Agenda. Agenda 11/12/12. Review - 6 Great Ideas in Computer Architecture

Size: px
Start display at page:

Download "Agenda. Agenda 11/12/12. Review - 6 Great Ideas in Computer Architecture"

Transcription

1 /3/2 Review - 6 Great Ideas in Computer Architecture CS 6C: Great Ideas in Computer Architecture (Machine Structures) Dependability and RAID Instructors: Krste Asanovic, Randy H. Katz hfp://inst.eecs.berkeley.edu/~cs6c/fa2. Layers of RepresentaRon/InterpretaRon 2. Moore s Law 3. Principle of Locality/Memory Hierarchy 4. Parallelism 5. Performance Measurement & Improvement 6. Dependability via Redundancy /2/2 Fall Lecture #33 4/2/ Fall Lecture #33 2 Review - Great Idea #6: Dependability via Redundancy Redundancy so that a failing piece doesn t make the whole system fail +=2 2 of 3 agree Review - Great Idea #6: Dependability via Redundancy Applies to everything from datacenters to memory Redundant datacenters so that can lose datacenter but Internet service stays online Redundant routes so can lose nodes but Internet doesn t fail Redundant disks so that can lose disk but not lose data (Redundant Arrays of Independent Disks/RAID) Redundant memory bits of so that can lose bit but no data (Error CorrecRng Code/ECC Memory) +=2 +=2 += FAIL! Increasing transistor density reduces the cost of redundancy 4/2/ Fall Lecture #33 3 4/2/ Fall Lecture #33 4 /2/2 Fall Lecture #33 5 /2/2 Fall Lecture #33 6

2 /3/2 Dependability Measures Understanding MTTF Reliability: Mean Time To Failure (MTTF) Service interrupron: Mean Time To Repair (MTTR) Mean Rme between failures (MTBF) MTBF = MTTF + MTTR Availability = MTTF / (MTTF + MTTR) Improving Availability Increase MTTF: More reliable hardware/so_ware + Fault Tolerance Reduce MTTR: improved tools and processes for diagnosis and repair Probability of Failure Time 4/2/ Fall Lecture #33 9 /3/2 Fall Lecture #33 Availability Measures Availability = MTTF / (MTTF + MTTR) as % MTTF, MTBF usually measured in hours Since hope rarely down, shorthand is number of 9s of availability per year nine: 9% => 36 days of repair/year 2 nines: 99% => 3.6 days of repair/year 3 nines: 99.9% => 526 minutes of repair/year 4 nines: 99.99% => 53 minutes of repair/year 5 nines: % => 5 minutes of repair/year Dependability Design Principle Design Principle: No single points of failure Chain is only as strong as its weakest link Dependability Corollary of Amdahl s Law Doesn t mafer how dependable you make one porron of system Dependability limited by part you do not improve 4/2/ Fall Lecture #33 2 4/2/ Fall Lecture #33 4 /2/2 Fall Lecture #33 5 Error DetecRon/CorrecRon Codes Memory systems generate errors (accidentally flipped- bits) DRAMs store very lifle charge per bit So_ errors occur occasionally when cells are struck by alpha parrcles or other environmental upsets Hard errors can occur when chips permanently fail. Problem gets worse as memories get denser and larger Memories protected against failures with EDC/ECC Extra bits are added to each data- word Used to detect and/or correct faults in the memory system Each data word value mapped to unique code word A fault changes valid code word to invalid one, which can be detected 4/2/ Fall Lecture #33 6 2

3 /3/2 Hamming Distance: 8 code words Hamming Distance 2: DetecRon Detect Single Bit Errors Invalid Codes 4/2/ Fall Lecture #33 8 No bit error goes to another valid code ½ codes are valid 4/2/ Fall Lecture #33 9 Hamming Distance 3: CorrecRon Correct Single Bit Errors, Detect Double Bit Errors Nearest (one ) Nearest (one ) No 2 bit error goes to another valid code; bit error near /8 codes are valid 4/2/ Fall Lecture #33 2 /2/2 Fall Lecture #33 2 Administrivia Final Exam Monday, December, :3-2:3 quesrons x points = points/minutes Room 22/23/242 Hearst Gym (assigned by course account login) Comprehensive, but concentrated on material since midterm examinaron Closed book/note, open crib sheet as before, MIPS Green Card provided Special considera@on students, please contact /2/2 Fall Lecture #33 22 /2/2 Fall Lecture #

