family of technologies including GSM, GPRS, EDGE and UMTS/HSPA accounts for more than 3.6M subscriptions, translating to a global market share in excess of 85%. Founded

More information

DOCSIS FOR LTE SMALL CELL BACKHAUL ADDRESSING PERFORMANCE AND THROUGHPUT REQUIREMENTS FOR MOBILE BACKHAUL

DOCSIS FOR LTE SMALL CELL BACKHAUL ADDRESSING PERFORMANCE AND THROUGHPUT REQUIREMENTS FOR MOBILE BACKHAUL DOCSIS FOR LTE SMALL CELL BACKHAUL ADDRESSING PERFORMANCE AND THROUGHPUT REQUIREMENTS FOR MOBILE BACKHAUL WHITE PAPER Small cells can be used to increase wireless network capacity, provide coverage in

More information

Beyond 3G Wireless. K.Raghunandan (RAGHU) Construction Administrator (Wireless) Communication Engineering New York City Transit (MTA)

Beyond 3G Wireless. K.Raghunandan (RAGHU) Construction Administrator (Wireless) Communication Engineering New York City Transit (MTA) Beyond 3G Wireless K.Raghunandan (RAGHU) Construction Administrator (Wireless) Communication Engineering New York City Transit (MTA) 3G Deployments today Rev C? 3G -1X EVDO CDMA2000 Rev A 3G -1XRTT CDMA2000

More information

Wireless# Guide to Wireless Communications. Objectives

Wireless# Guide to Wireless Communications. Objectives Wireless# Guide to Wireless Communications Chapter 10 Wireless Wide Area Networks Objectives Describe wireless wide area networks (WWANs) and how they are used Describe the applications that can be used

More information

1.1 Beyond 3G systems

1.1 Beyond 3G systems 1 Introduction The cellular wireless communications industry witnessed tremendous growth in the past decade with over four billion wireless subscribers worldwide. The first generation (1G) analog cellular

More information

The challenges, opportunities and setting the framework for 5G EMF and Health

The challenges, opportunities and setting the framework for 5G EMF and Health The challenges, opportunities and setting the framework for 5G EMF and Health 5G, EMF & Health 5 December 2017, Warsaw, Poland Mike Wood - General Manager Telstra EME Strategy, Governance and Risk Management

More information

ISSN: International Journal of Innovative Research in Technology & Science (IJIRTS) Abstract. Cellular Networks.

ISSN: International Journal of Innovative Research in Technology & Science (IJIRTS) Abstract. Cellular Networks. Abstract STUDY OF SOFT HANDOVER IN THIRD GENERATION CELLULAR NETWORK Rajarshi Hasdah, Delhi College of Engineering; Ashish Kumar, Laxmi Narain College of Technology Bhopal UMTS (Universal Mobile Telecommunications

More information

Telephone. Basic Telephone. A telephone is an electronic device used for two- way talking with other people. EE1D01 Electrical Science for Everyone

Telephone. Basic Telephone. A telephone is an electronic device used for two- way talking with other people. EE1D01 Electrical Science for Everyone Telephone A telephone is an electronic device used for two- way talking with other people. 1 Basic Telephone Telephone Subscriber Line CO (Local Exchange) T dial switch cradle switch tip (+) ear R mouth

More information

4G Americas The Voice of 5G for the Americas

4G Americas The Voice of 5G for the Americas 4G Americas The Voice of 5G for the Americas Perspective from Industrial Associations 5G Standardization Dr. Håkan Andersson, Ericsson presenting on behalf of Chris Pearson, President, 4G Americas 5G Workshop

More information

QOS ANALYSIS OF 3G AND 4G. Khartoum, Sudan 2 unversity of science and Technology, Khartoum, Sudan

QOS ANALYSIS OF 3G AND 4G. Khartoum, Sudan 2 unversity of science and Technology, Khartoum, Sudan QOS ANALYSIS OF 3G AND 4G Doaa Hashim Osman 1, Amin Babiker 2 and Khalid hammed Bellal 1 Department of Communication, Faculty of Engineering, AL Neelain University, Khartoum, Sudan 2 unversity of science

More information

WCDMA evolution: HSPA and MBMS

WCDMA evolution: HSPA and MBMS Chapter: 3G Evolution 8 WCDMA evolution: HSPA and MBMS Isael Diaz isael.diaz@eit.lth.se Department of Electrical and Information Technology 02-Apr-2009 3G Evolution - HSPA and LTE for Mobile Broadband

