Building an AS-Topology Model that Captures Route Diversity

Size: px
Start display at page:

Download "Building an AS-Topology Model that Captures Route Diversity"

Transcription

1 Building an AS-Topology Model that Captures Route Diversity Wolfgang Mühlbauer Technische Universität München Anja Feldmann Olaf Maennel Matthew Roughan Steve Uhlig Deutsche Telekom University of University of Université Laboratories Adelaide Adelaide Cath. de Louvain ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 1

2 Realistic models of the Internet required to evaluate protocols to evaluate new architectures... How to model the Internet? Which granularity/abstraction? Which topology? Which policies?... Our contribution: Predict AS paths ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 2

3 Goal: Predict AS Paths Difficulty: Route diversity at AS 1? AS 2 AS 1? AS 4 AS 5 prefix? AS 3 ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 3

4 Goal: Predict AS Paths Difficulty: Policy routing AS 2 AS 1 cust.-prov. AS 4 AS 5 peering link AS 3 prefix selected AS path ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 4

5 Long-term Vision: What-If Questions Example: Predict impact of policy changes? AS 2 AS 1? AS 4 AS 5 prefix canceled AS 3 ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 5

6 Building an AS-Topology Model Prior models: Simplified policies/relationships: customer-provider/peering Assumption: AS = one router Our approach: Allow for path diversity agnostic routing policies ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 6

7 Outline 1 Data Sets 2 Importance of Route Diversity 3 Building an AS-Topology Model 4 Some Results ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 7

8 Data Sets BGP table dumps (Sun, November 13, 2005) RIPE, RouteViews,... > 1,300 observation points throughout the Internet 4,730,222 distinct AS paths Infer AS graph ASes: 21,178 AS-level edges: 58,903 Focus on multi-homed ASes ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 8

9 Appropriate to Model ASes with Single Routers? Simple experiment: Run simulation with C-BGP Computes routing tables for each router Check if obs. paths are selected in simulations for No policies Standard routing policies (customer-provider, peering) Results: AS-paths which agree No policies: 23.5% Standard routing policies: 12.5% Possible Reasons Route diversity? Routing policies? ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 9

10 Importance of Route Diversity - Example Observable AS paths for prefix /20 AS5511 (France Telecom) Verio AS4716 (Poweredcom) Global Crossing AS7911 AS3356 AS3561 AS24249 (JWAY) prefix /20 AS4694 (IDC) ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 10

11 Route Diversity Indicated by Observable AS Paths 30% of AS-pairs: > 1 observed path Lower bound for number of routers inside an AS: Max. number of unique AS paths received towards any prefix 50% of ASes: > 2 routers 10% of ASes: > 5 routers 2% of ASes: > 10 routers ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 11

12 Approach (1) Go beyond single router per ASes ( route diversity) AS-relationship inference (customer-provider, peering) Partition data set Training Set: used to build model Validation Set: used to evaluate model Build model where all paths from Training Set are selected! ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 12

13 Approach (2) Capture Inter-domain connectivity: via AS-graph Manipulate route propagation: via filters/policies Capture relevant route diversity: via quasi-router Group of routers in AS with same choice on routes ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 13

14 Methodology - Iterative Refinement Goal: Train model to obtain observable paths simulation model refinement init stop validation observed paths training ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 14

15 Methodology - Iterative Refinement Goal: Train model to obtain observable paths simulation model refinement init stop validation observed paths training ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 14

16 Methodology - Iterative Refinement Goal: Train model to obtain observable paths simulation model refinement init stop validation observed paths training ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 14

17 Methodology - Iterative Refinement Goal: Train model to obtain observable paths simulation model refinement init stop validation observed paths training ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 14

18 Metrics Measure progress of iterative refinement model performance for non-trained paths How many observable paths are selected as best route by at least one quasi-router? learned by at least one quasi-router? But not necessarily selected as best route Learned Routes: Network Next Hop > / *> / > / *> / selected routes ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 15

19 Experiment: Results for Training Set 11 iterations required Major improvements during first iterations percent (%) selected as best route in simulation learned in simulation iteration ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 16

20 Experiment: Results for Validation Set 94% of observed paths are learned in the simulation Results seem better than previous work percent (%) selected as best route in simulation learned in simulation iteration ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 17

21 How many quasi-routers? 98% of ASes: One quasi-router Well-known Tier1 ASes: Multiple quasi-routers absolute frequency # quasi routers inside ASes ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 18