4 /3/2 Parity: Simple Error DetecRon Coding Each data value, before it is wrifen to memory is tagged with an extra bit to force the stored word to have even parity: b 7 b 6 b 5 b 4 b 3 b 2 b b p + Each word, as it is read from memory is checked by finding its parity (including the parity bit). b 7 b 6 b 5 b 4 b 3 b 2 b b p Minimum Hamming distance of parity code is 2 c A non- zero parity indicates an error occurred: 2 errors (on different bits) are not detected nor any even number of errors, just odd numbers of errors are detected + Data 4 ones, even parity now Write to memory: to keep parity even Data 5 ones, odd parity now Write to memory: to make parity even Parity Example Read from memory 4 ones => even parity, so no error Read from memory 5 ones => odd parity, so error What if error in parity bit? 4/2/ Fall Lecture # /2/ Fall Lecture #33 26 Suppose Want to Correct Error? Richard Hamming came up with simple to understand mapping to allow Error CorrecRon at minimum distance of 3 Single error correcron, double error detecron Called Hamming ECC Worked weekends on relay computer with unreliable card reader, frustrated with manual restarrng Got interested in error correcron; published 95 R. W. Hamming, Error DetecRng and CorrecRng Codes, The Bell System Technical Journal, Vol. XXVI, No 2 (April 95) pp /2/ Fall Lecture #33 27 Graphic of Hamming Code hfp://en.wikipedia.org/wiki/hamming_code 4/2/ Fall Lecture #33 3 Hamming ECC 5. Set parity bits to create even parity for each group A byte of data: Create the coded word, leaving spaces for the parity bits: Calculate the parity bits 4/2/ Fall Lecture #33 3 Hamming ECC PosiRon checks bits,3,5,7,9, (bold):? _. set posiron to a _: PosiRon 2 checks bits 2,3,6,7,, (bold):?. set posiron 2 to a _: _ PosiRon 4 checks bits 4,5,6,7,2 (bold):? _. set posiron 4 to a _: PosiRon 8 checks bits 8,9,,,2:?. set posiron 8 to a _: _ 4/2/ Fall Lecture #

5 /3/2 Hamming ECC Final code word: Data word: Hamming ECC Error Check Suppose receive! 4/2/ Fall Lecture #33 34 /2/2 Fall Lecture #33 35 Hamming ECC Error Check Suppose receive Hamming ECC Error Correct Flip the incorrect bit /2/2 Fall Lecture #33 36 /2/2 Fall Lecture #33 38 EvoluRon of the Disk Drive IBM 339K, 986 /2/2 Fall Lecture #33 48 IBM RAMAC 35, 956 Apple SCSI, 986 /2/2 Fall Lecture #

6 /3/2 Arrays of Small Disks Can smaller disks be used to close gap in performance between disks and CPUs? ConvenRonal: 4 disk designs 3.5 Disk Array: disk design 3.5 Low End High End /2/2 Fall Lecture #33 5 Replace Small Number of Large Disks with Large Number of Small Disks! (988 Disks) IBM 339K IBM 3.5" 6 x7 2 GBytes 32 MBytes 23 GBytes 97 cu. _.. cu. _. cu. _. 3 KW W KW Capacity Volume Power Data Rate I/O Rate MTTF Cost 5 MB/s 6 I/Os/s 25 KHrs $25K.5 MB/s 55 I/Os/s 5 KHrs $2K 2 MB/s 39 IOs/s??? Hrs $5K Disk Arrays have potenral for large data and I/O rates, high MB per cu. _., high MB per KW, but what about reliability? /2/2 Fall Lecture #33 5! 9X 3X 8X 6X RAID: Redundant Arrays of (Inexpensive) Disks Files are "striped" across mulrple disks Redundancy yields high data availability Availability: service srll provided to user, even if some components failed Disks will srll fail Contents reconstructed from data redundantly stored in the array Capacity penalty to store redundant info Bandwidth penalty to update redundant info Redundant Arrays of Inexpensive Disks RAID : Disk Mirroring/Shadowing recovery group Each disk is fully duplicated onto its mirror Very high availability can be achieved Bandwidth sacrifice on write: Logical write = two physical writes Reads may be oprmized Most expensive soluron: % capacity overhead /2/2 Fall Lecture #33 52 /2/2 Fall Lecture #33 53 Redundant Array of Inexpensive Disks RAID 3: Parity Disk... logical record Striped physical records P contains sum of other disks per stripe mod 2 ( parity ) If disk fails, subtract P from sum of other disks to find missing informaron /2/2 Fall Lecture #33 54 P Redundant Arrays of Inexpensive Disks RAID 4: High I/O Rate Parity Insides of 5 disks Example: small read D & D5, large write D2- D5 D D D2 D3 P D4 D5 D6 D7 P D8 D9 D D P D2 D3 D4 D5 D6 D7 D8 D9 D2 D2 D22 D23 P.#.#.#.#.#.# Disk.# Columns.#.#.#.#.# /2/2 Fall Lecture.# #33.#.# 55 P P Increasing Logical Disk Address Stripe 6