More information

Agenda. 1. What is the 4G Difference? 2. Spectrum Migration. 3. 4G 700 MHz Technical Issues

Agenda. 1. What is the 4G Difference? 2. Spectrum Migration. 3. 4G 700 MHz Technical Issues 3G, 4G, WiMAX, Mobile WiMAX, White Spaces - So What! David Fritz CTO Office National Wireless Accounts November 18, 2009 Agenda 1. What is the 4G Difference? 2. Spectrum Migration 3. 4G 700 MHz Technical

More information

NGN: The Evolution of Wireless Networks

NGN: The Evolution of Wireless Networks NGN: The Evolution of Wireless Networks Research Brief Abstract: Operators of mobile phone networks are already working through the financial and technical challenges of their own next generation of networks.

More information

4G LTE Technologies: System Concepts

4G LTE Technologies: System Concepts 4G LTE Technologies: System Concepts CK Toh, PhD, Chief Technology Advisor, ALICO Systems Inc., Torrance, CA, US ABSTRACT Recently, we have witnessed the roll out of LTE (Long Term Evolution, or so called

More information

Cowen and Company 37th Annual Technology Media & Telecom Conference. Cowen and Company 37th Annual Technology Media & Telecom Conference MAY 27, 2009

Cowen and Company 37th Annual Technology Media & Telecom Conference. Cowen and Company 37th Annual Technology Media & Telecom Conference MAY 27, 2009 Cowen and Company 37th Annual Technology Media & Telecom Conference MAY 27, 2009 Matt Grob Senior Vice President, Engineering Safe Harbor Before we proceed with our presentation, we would like to point

More information

Cellular Communication

Cellular Communication Cellular Communication Cellular Communication Cellular communication is designed to provide communications between two moving units, or between one mobile unit and one stationary phone or land unit (PSTN).

More information

Lecture 8 Winter 2006 Enterprise and Personal Communications Networks

Lecture 8 Winter 2006 Enterprise and Personal Communications Networks Information Technology Lecture 8 Winter 2006 Enterprise and Personal Communications Networks 1 Objectives Identify the reasons that multiuser systems are used in business. Describe eight network service

More information

Can You Haul Me Now? Bart Filipiak Market Development Manager 18 March 2009 Piedmont SCTE

Can You Haul Me Now? Bart Filipiak Market Development Manager 18 March 2009 Piedmont SCTE Can You Haul Me Now? Bart Filipiak Market Development Manager 18 March 2009 Piedmont SCTE What is Cellular? 2 Wireless Evolution 2G Digital communications aka PCS GSM (TDMA- AT&T, T-Mobile) CDMA One iden

More information

3G Wireless. from an Operator s Perspective. David T. Shimozawa Technology Development. Page 1. June 2001

3G Wireless. from an Operator s Perspective. David T. Shimozawa Technology Development. Page 1. June 2001 3G Wireless from an Operator s Perspective David T. Shimozawa Technology Development Page 1 Introduction Background CDMA Evolution Services and Market Issues Technology Issues Spectrum Issues Network Evolution

More information

CSIS Frequency Division Multiplexing. Basic Types of Multiplexing. Frequency Division Multiplexing. Frequency Division Multiplexing.

CSIS Frequency Division Multiplexing. Basic Types of Multiplexing. Frequency Division Multiplexing. Frequency Division Multiplexing. Multiplexing: combining information streams from multiple sources for transmission over a shared medium Demultiplexing: separating a combination back into individual information streams CSIS 4222 Ch 11:

More information

HSPA evolution. ericsson White paper July beyond 3gpp release 10

HSPA evolution. ericsson White paper July beyond 3gpp release 10 ericsson White paper 284 23-3156 July 2011 HSPA evolution HSPA evolution beyond 3gpp release 10 Many mobile operators around the world have HSPA technology to thank for their mobile broadband success.