22 Summary Insights: Single-router ASes not sufficient Contractual AS-relationships seem too simplistic Approach: Model consistent with all observed paths Introduce agnostic policies Introduce route diversity Predict previously unobserved paths 94% of obs. paths learned Long-term goal: Answer what-if questions ACM SIGCOMM 2006 Building an AS-Topology Model that Captures Route Diversity 19

Modelling Inter-Domain Routing

Modelling Inter-Domain Routing Modelling Inter-Domain Routing Olaf Maennel University of Adelaide Wolfgang MühlbauerM Technical University Munich Anja Feldmann Technical University Munich Steve Uhlig Université catholique de Louvain

More information

Building an AS-topology model that captures route diversity

Building an AS-topology model that captures route diversity Building an AS-topology model that captures route diversity Wolfgang Mühlbauer Anja Feldmann TU München Olaf Maennel Matthew Roughan University of Adelaide Steve Uhlig Université catholique de Louvain

More information

In Search for an Appropriate Granularity to Model Routing Policies

In Search for an Appropriate Granularity to Model Routing Policies In Search for an Appropriate Granularity to Model Routing Policies Wolfgang Mühlbauer* Steve Uhlig Bingjie Fu Mickael Meulle Olaf Maennel *TU Berlin/T-Labs, Delft University of Technology, France Telecom

More information

Evaluating the Benefits of the Locator/Identifier Separation

Evaluating the Benefits of the Locator/Identifier Separation Evaluating the Benefits of the Locator/Identifier Separation Bruno Quoitin IP Networking Lab Computer Science and Engineering Dept. Université catholique de Louvain, Belgium (bruno.quoitin@uclouvain.be)

More information

Structural Evolution of the Internet Topology

Structural Evolution of the Internet Topology Structural Evolution of the Internet Topology Hamed Haddadi Hamed.haddadi@cl.cam.ac.uk 9th November 2010 Mphil ACS Network Architecture Internet Topology Inference Characterisation Generation Evolution

More information

Impact of Routing Parameters on Route Diversity and Path Inflation

Impact of Routing Parameters on Route Diversity and Path Inflation Impact of Routing Parameters on Route Diversity and Path Inflation Wolfgang Mühlbauer a, Steve Uhlig b, Anja Feldmann b, Olaf Maennel c, Bruno Quoitin d, Bingjie Fu e a ETH Zürich, Computer Engineering

More information

HAIR: Hierarchical Architecture for Internet Routing

HAIR: Hierarchical Architecture for Internet Routing HAIR: Hierarchical Architecture for Internet Routing Re-Architecting the Internet ReArch 09 Wolfgang Mühlbauer ETH Zürich / TU Berlin wolfgang.muehlbauer@tik.ee.ethz.ch Anja Feldmann Luca Cittadini Randy

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Routing State Distance: A Path-based Metric for Network Analysis Gonca Gürsun

Routing State Distance: A Path-based Metric for Network Analysis Gonca Gürsun Routing State Distance: A Path-based Metric for Network Analysis Gonca Gürsun joint work with Natali Ruchansky, Evimaria Terzi, Mark Crovella Distance Metrics for Analyzing Routing Shortest Path Similar

More information

Modeling the Routing of an ISP

Modeling the Routing of an ISP Modeling the Routing of an ISP Bruno Quoitin (bruno.quoitin@uclouvain.be) Computer Science & Engineering Department Université catholique de Louvain, Belgium This is a joint work with Sebastien Tandel,

More information

Testing the reachability of (new) address space

Testing the reachability of (new) address space Testing the reachability of (new) address space Steve Uhlig Delft University of Technology Randy Bush Internet Initiative Japan (IIJ) James Hiebert National Oceanic and Atmospheric Administration Olaf

More information

Violation of interdomain routing assumptions

Violation of interdomain routing assumptions Violation of interdomain routing assumptions Riad Mazloum 1, Marc-Olivier Buob 1, Jordan Augé 1, Bruno Baynat 1, Dario Rossi 2 and Timur Friedman 1 1 UPMC, Sorbonne Universités, France first.last@lip6.fr

More information

Locating Internet Routing Instabilities

Locating Internet Routing Instabilities Locating Internet Routing Instabilities Anja Feldmann Olaf Maennel Z. Morley Mao Arthur Berger Bruce Maggs TU-München TU-München U. of Michigan MIT/Akamai Technologies CMU/Akamai Technologies München,

More information

Quantifying the BGP routes diversity inside a tier-1 network

Quantifying the BGP routes diversity inside a tier-1 network Quantifying the BGP routes diversity inside a tier-1 network Steve Uhlig, Sébastien Tandel Department of Computing Science and Engineering Université catholique de Louvain, Louvain-la-neuve, B-1348, Belgium

More information

Routing(2) Inter-domain Routing

Routing(2) Inter-domain Routing Routing(2) Inter-domain Routing Information Network I Youki Kadobayashi 1 Outline! Distance vector routing! Link state routing! IGP and EGP Intra-domain routing protocol, inter-domain routing protocol!