7 /3/2 InspiraRon for RAID 5 RAID 5: High I/O Rate Interleaved Parity 4 works well for small reads Small writes (write to one disk): Independent writes possible because of interleaved parity OpRon : read other data disks, create new sum and write to Parity Disk OpRon 2: since has old sum, compare old data to new data, add the difference to Small writes are limited by Parity Disk: Write to D, D5 both also write to disk D D D2 D3 D4 D5 D6 D7 /2/2 Example: write to D, D5 uses disks,, 3, 4 Fall Lecture #33 56 /2/2 Problems of Disk Arrays: Small Writes Logical Write = 2 Physical Reads + 2 Physical Writes new data D D D2 D3 old data (Read) + XOR D' D D3 D4 D5 D6 D7 D8 D9 D D D2 D3 D4 D5 D6 D7 D8 D9 D2 D22 D23 D2 Disk Columns - - Lecture #33 Fall 22 Increasing Logical Disk Addresses 57 Consisted of a Sun 4/28 workstaron with 28 MB of DRAM, four dual- string SCSI controllers, inch SCSI disks and specialized disk striping so_ware + XOR /2/2 D2 - I (989) old parity (2Read) (3Write) D RAID- I RAID- 5: Small Write Algorithm D' D (4Write) D2 D3 P' Fall Lecture #33 58 /2/2 Fall Lecture #33 6 RAID II RAID II Early Network AFached Storage (NAS) System running a Log Structured File System (LFS) Impact: $25 Billion/year in 22 Over $5 Billion in RAID device sold since RAID companies (at the peak) So_ware RAID a standard component of modern OSs /2/2 Fall Lecture #33 6 /2/2 Fall Lecture #

8 /3/2 And, in Conclusion, Great Idea: Redundancy to Get Dependability SpaRal (extra hardware) and Temporal (retry if error) Reliability: MTTF & Annualized Failure Rate (AFR) Availability: % uprme (MTTF- MTTR/MTTF) Memory Hamming distance 2: Parity for Single Error Detect Hamming distance 3: Single Error CorrecRon Code + encode bit posiron of error Hamming distance 4: SEC/Double Error DetecRon CRC for many bit detecron, Reed Solomon per disk sector for many bit error detecron/correcron 4/2/ Fall Lecture #

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Dependability and RAID. Great Ideas in Computer Architecture

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Dependability and RAID. Great Ideas in Computer Architecture CS 6C: Great Ideas in Computer Architecture (Machine Structures) Dependability and RAID Instructor: Randy H. Katz hdp://inst.eecs.berkeley.edu/~cs6c/fa3 /4/3 Fall 203 - - Lecture #23 Great Ideas in Computer

More information

Lecture 25: Dependability and RAID

Lecture 25: Dependability and RAID CS 61C: Great Ideas in Computer Architecture Lecture 25: Dependability and RAID Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 11/28/17 Fall 2017 Lecture #25 1 Storage Attachment

More information

CS 61C: Great Ideas in Computer Architecture. Dependability. Guest Lecturer: Paul Ruan

CS 61C: Great Ideas in Computer Architecture. Dependability. Guest Lecturer: Paul Ruan CS 61C: Great Ideas in Computer Architecture Dependability Guest Lecturer: Paul Ruan 8/2/2012 Lecture #27 1 Review WSC Servers on a rack, rack part of cluster Issues to handle include load balancing, failures,

More information

Dependability and ECC

Dependability and ECC ecture 38 Computer Science 61C Spring 2017 April 24th, 2017 Dependability and ECC 1 Great Idea #6: Dependability via Redundancy Applies to everything from data centers to memory Redundant data centers

More information

Dependency Redundancy & RAID

Dependency Redundancy & RAID Dependency Redundancy & RAID 1 Great Idea #6: Dependability via Redundancy Applies to everything from data centers to memory Redundant data centers so that can lose 1 datacenter but Internet service stays

More information

CS 61C: Great Ideas in Computer Architecture Lecture 25: Dependability and RAID

CS 61C: Great Ideas in Computer Architecture Lecture 25: Dependability and RAID CS 61C: Great Ideas in Computer Architecture Lecture 25: Dependability and RAID Instructor: Sagar Karandikar sagark@eecs.berkeley.edu hcp://inst.eecs.berkeley.edu/~cs61c 1 Last Fme: I/O gives computers

More information

Agenda. Project #3, Part I. Agenda. Project #3, Part I. No SSE 12/1/10

Agenda. Project #3, Part I. Agenda. Project #3, Part I. No SSE 12/1/10 // CS 6C: Great Ideas in Computer Architecture (Machine Structures) Project Speed- up and RAID Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs6c/fa // Fall - - Lecture #9

More information

CS 61C: Great Ideas in Computer Architecture Dependability. Today s Lecture. Smart Phone. Core. FuncQonal Unit(s) Logic Gates