More information

WIRELESS COMMUNICATION SYSTEMS ARE TRANSFORMING OUR LIVES

WIRELESS COMMUNICATION SYSTEMS ARE TRANSFORMING OUR LIVES WIRELESS COMMUNICATION SYSTEMS ARE TRANSFORMING OUR LIVES S. Thangadurai Assistant Professor, Department of computer Science, New Horizon College, Bangalore, Karnataka Abstract As a subscriber becomes

More information

4G Wireless Systems. Outlines. Data Rates of Wireless Networks. Wireless Networks. Wireless Networks Throughput versus Range

4G Wireless Systems. Outlines. Data Rates of Wireless Networks. Wireless Networks. Wireless Networks Throughput versus Range Outlines 4G Wireless Systems Vijay K. Garg, Ph.D., P.E. Department of Electrical & Computer Engineering, College of Engineering, University of Illinois at Chicago e-mail: garg.v@comcast.net Types of wireless

More information

Real-World Experience with a Mobile Broadband Network

Real-World Experience with a Mobile Broadband Network Real-World Experience with a Mobile Broadband Network Dr. Jin Yang Verizon Wireless jin.yang@ieee.org September 23, 2004 IEEE Communications Society Oakland-East Bay Chapter, CA Outline Introduction Overview

More information

Basic Principles of Next Generation Networks and Applications.

Basic Principles of Next Generation Networks and Applications. Basic Principles of Next Generation Networks and Applications. Jared Baraza, Lecturer Telecoms & IT, Kenyatta University, School of Pure and Applied Sciences, Physics Department Website: www.ku.ac.ke,

More information

CAN EMTC IOT BE SUPPORTED OVER THE HFC NETWORK

CAN EMTC IOT BE SUPPORTED OVER THE HFC NETWORK CAN EMTC IOT BE SUPPORTED OVER THE HFC NETWORK A Constructional Proposal of MOVING IOT into HFC A Technical Paper Prepared for SCTE/ISBE by Shengbo Ge Shanghai, China Cable HFC/CRDC CHG/ Cisco Systems

More information

BushLAN Distributed Wireless:

BushLAN Distributed Wireless: Australian National University BushLAN Distributed Wireless: Spectrum efficient long range wireless extension of broadband infrastructure to remote areas July 24, 2014 1 1 Abstract BushLAN is a distributed

More information

Session 2: 4G to 5G networks and standard releases

Session 2: 4G to 5G networks and standard releases Session 2: 4G to 5G networks and standard releases ITU Asia-Pacific Centre of Excellence Training On Traffic engineering and advanced wireless network planning 17-19 October 2018, Suva, Fiji Sami Tabbane

More information

Len Lauer Chief Operating Officer. The Future of Wireless

Len Lauer Chief Operating Officer. The Future of Wireless Len Lauer Chief Operating Officer The Future of Wireless Disclaimer Nothing in these materials is an offer to sell any of the components or devices referenced herein. Certain components for use in the

More information

Wireless Networking: An Introduction. Hongwei Zhang

Wireless Networking: An Introduction. Hongwei Zhang Wireless Networking: An Introduction Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Networking as resource allocation A taxonomy of current practice Technical elements Outline Networking as resource

More information

Architectures of Next Generation Wireless Networks. Pascal LORENZ.

Architectures of Next Generation Wireless Networks. Pascal LORENZ. Architectures of Next Generation Wireless Networks lorenz@ieee.org Internet is increasing exponentially: 2001: 180 million users today: more than 2 billions users Internet traffic and the bandwidth double

More information

Our Wireless Advantage

Our Wireless Advantage Americas Summit Our Wireless Advantage Wireless is The Foundation in Innovation, Development and Commercialization RAJESH PANKAJ, Senior Vice President, Engineering 1 The Fundamental Reason to Buy Smart

More information

WHAT IS THE INTERNET?

WHAT IS THE INTERNET? The Internet WHAT IS THE INTERNET? A world-wide network of computers allows people to share information electronically It is a BIG book with many web-pages on different topics. It Can be accessed anywhere

More information

CHALLENGES TO LTE PROGRESS. The Evolution of Mobile Broadband and Regulatory Policy

CHALLENGES TO LTE PROGRESS. The Evolution of Mobile Broadband and Regulatory Policy CHALLENGES TO LTE PROGRESS The Evolution of Mobile Broadband and Regulatory Policy LTE North America, Dallas, Texas, November 21-22, 2013 4G Americas Board of Governors Exabytes per Month Traffic Growth

More information

WCDMA Frequency Refarming: A leap towards ubiquitous mobile broadband coverage

WCDMA Frequency Refarming: A leap towards ubiquitous mobile broadband coverage Nokia Networks WCDMA Frequency Refarming: A leap towards ubiquitous mobile broadband coverage Nokia Networks white paper WCDMA Frequency Refarming Contents Executive summary 3 Why WCDMA in the 900 MHz