More information

Modeling the Routing of an ISP with C-BGP

Modeling the Routing of an ISP with C-BGP Modeling the Routing of an ISP with C-BGP Bruno Quoitin bruno.quoitin@uclouvain.be IP Networking Lab (INL) Computer Science & Engineering Department Université catholique de Louvain, Belgium 2009 B. Quoitin

More information

On the Sensitivity of Transit ASes to Internal Failures

On the Sensitivity of Transit ASes to Internal Failures On the Sensitivity of Transit ASes to Internal Failures Steve Uhlig Department of Computing Science and Engineering Université catholique de Louvain, Louvain-la-neuve, B-1348, Belgium suh@info.ucl.ac.be

More information

Measuring BGP Pass-Through Times

Measuring BGP Pass-Through Times Measuring BGP Pass-Through Times Anja Feldmann 1, Hongwei Kong 2, Olaf Maennel 1, and Alexander Tudor 3 1 Technische Universität München, Germany {anja,olafm}@net.in.tum.de 2 Agilent Labs, Beijing, China

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea CS 640 2 Internet Structure Today CS 640 3 Route Propagation in the Internet Autonomous System (AS) corresponds to

More information

The forces behind the changing Internet: IXPs and content delivery and SDN

The forces behind the changing Internet: IXPs and content delivery and SDN The forces behind the changing Internet: IXPs and content delivery and SDN Steve Uhlig Queen Mary, University of London steve@eecs.qmul.ac.uk http://www.eecs.qmul.ac.uk/~steve/ Credit to collaborators:

More information

ISP-Aided Neighbor Selection for P2P Systems

ISP-Aided Neighbor Selection for P2P Systems ISP-Aided Neighbor Selection for P2P Systems Anja Feldmann Vinay Aggarwal, Obi Akonjang, Christian Scheideler (TUM) Deutsche Telekom Laboratories TU-Berlin 1 P2P traffic

More information

EULER Project Path-Vector Routing Stability Analysis

EULER Project Path-Vector Routing Stability Analysis EULER Project Path-Vector Routing Stability Analysis Florin Coras, Albert Lopez, Albert Cabellos UPC Dimitri Papadimitriou Alcatel-Lucent Introduction BGP Inter-domain routing protocol used in the Internet

More information

Partitioning the Internet

Partitioning the Internet Partitioning the Internet Matthias Wachs Christian Grothoff 1 Ramakrishna Thurimella 2 Technische Universität München 1 University of Denver 2 CRiSIS 2012, Cork, Ireland FSNSG (TUM) Partitioning the Internet

More information

Providing scalable NH-diverse ibgp route redistribution to achieve sub-second switch-over time

Providing scalable NH-diverse ibgp route redistribution to achieve sub-second switch-over time Providing scalable NH-diverse ibgp route redistribution to achieve sub-second switch-over time Cristel Pelsser a, Steve Uhlig b, Tomonori Takeda a,, Bruno Quoitin c and Kohei Shiomoto a a NTT Network Service

More information

Violation of Interdomain Routing Assumptions

Violation of Interdomain Routing Assumptions Violation of Interdomain Routing Assumptions Riad Mazloum 1, Marc-Olivier Buob 1, Jordan Augé 1, Bruno Baynat 1, Dario Rossi 2, and Timur Friedman 1 1 UPMC Sorbonne Universités 2 Telecom ParisTech Abstract.