CS 61C: Great Ideas in Computer Architecture Dependability. Today s Lecture. Smart Phone. Core. FuncQonal Unit(s) Logic Gates Review CS 61C: Great Ideas in Computer Architecture Dependability Instructor: David A. Pa@erson h@p://inst.eecs.berkeley.edu/~cs61c/sp12 Name of the Game: Reduce Cache Misses 2 memory blocks mapping to

More information

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh CS24: Computer Architecture Storage systems Sangyeun Cho Computer Science Department (Some slides borrowed from D Patterson s lecture slides) Case for storage Shift in focus from computation to communication

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Science 46 Computer Architecture Spring 24 Harvard University Instructor: Prof dbrooks@eecsharvardedu Lecture 22: More I/O Computer Science 46 Lecture Outline HW5 and Project Questions? Storage

More information

Today: Coda, xfs! Brief overview of other file systems. Distributed File System Requirements!

Today: Coda, xfs! Brief overview of other file systems. Distributed File System Requirements! Today: Coda, xfs! Case Study: Coda File System Brief overview of other file systems xfs Log structured file systems Lecture 21, page 1 Distributed File System Requirements! Transparency Access, location,

More information

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H Katz Computer Science 252 Spring 996 RHKS96 Review: Storage System Issues Historical Context of Storage I/O Storage I/O Performance

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures CS61C L40 I/O: Disks (1) Lecture 40 I/O : Disks 2004-12-03 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia I talk to robots Japan's growing

More information

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011 CSE325 Principles of Operating Systems Mass-Storage Systems David P. Duggan dduggan@sandia.gov April 19, 2011 Outline Storage Devices Disk Scheduling FCFS SSTF SCAN, C-SCAN LOOK, C-LOOK Redundant Arrays

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568 Part 6 Input/Output Israel Koren ECE568/Koren Part.6. Motivation: Why Care About I/O? CPU Performance:

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept of Electrical & Computer Engineering Computer Architecture ECE 568 art 5 Input/Output Israel Koren ECE568/Koren art5 CU performance keeps increasing 26 72-core Xeon hi

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568 Part 6 Input/Output Israel Koren ECE568/Koren Part.6. CPU performance keeps increasing 26 72-core Xeon

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

CS61C - Machine Structures. Week 7 - Disks. October 10, 2003 John Wawrzynek

CS61C - Machine Structures. Week 7 - Disks. October 10, 2003 John Wawrzynek CS61C - Machine Structures Week 7 - Disks October 10, 2003 John Wawrzynek http://www-inst.eecs.berkeley.edu/~cs61c/ CS61C wk 7 Disks UC Regents 1 Magnetic Disk common I/O device Computer Processor (active)

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Reliable Computing I

Reliable Computing I Instructor: Mehdi Tahoori Reliable Computing I Lecture 8: Redundant Disk Arrays INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC) National Research Center of the Helmholtz

More information

NOW Handout Page 1 S258 S99 1

NOW Handout Page 1 S258 S99 1 Areal Density COSC 535 Advanced Computer Slides modified from Hennessy CS252 course slides Why do we need disks Magnetic Disks RAID Advanced Dependability/Reliability/Availability I/O Benchmarks, and Performance

More information

RAID (Redundant Array of Inexpensive Disks)

RAID (Redundant Array of Inexpensive Disks) Magnetic Disk Characteristics I/O Connection Structure Types of Buses Cache & I/O I/O Performance Metrics I/O System Modeling Using Queuing Theory Designing an I/O System RAID (Redundant Array of Inexpensive

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 28: System Dependability, Error Correction Codes and Virtual Machines Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview

More information

Storage System COSC UCB

Storage System COSC UCB Storage System COSC4201 1 1999 UCB I/O and Disks Over the years much less attention was paid to I/O compared with CPU design. As frustrating as a CPU crash is, disk crash is a lot worse. Disks are mechanical

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 6 Spr 23 course slides Some material adapted from Hennessy & Patterson / 23 Elsevier Science Characteristics IBM 39 IBM UltraStar Integral 82 Disk diameter

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review Administrivia CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Homework #4 due Thursday answers posted soon after Exam #2 on Thursday, April 24 on memory hierarchy (Unit 4) and

More information

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems Today: Coda, xfs Case Study: Coda File System Brief overview of other file systems xfs Log structured file systems HDFS Object Storage Systems Lecture 20, page 1 Coda Overview DFS designed for mobile clients

More information

Definition of RAID Levels

Definition of RAID Levels RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds

More information

Appendix D: Storage Systems

Appendix D: Storage Systems Appendix D: Storage Systems Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Storage Systems : Disks Used for long term storage of files temporarily store parts of pgm

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Storage and Other I/O Topics I/O Performance Measures Types and Characteristics of I/O Devices Buses Interfacing I/O Devices