More information

Mobile Broadband Systems: Features, Statistics, Customer Expectations and Spectrum Requirements. ITU Cross Regional Seminar on Broadband Access

Mobile Broadband Systems: Features, Statistics, Customer Expectations and Spectrum Requirements. ITU Cross Regional Seminar on Broadband Access Mobile Broadband Systems: Features, Statistics, Customer Expectations and Spectrum Requirements ITU Cross Regional Seminar on Broadband Access 4-6 October 2011, Chisinau (Moldova) Turhan MULUK Communications

More information

PCS. Reference. Wireless and Mobile Network Architectures Y-Bing Lin and Imrich Chlamtac Wiley Computer Publishing

PCS. Reference. Wireless and Mobile Network Architectures Y-Bing Lin and Imrich Chlamtac Wiley Computer Publishing PCS 1 Reference Wireless and Mobile Network Architectures Y-Bing Lin and Imrich Chlamtac Wiley Computer Publishing 2 Outlines Introduction PCS Architecture Cellular Telephony Cordless Telephony and Low-Tier

More information

LTE IS IT THE BEST WAY FORWARD FOR IOT?

LTE IS IT THE BEST WAY FORWARD FOR IOT? LTE IS IT THE BEST WAY FORWARD FOR IOT? WHAT DOES LTE OFFER? The M2M and IoT markets face substantial disruption as new network technologies come to market that offer widely different speeds and capacities.

More information

WHITE PAPER AX WAIT, DID WE JUST BUILD A WIRELESS SWITCH?

WHITE PAPER AX WAIT, DID WE JUST BUILD A WIRELESS SWITCH? WHITE PAPER 80.AX WAIT, DID WE JUST BUILD A WIRELESS SWITCH? November 08 Introduction With the initial versions of 80.ax (Wi-Fi ) coming out, some of the most interesting features and enhancements revolve

More information

Progress Report of NTT DOCOMO LTE Trials January 26, 2009 Takehiro Nakamura NTT DOCOMO

Progress Report of NTT DOCOMO LTE Trials January 26, 2009 Takehiro Nakamura NTT DOCOMO ATIS-3GPP LTE Conference January 26, 2009 Progress Report of NTT DOCOMO LTE Trials January 26, 2009 NTT DOCOMO LTE History and Status in 3GPP 2004 2005 2006 2007 2008 4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

More information

International Journal on Emerging Technologies 5(2): 89-94(2014) ISSN No. (Print) : ISSN No. (Online) :

International Journal on Emerging Technologies 5(2): 89-94(2014) ISSN No. (Print) : ISSN No. (Online) : e t International Journal on Emerging Technologies 5(2): 89-94(2014) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 A Review Hsdpa Mobile High Data Rate Various Wireless Access OFDM Transmission

More information

HSPA+ Advanced Smart Networks: Multipoint Transmission

HSPA+ Advanced Smart Networks: Multipoint Transmission Qualcomm Incorporated February 2011 Table of Contents 1. Introduction... 1 2. Multipoint HSPA Description... 2 Single Frequency Multipoint HSPA... 2 Dual Frequency Multipoint HSPA... 3 3. Advantages...

More information

Convergence of IP and Mobile Communications. Albert Coronel RedLink Communications Co., Ltd. MMNOG, November 21, 2015

Convergence of IP and Mobile Communications. Albert Coronel RedLink Communications Co., Ltd. MMNOG, November 21, 2015 Convergence of IP and Mobile Communications Albert Coronel RedLink Communications Co., Ltd. MMNOG, November 21, 2015 Mobile terminals Netgear Skype phone first released 2007 Makes and receives Skype calls

More information

Introduction to Networks and the Internet

Introduction to Networks and the Internet Introduction to Networks and the Internet CMPE 80N Announcements First quiz on Friday, 01.16. Covers material up to and including 01.14. Closed books, notes, etc. Winter 2004 Lecture 5 1 2 Data Transmission

More information

Dimensioning, configuration and deployment of Radio Access Networks. part 1: General considerations. Mobile Telephony Networks

Dimensioning, configuration and deployment of Radio Access Networks. part 1: General considerations. Mobile Telephony Networks Dimensioning, configuration and deployment of Radio Access Networks. part 1: General considerations Mobile Telephony Networks 1 The Evolution of Mobile Telephony 1st Generation 2nd 3rd 4th Analogue Voice