More information

Interdomain Routing. Networked Systems (H) Lecture 11

Interdomain Routing. Networked Systems (H) Lecture 11 Interdomain Routing Networked Systems (H) Lecture 11 Lecture Outline Interdomain routing Autonomous systems and the Internet AS-level topology BGP and Internet routing 2 Interdomain Unicast Routing Tier-1

More information

Internet measurements: topology discovery and dynamics. Renata Teixeira MUSE Team Inria Paris-Rocquencourt

Internet measurements: topology discovery and dynamics. Renata Teixeira MUSE Team Inria Paris-Rocquencourt Internet measurements: topology discovery and dynamics Renata Teixeira MUSE Team Inria Paris-Rocquencourt Why measure the Internet topology? Network operators Assist in network management, fault diagnosis

More information

CS 557 Internet Routing Policies

CS 557 Internet Routing Policies CS 557 Internet Routing Policies On Inferring and Characterizing Internet Routing Policies Feng Wang and Lixin Gao, 2003 Spring 2013 Characterizing Routing Policies Objective: Infer and characterize BGP

More information

Anatomy of a Large European IXP

Anatomy of a Large European IXP Anatomy of a Large European IXP Nikos Chatzis Nadi Sarrar TU Berlin/T-Labs Anja Feldmann TU Berlin/T-Labs Bernhard Ager ETH Zürich Steve Uhlig Queen Mary University of London Walter Willinger AT&T Labs

More information

MAPPING PEERING INTERCONNECTIONS TO A FACILITY

MAPPING PEERING INTERCONNECTIONS TO A FACILITY MAPPING PEERING INTERCONNECTIONS TO A FACILITY Vasileios Giotsas 1 Georgios Smaragdakis 2 Bradley Huffaker 1 Matthew Luckie 3 kc claffy 1 vgiotsas@caida.org WIE 2015 1 UCSD/CAIDA 2 MIT/TU Berlin 3 University

More information

BGP and inter-as economic relationships

BGP and inter-as economic relationships BGP and inter-as economic relationships E. Gregori 1, A. Improta 2,1, L. Lenzini 2, L. Rossi 1, L. Sani 3 1 Institute of Informatics and Telematics, Italian National Research Council Pisa, Italy 2 Information

More information

Locating Internet Routing Instabilities

Locating Internet Routing Instabilities Locating Internet Routing Instabilities SIGCOMM 2004 Submission: paper 479 (14 pages) Abstract This paper presents a methodology for identifying the autonomous system (or systems) responsible when a route

More information

! Distance vector routing! Link state routing.! Path vector routing! BGP: Border Gateway Protocol! Route aggregation

! Distance vector routing! Link state routing.! Path vector routing! BGP: Border Gateway Protocol! Route aggregation ! Distance vector routing! Link state routing Information Network I Youki Kadobayashi! IGP and EGP Intra-domain routing protocol, inter-domain routing protocol! Path vector routing! BGP: Border Gateway

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

Simulating Internet Scale Topologies with Metarouting

Simulating Internet Scale Topologies with Metarouting Computer Science Technical Report Simulating Internet Scale Topologies with Metarouting Steve DiBenedetto, Andrew Stone, Michelle Strout, Dan Massey Department of Computer Science Colorado State University

More information

Web Content Cartography. Georgios Smaragdakis Joint work with Bernhard Ager, Wolfgang Mühlbauer, and Steve Uhlig

Web Content Cartography. Georgios Smaragdakis Joint work with Bernhard Ager, Wolfgang Mühlbauer, and Steve Uhlig Web Content Cartography Georgios Smaragdakis Joint work with Bernhard Ager, Wolfgang Mühlbauer, and Steve Uhlig Cartography Cartography (from Greek Χάρτης, chartes or charax = sheet of papyrus (paper)

More information

Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization

Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization Robert Beverly, Arthur Berger, Geoffrey Xie Naval Postgraduate School MIT/Akamai February 9, 2011 CAIDA Workshop

More information

Routing(2) Inter-domain Routing

Routing(2) Inter-domain Routing Routing(2) Inter-domain Routing Information Network I Youki Kadobayashi 1 Outline Continued from previous lecture on: Distance vector routing Link state routing IGP and EGP Interior gateway protocol, Exterior

More information

Measuring IPv6 Adoption

Measuring IPv6 Adoption Measuring IPv6 Adoption Presenter: Johannes Zirngibl Technische Universität München Munich, 18. May 2017 Author: Jakub Czyz (University of Michigan) Mark Allman (International Computer Science Institute)

More information

RealNet: A Topology Generator Based on Real Internet Topology

RealNet: A Topology Generator Based on Real Internet Topology RealNet: A Topology Generator Based on Real Internet Topology Lechang Cheng Norm C. Hutchinson Mabo R. Ito University of British Columbia (lechangc@ece, norm@cs, mito@ece).ubc.ca Abstract One of the challenges