More information

Advanced Computer Architecture

Advanced Computer Architecture ECE 563 Advanced Computer Architecture Fall 29 Lecture 5: I/O 563 L5. Fall 29 I/O Systems Processor interrupts Cache Memory - I/O Bus Main Memory I/O Controller I/O Controller I/O Controller Disk Disk

More information

Guerrilla 7: Virtual Memory, ECC, IO

Guerrilla 7: Virtual Memory, ECC, IO Guerrilla 7:, August 4, 2016 Guerrilla 7:, Guerrilla 7:, Why do we need? Guerrilla 7:, Why do we need? Give each program the illusion that it has its own private address space. Provide protection between

More information

ECE Enterprise Storage Architecture. Fall 2018

ECE Enterprise Storage Architecture. Fall 2018 ECE590-03 Enterprise Storage Architecture Fall 2018 RAID Tyler Bletsch Duke University Slides include material from Vince Freeh (NCSU) A case for redundant arrays of inexpensive disks Circa late 80s..

More information

5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 485.e1

5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 485.e1 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 485.e1 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks Amdahl s law in Chapter 1 reminds us that

More information

www-inst.eecs.berkeley.edu/~cs61c/

www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 38 - Disks 11/28/2007 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ 1 Magnetic Disk common I/O device Computer Processor (active) Control

More information

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections )

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections ) Lecture 23: Storage Systems Topics: disk access, bus design, evaluation metrics, RAID (Sections 7.1-7.9) 1 Role of I/O Activities external to the CPU are typically orders of magnitude slower Example: while

More information

Page 1. Magnetic Disk Purpose Long term, nonvolatile storage Lowest level in the memory hierarchy. Typical Disk Access Time

Page 1. Magnetic Disk Purpose Long term, nonvolatile storage Lowest level in the memory hierarchy. Typical Disk Access Time Review: Major Components of a Computer Processor Control Datapath Cache Memory Main Memory Secondary Memory (Disk) Devices Output Input Magnetic Disk Purpose Long term, nonvolatile storage Lowest level

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE RAID SEMINAR REPORT 2004 Submitted on: Submitted by: 24/09/2004 Asha.P.M NO: 612 S7 ECE CONTENTS 1. Introduction 1 2. The array and RAID controller concept 2 2.1. Mirroring 3 2.2. Parity 5 2.3. Error correcting

More information

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University I/O, Disks, and RAID Yi Shi Fall 2017 Xi an Jiaotong University Goals for Today Disks How does a computer system permanently store data? RAID How to make storage both efficient and reliable? 2 What does

More information

Chapter 5 B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5 B. Large and Fast: Exploiting Memory Hierarchy Chapter 5 B Large and Fast: Exploiting Memory Hierarchy Dependability 5.5 Dependable Memory Hierarchy Chapter 6 Storage and Other I/O Topics 2 Dependability Service accomplishment Service delivered as

More information

RAID. Redundant Array of Inexpensive Disks. Industry tends to use Independent Disks

RAID. Redundant Array of Inexpensive Disks. Industry tends to use Independent Disks RAID Chapter 5 1 RAID Redundant Array of Inexpensive Disks Industry tends to use Independent Disks Idea: Use multiple disks to parallelise Disk I/O for better performance Use multiple redundant disks for

More information

Chapter 6. Storage and Other I/O Topics. ICE3003: Computer Architecture Fall 2012 Euiseong Seo

Chapter 6. Storage and Other I/O Topics. ICE3003: Computer Architecture Fall 2012 Euiseong Seo Chapter 6 Storage and Other I/O Topics 1 Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics Magnetic disks

More information

EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC

EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC April 12, 2012 John Wawrzynek Spring 2012 EECS150 - Lec24-hdl3 Page 1 Parallelism Parallelism is the act of doing more than one thing

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L27 RAID and Performance (1) inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #27: RAID & Performance Outline Disks Part 2 RAID Performance 2006-08-15 Andy Carle CS 61C L27

More information

Chapter 6. I/O issues

Chapter 6. I/O issues Computer Architectures Chapter 6 I/O issues Tien-Fu Chen National Chung Cheng Univ Chap6 - Input / Output Issues I/O organization issue- CPU-memory bus, I/O bus width A/D multiplex Split transaction Synchronous

More information

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices Where Are We? COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) u Covered: l Management of CPU

More information

Department of Electrical Engineering and Computer Sciences Fall 2016 Instructors: Randy Katz, Bernhard Boser

Department of Electrical Engineering and Computer Sciences Fall 2016 Instructors: Randy Katz, Bernhard Boser University of California, Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2016 Instructors: Randy Katz, Bernhard Boser 2016-12-16 L CS61C FINAL J After the

More information

Address Accessible Memories. A.R. Hurson Department of Computer Science Missouri University of Science & Technology

Address Accessible Memories. A.R. Hurson Department of Computer Science Missouri University of Science & Technology Address Accessible Memories A.R. Hurson Department of Computer Science Missouri University of Science & Technology 1 Memory System Memory Requirements for a Computer An internal storage medium to store

More information

PANASAS TIERED PARITY ARCHITECTURE

PANASAS TIERED PARITY ARCHITECTURE PANASAS TIERED PARITY ARCHITECTURE Larry Jones, Matt Reid, Marc Unangst, Garth Gibson, and Brent Welch White Paper May 2010 Abstract Disk drives are approximately 250 times denser today than a decade ago.