More information

Fiber in the backhaul : Powering mobile Broadband

Fiber in the backhaul : Powering mobile Broadband Fiber in the backhaul : Powering mobile Broadband Gamal Hegazi / Lead Architect Founding Board member FTTH Council Members and Mission MENA council members are from the main FTTH industry players of the

More information

Making 5G NR a reality

Making 5G NR a reality Making 5G NR a reality Laurent Fournier Sr. Director Technology Development Europe Qualcomm Technologies, Inc. November 17, 2016 DigiWorld Congress Scalability to address diverse service and devices Ultra-low

More information

WIMAX. WIMAX (Worldwide Interoperability for Microwave Access ): Field of application:

WIMAX. WIMAX (Worldwide Interoperability for Microwave Access ): Field of application: WIMAX WiMAX (Worldwide Interoperability for Microwave Access) is a technology that focuses on providing data over long distances in a wireless mode, very similar to the cellular mobile concept. WiMAX is

More information

UMTS Forum Operators Group. Operators HSPA experience and path towards LTE. Peter Zidar, M.Sc.

UMTS Forum Operators Group. Operators HSPA experience and path towards LTE. Peter Zidar, M.Sc. Operators HSPA experience and path towards LTE Peter Zidar, M.Sc. Chairman of Operators Group, UMTS Forum Head of standardization office, Mobitel, d. d., Slovenia Mobile operators can: UMTS Forum Operators

More information

Comparison of wireless data standards

Comparison of wireless data standards Comparison of wireless data standards A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies

More information

HSUPA Services Achieving Maximum Uplink Speed of 5.7 Mbit/s

HSUPA Services Achieving Maximum Uplink Speed of 5.7 Mbit/s HSUPA Services Achieving Maximum Uplink Speed of 5.7 Mbit/s Enhanced Uplink FOMA Mobile Terminals Maximum Uplink Speed of 5.7 Mbit/s HSUPA Services Achieving Maximum Uplink Speed of 5.7 Mbit/s NTT DOCOMO

More information

Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets)

Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets) Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets) The Alcatel-Lucent 9500 Microwave Packet Radio (MPR) provides cost-effective IP transformation for seamless microwave transport of TDM, ATM, IP

More information

GPRS and UMTS T

GPRS and UMTS T GPRS and UMTS T-110.2100 Global Packet Radio Service GPRS uses the time slots not used for circuit switched services Data rate depends on the availability of free time slots GPRS uses the multislot technique,

More information

Asia pacific analyst forum. Beijing 15 september 2011

Asia pacific analyst forum. Beijing 15 september 2011 Asia pacific analyst forum Beijing 15 september 2011 SAFE HARBOR THIS PRESENTATION MAY CONTAIN FORWARD LOOKING STATEMENTS. SUCH STATEMENTS ARE BASED ON OUR CURRENT EXPECTATIONS AND ARE SUBJECT TO CERTAIN

More information

University of Agder Department of Information and Communication Technology EXAM

University of Agder Department of Information and Communication Technology EXAM University of Agder Department of Information and Communication Technology EXAM Course code: IKT 444 Course title: Mobile Communication Networks Date: Tuesday, 6 th December 2016 Duration: 09:00 13:00

More information

5G Wireless Technology

5G Wireless Technology 5G Wireless Technology Contents Introduction to 5G Evolution from 1G to 5G Key concepts Architecture Hardware & Software of 5G Features Advantages Applications Conclusion Introduction to 5G What is 5G?

More information

Will 3G Networks Cope?

Will 3G Networks Cope? Brings together 3G traffic and capacity forecasts for the first time Unwired insight when a superficial assessment is not enough New report Will 3G Networks Cope? 3G traffic and capacity forecasts, 2009

More information

5G Design and Technology. Durga Malladi SVP Engineering Qualcomm Technologies, Inc. October 19 th, 2016

5G Design and Technology. Durga Malladi SVP Engineering Qualcomm Technologies, Inc. October 19 th, 2016 5G Design and Technology Durga Malladi SVP Engineering Qualcomm Technologies, Inc. October 19 th, 2016 Mobile fueled the last 30 years interconnecting people 1980s Analog voice 1990s Digital voice 2000s

More information