More information

Inferring Autonomous System Relationships in the Internet. Outline

Inferring Autonomous System Relationships in the Internet. Outline Inferring Autonomous System Relationships in the Internet Lixin Gao Dept. of Electrical and Computer Engineering University of Massachusetts, Amherst http://www-unix.ecs.umass.edu/~lgao Outline Internet

More information

Luca Cittadini, Roma Tre University Stefano Vissicchio, UCLouvain Benoit Donnet, Université de Liege

Luca Cittadini, Roma Tre University Stefano Vissicchio, UCLouvain Benoit Donnet, Université de Liege Luca Cittadini, Roma Tre University Stefano Vissicchio, UCLouvain Benoit Donnet, Université de Liege BGP glues the Internet Border Gateway Protocol (BGP) Autonomous System (AS) Some BGP data are public

More information

Real-time Blackhole Analysis with Hubble

Real-time Blackhole Analysis with Hubble Real-time Blackhole Analysis with Hubble Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John, Arvind Krishnamurthy, Thomas Anderson University of Washington NANOG 40, June 2007 1 Global Reachability

More information

Network Virtualization: from a Network Provider Perspective

Network Virtualization: from a Network Provider Perspective Network Virtualization: from a Network Provider Perspective Prof. Anja Feldmann, Ph.D. Deutsche Telekom Laboratories TU-Berlin 1 Virtualization: What do I mean? Abstraction concept Hides details of the

More information

Humpty Dumpty: Putting ibgp Back Together Again

Humpty Dumpty: Putting ibgp Back Together Again Humpty Dumpty: Putting ibgp Back Together Again Ashley Flavel 1, Jeremy McMahon 2, Aman Shaikh 3, Matthew Roughan 1, and Nigel Bean 1 1 School of Mathematical Sciences, University of Adelaide {ashley.flavel,matthew.roughan,nigel.bean}@adelaide.edu.au

More information

BGP Routing and BGP Policy. BGP Routing. Agenda. BGP Routing Information Base. L47 - BGP Routing. L47 - BGP Routing

BGP Routing and BGP Policy. BGP Routing. Agenda. BGP Routing Information Base. L47 - BGP Routing. L47 - BGP Routing BGP Routing and BGP Policy BGP Routing The BGP Routing Principles and Route Decisions based on AS-Path in a simple topology of AS s routing policy is reduced to a minimal function demonstrated in example

More information

Studying Black Holes on the Internet with Hubble

Studying Black Holes on the Internet with Hubble Studying Black Holes on the Internet with Hubble Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John, Arvind Krishnamurthy, David Wetherall, Thomas Anderson University of Washington RIPE, May 2008 This

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Chair for Network Architectures and

More information

BGP Community Harvesting: Locating Peering Infrastructures

BGP Community Harvesting: Locating Peering Infrastructures Community Harvesting: Locating Peering Infrastructures Vasileios Giotsas, Christoph Dietzel, Georgios Smaragdakis, Anja Feldmann, Arthur Berger, Emile Aben # TU Berlin CAIDA DE-CIX MIT Akamai # RIPE NCC

More information

Some Foundational Problems in Interdomain Routing

Some Foundational Problems in Interdomain Routing Some Foundational Problems in Interdomain Routing Nick Feamster, Hari Balakrishnan M.I.T. Computer Science and Artificial Intelligence Laboratory Jennifer Rexford AT&T Labs -- Research The state of interdomain

More information

Leveraging BGP Dynamics to Reverse-Engineer Routing Policies

Leveraging BGP Dynamics to Reverse-Engineer Routing Policies Leveraging BGP Dynamics to Reverse-Engineer Routing Policies Sridhar Machiraju Randy H. Katz Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-61

More information

AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies

AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies Steven Fisher University of Nevada, Reno CS 765 Steven Fisher (UNR) CS 765 CS 765 1 / 28 Table of Contents 1 Introduction

More information

On Routing Table Growth

On Routing Table Growth 1 On Routing Table Growth Tian Bu 1, Lixin Gao, and Don Towsley 1 1 Department of Computer Science University of Massachusetts Amherst ftbu,towsleyg@cs.umass.edu Department of Electrical and Computer Engineering

More information

Measuring the Adoption of Route Origin Validation and Filtering

Measuring the Adoption of Route Origin Validation and Filtering Measuring the Adoption of Route Origin Validation and Filtering Andreas Reuter (andreas.reuter@fu-berlin.de) Joint work with Randy Bush, Ethan Katz-Bassett, Italo Cunha, Thomas C. Schmidt, and Matthias

More information

Towards root cause analysis of BGP routing dynamics. Matthew Caesar, Lakshmi Subramanian, Randy H. Katz