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 37 Disks 2008-04-28 Lecturer SOE Dan Garcia How much storage do YOU have? The ST506 was their first drive in 1979 (shown here), weighed

More information

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Vivek Pai Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

Outline. EEL-4713 Computer Architecture I/O Systems. I/O System Design Issues. The Big Picture: Where are We Now? I/O Performance Measures

Outline. EEL-4713 Computer Architecture I/O Systems. I/O System Design Issues. The Big Picture: Where are We Now? I/O Performance Measures Outline EEL-4713 Computer Architecture I/O Systems I/O Performance Measures Types and Characteristics of I/O Devices Magnetic Disks Summary io.1 io.2 The Big Picture: Where are We Now? Today s Topic: I/O

More information

Concepts Introduced. I/O Cannot Be Ignored. Typical Collection of I/O Devices. I/O Issues

Concepts Introduced. I/O Cannot Be Ignored. Typical Collection of I/O Devices. I/O Issues Concepts Introduced I/O Cannot Be Ignored Assume a program requires 100 seconds, 90 seconds for accessing main memory and 10 seconds for I/O. I/O introduction magnetic disks ash memory communication with

More information

High Performance Computing Course Notes High Performance Storage

High Performance Computing Course Notes High Performance Storage High Performance Computing Course Notes 2008-2009 2009 High Performance Storage Storage devices Primary storage: register (1 CPU cycle, a few ns) Cache (10-200 cycles, 0.02-0.5us) Main memory Local main

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures CS61C L26 RAID & Performance (1) Lecture #26 RAID & Performance CPS today! 2005-12-05 There is one handout today at the front and back of the room!

More information

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

Computer Architecture Computer Science & Engineering. Chapter 6. Storage and Other I/O Topics BK TP.HCM

Computer Architecture Computer Science & Engineering. Chapter 6. Storage and Other I/O Topics BK TP.HCM Computer Architecture Computer Science & Engineering Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine

More information

An Introduction to RAID

An Introduction to RAID Intro An Introduction to RAID Gursimtan Singh Dept. of CS & IT Doaba College RAID stands for Redundant Array of Inexpensive Disks. RAID is the organization of multiple disks into a large, high performance

More information

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches CS 61C: Great Ideas in Computer Architecture Direct Mapped Caches Instructor: Justin Hsia 7/05/2012 Summer 2012 Lecture #11 1 Review of Last Lecture Floating point (single and double precision) approximates

More information

Page 1. Motivation: Who Cares About I/O? Lecture 5: I/O Introduction: Storage Devices & RAID. I/O Systems. Big Picture: Who cares about CPUs?

Page 1. Motivation: Who Cares About I/O? Lecture 5: I/O Introduction: Storage Devices & RAID. I/O Systems. Big Picture: Who cares about CPUs? CS252 Graduate Computer Architecture Lecture 5: I/O Introduction: Storage Devices & RAID January 3, 2 Prof David A Patterson Computer Science 252 Spring 2 Motivation: Who Cares About I/O? CPU Performance:

More information

Frequently asked questions from the previous class survey

Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [MASS STORAGE] Shrideep Pallickara Computer Science Colorado State University L29.1 Frequently asked questions from the previous class survey How does NTFS compare with UFS? L29.2

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ali Ghodsi and Ion Stoica, UC Berkeley January 31, 2018 (based on slide from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk

More information

- SLED: single large expensive disk - RAID: redundant array of (independent, inexpensive) disks

- SLED: single large expensive disk - RAID: redundant array of (independent, inexpensive) disks RAID and AutoRAID RAID background Problem: technology trends - computers getting larger, need more disk bandwidth - disk bandwidth not riding moore s law - faster CPU enables more computation to support

More information

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [MASS STORAGE] How does the OS caching optimize disk performance? How does file compression work? Does the disk change

More information

Storage Systems. Storage Systems

Storage Systems. Storage Systems Storage Systems Storage Systems We already know about four levels of storage: Registers Cache Memory Disk But we've been a little vague on how these devices are interconnected In this unit, we study Input/output

More information

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura CSE 451: Operating Systems Winter 2013 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Gary Kimura The challenge Disk transfer rates are improving, but much less fast than CPU performance

More information

CSE 502 Graduate Computer Architecture. Lec 22 Disk Storage

CSE 502 Graduate Computer Architecture. Lec 22 Disk Storage CSE 52 Graduate Computer Architecture Lec 22 Disk Storage Larry Wittie Computer Science, StonyBrook University http://www.cs.sunysb.edu/~cse52 and ~lw Slides adapted from David Patterson, UC-Berkeley cs252-s6

More information

Topics. Lecture 8: Magnetic Disks

Topics. Lecture 8: Magnetic Disks Lecture 8: Magnetic Disks SONGS ABOUT COMPUTER SCIENCE Topics Basic terms and operation Some history and trends Performance Disk arrays (RAIDs) SAVE THE CODE Written by Mikolaj Franaszczuk To the tune

More information

CMSC 424 Database design Lecture 12 Storage. Mihai Pop

CMSC 424 Database design Lecture 12 Storage. Mihai Pop CMSC 424 Database design Lecture 12 Storage Mihai Pop Administrative Office hours tomorrow @ 10 Midterms are in solutions for part C will be posted later this week Project partners I have an odd number

More information

416 Distributed Systems. Errors and Failures Feb 1, 2016

416 Distributed Systems. Errors and Failures Feb 1, 2016 416 Distributed Systems Errors and Failures Feb 1, 2016 Types of Errors Hard errors: The component is dead. Soft errors: A signal or bit is wrong, but it doesn t mean the component must be faulty Note:

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ion Stoica, UC Berkeley September 13, 2016 (based on presentation from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk N

More information

Storage systems. Computer Systems Architecture CMSC 411 Unit 6 Storage Systems. (Hard) Disks. Disk and Tape Technologies. Disks (cont.

Storage systems. Computer Systems Architecture CMSC 411 Unit 6 Storage Systems. (Hard) Disks. Disk and Tape Technologies. Disks (cont. Computer Systems Architecture CMSC 4 Unit 6 Storage Systems Alan Sussman November 23, 2004 Storage systems We already know about four levels of storage: registers cache memory disk but we've been a little

More information

Department of Electrical Engineering and Computer Sciences Fall 2016 Instructors: Randy Katz, Bernhard Boser

Department of Electrical Engineering and Computer Sciences Fall 2016 Instructors: Randy Katz, Bernhard Boser University of California, Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2016 Instructors: Randy Katz, Bernhard Boser 2016-12-16 L CS61C FINAL J After the

More information

Memory Technology. Chapter 5. Principle of Locality. Chapter 5 Large and Fast: Exploiting Memory Hierarchy 1

Memory Technology. Chapter 5. Principle of Locality. Chapter 5 Large and Fast: Exploiting Memory Hierarchy 1 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 5 Large and Fast: Exploiting Memory Hierarchy 5 th Edition Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic

More information

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed.

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed. CS 6C: Great Ideas in Computer Architecture Direct- Mapped s 9/27/2 Instructors: Krste Asanovic, Randy H Katz hdp://insteecsberkeleyedu/~cs6c/fa2 Fall 2 - - Lecture #4 New- School Machine Structures (It

More information

CSE 120. Operating Systems. March 27, 2014 Lecture 17. Mass Storage. Instructor: Neil Rhodes. Wednesday, March 26, 14

CSE 120. Operating Systems. March 27, 2014 Lecture 17. Mass Storage. Instructor: Neil Rhodes. Wednesday, March 26, 14 CSE 120 Operating Systems March 27, 2014 Lecture 17 Mass Storage Instructor: Neil Rhodes Paging and Translation Lookaside Buffer frame dirty? no yes CPU checks TLB PTE in TLB? Free page frame? no yes OS

More information

CS152 Computer Architecture and Engineering Lecture 25. I/O and Storage Systems Power

CS152 Computer Architecture and Engineering Lecture 25. I/O and Storage Systems Power CS52 Computer Architecture and Engineering Lecture 25 I/O and Storage Systems Power Recap: Nano-layered Disk Heads Special sensitivity of Disk head comes from Giant Magneto-Resistive effect or (GMR) IBM

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse]

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Disks and RAID CS 4410 Operating Systems [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Storage Devices Magnetic disks Storage that rarely becomes corrupted Large capacity at low cost Block

More information

Failure is not an option... Disk Arrays Mar. 23, 2005

Failure is not an option... Disk Arrays Mar. 23, 2005 15-410...Failure is not an option... Disk Arrays Mar. 23, 2005 Dave Eckhardt Bruce Maggs Contributions by Michael Ashley-Rollman - 1 - L24_RAID Synchronization Today: Disk Arrays Text: 14.5 (a good start)

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note on Disk I/O 1 I/O Devices Storage devices Floppy, Magnetic disk, Magnetic tape, CD-ROM, DVD User

More information

Today s Papers. Array Reliability. RAID Basics (Two optional papers) EECS 262a Advanced Topics in Computer Systems Lecture 3

Today s Papers. Array Reliability. RAID Basics (Two optional papers) EECS 262a Advanced Topics in Computer Systems Lecture 3 EECS 262a Advanced Topics in Computer Systems Lecture 3 Filesystems (Con t) September 10 th, 2012 John Kubiatowicz and Anthony D. Joseph Electrical Engineering and Computer Sciences University of California,

More information

416 Distributed Systems. Errors and Failures Oct 16, 2018

416 Distributed Systems. Errors and Failures Oct 16, 2018 416 Distributed Systems Errors and Failures Oct 16, 2018 Types of Errors Hard errors: The component is dead. Soft errors: A signal or bit is wrong, but it doesn t mean the component must be faulty Note:

More information

Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill

Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill Lecture Handout Database Management System Lecture No. 34 Reading Material Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill Modern Database Management, Fred McFadden,

More information

Database Systems. November 2, 2011 Lecture #7. topobo (mit)

Database Systems. November 2, 2011 Lecture #7. topobo (mit) Database Systems November 2, 2011 Lecture #7 1 topobo (mit) 1 Announcement Assignment #2 due today Assignment #3 out today & due on 11/16. Midterm exam in class next week. Cover Chapters 1, 2,

More information

CSE 451: Operating Systems Spring Module 18 Redundant Arrays of Inexpensive Disks (RAID)

CSE 451: Operating Systems Spring Module 18 Redundant Arrays of Inexpensive Disks (RAID) CSE 451: Operating Systems Spring 2017 Module 18 Redundant Arrays of Inexpensive Disks (RAID) John Zahorjan 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 1 Disks are cheap Background An individual

More information

CS370: System Architecture & Software [Fall 2014] Dept. Of Computer Science, Colorado State University

CS370: System Architecture & Software [Fall 2014] Dept. Of Computer Science, Colorado State University CS 370: SYSTEM ARCHITECTURE & SOFTWARE [MASS STORAGE] Frequently asked questions from the previous class survey Shrideep Pallickara Computer Science Colorado State University L29.1 L29.2 Topics covered

More information

Mass-Storage Structure

Mass-Storage Structure CS 4410 Operating Systems Mass-Storage Structure Summer 2011 Cornell University 1 Today How is data saved in the hard disk? Magnetic disk Disk speed parameters Disk Scheduling RAID Structure 2 Secondary

More information

Computer Architecture 计算机体系结构. Lecture 6. Data Storage and I/O 第六讲 数据存储和输入输出. Chao Li, PhD. 李超博士

Computer Architecture 计算机体系结构. Lecture 6. Data Storage and I/O 第六讲 数据存储和输入输出. Chao Li, PhD. 李超博士 Computer Architecture 计算机体系结构 Lecture 6. Data Storage and I/O 第六讲 数据存储和输入输出 Chao Li, PhD. 李超博士 SJTU-SE346, Spring 2018 Review Memory hierarchy Cache and virtual memory Locality principle Miss cache, victim

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Department of Statistics and Computer Science University of Sri Jayewardenepura Secondary Memory 2 Technologies Magnetic storage Floppy, Zip disk, Hard drives,

More information

Physical Storage Media

Physical Storage Media Physical Storage Media These slides are a modified version of the slides of the book Database System Concepts, 5th Ed., McGraw-Hill, by Silberschatz, Korth and Sudarshan. Original slides are available

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Processor Interrupts Cache Memory I/O bus Main memory I/O controller I/O controller I/O controller Disk Disk Graphics output Network

More information

Homework, etc. Computer Science Foundations

Homework, etc. Computer Science Foundations Homework, etc. 0 Chapter 12: reading, exercises Due: 10/4 NOTE: EARLIER THAN USUAL! Will be covered in depth on test (change from Monday s announcement) Prelim I: 10/6 Copyright c 2002 2017 UMaine School

More information

Lecture 21: Reliable, High Performance Storage. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 21: Reliable, High Performance Storage. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 21: Reliable, High Performance Storage CSC 469H1F Fall 2006 Angela Demke Brown 1 Review We ve looked at fault tolerance via server replication Continue operating with up to f failures Recovery

More information

Lecture 9. I/O Management and Disk Scheduling Algorithms

Lecture 9. I/O Management and Disk Scheduling Algorithms Lecture 9 I/O Management and Disk Scheduling Algorithms 1 Lecture Contents 1. I/O Devices 2. Operating System Design Issues 3. Disk Scheduling Algorithms 4. RAID (Redundant Array of Independent Disks)

More information