Towards root cause analysis of BGP routing dynamics. Matthew Caesar, Lakshmi Subramanian, Randy H. Katz Towards root cause analysis of BGP routing dynamics Matthew Caesar, Lakshmi Subramanian, Randy H. Katz mccaesar@cs.berkeley.edu Motivation Interdomain routing suffers from many problems Instability Slow

More information

Traffic Matrix Estimation

Traffic Matrix Estimation Traffic Matrix Estimation Matthew Roughan http://www.research.att.com/~roughan Shannon Lab Problem C Have link traffic measurements Want to know demands from source to destination

More information

A configuration-only approach to shrinking FIBs. Prof Paul Francis (Cornell)

A configuration-only approach to shrinking FIBs. Prof Paul Francis (Cornell) A configuration-only approach to shrinking FIBs Prof Paul Francis (Cornell) 1 Virtual Aggregation An approach to shrinking FIBs (and RIBs) In routers, not in route reflectors Works with legacy routers

More information

Inter-Domain Routing: BGP II

Inter-Domain Routing: BGP II Inter-Domain Routing: BGP II Mark Handley UCL Computer Science CS 3035/GZ01 BGP Protocol (cont d) BGP doesn t chiefly aim to compute shortest paths (or minimize other metric, as do DV, LS) Chief purpose

More information

Policy-Aware Topologies for Efficient Inter-Domain Routing Evaluations

Policy-Aware Topologies for Efficient Inter-Domain Routing Evaluations Policy-Aware Topologies for Efficient Inter-Domain Routing Evaluations Yihua He Michalis Faloutsos Srikanth V. Krishnamurthy Marek Chrobak yhe@cs.ucr.edu michalis@cs.ucr.edu krish@cs.ucr.edu marek@cs.ucr.edu

More information

DailyCatch: A Provider-centric View of Anycast Behaviour

DailyCatch: A Provider-centric View of Anycast Behaviour DailyCatch: A Provider-centric View of Anycast Behaviour Stephen McQuistin University of Glasgow Sree Priyanka Uppu Marcel Flores Verizon Digital Media Services What is IP anycast? 2 What is IP anycast?

More information

Outline. Organization of the global Internet. BGP basics Routing policies The Border Gateway Protocol How to prefer some routes over others

Outline. Organization of the global Internet. BGP basics Routing policies The Border Gateway Protocol How to prefer some routes over others BGP/2003.2.1 November 2004 Outline Organization of the global Internet BGP basics Routing policies The Border Gateway Protocol How to prefer some routes over others BGP in large networks Interdomain traffic

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano June 14, 2005 Outline Hierarchical routing BGP Routing Routing Goal: each router u

More information

Peering at Peerings: On the Role of IXP Route Servers

Peering at Peerings: On the Role of IXP Route Servers Peering at Peerings: On the Role of IXP Route Servers Contact: Philipp Richter (prichter@inet.tu-berlin.de) Paper: net.t-labs.tu-berlin.de/~prichter/imc238-richtera.pdf Philipp Richter TU Berlin Nikolaos

More information

Routing Support for Wide Area Network Mobility. Z. Morley Mao Associate Professor Computer Science and Engineering University of Michigan

Routing Support for Wide Area Network Mobility. Z. Morley Mao Associate Professor Computer Science and Engineering University of Michigan Routing Support for Wide Area Network Mobility Z. Morley Mao Associate Professor Computer Science and Engineering University of Michigan 1 Outline Introduction Inter-AS Mobility Support Intra-AS Mobility

More information

Happy Packets: Some Initial Results

Happy Packets: Some Initial Results Happy Packets: Some Initial Results RIPE / Manchester, UK 2004.09.22 Randy Bush Timothy G. Griffin Z. Morley Mao Eric Purpus

More information

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Daniel Zappala CS 460 Computer Networking Brigham Young University 2/20 Scaling Routing for the Internet scale 200 million destinations - can t store all destinations or all prefixes in routing tables

More information

MAPPING PEERING INTERCONNECTIONS TO A FACILITY

MAPPING PEERING INTERCONNECTIONS TO A FACILITY MAPPING PEERING INTERCONNECTIONS TO A FACILITY Vasileios Giotsas 1 Georgios Smaragdakis 2 Bradley Huffaker 1 Matthew Luckie 3 kc claffy 1 vgiotsas@caida.org CoNEXT 2015 1 UCSD/CAIDA 2 MIT/TU Berlin 3 University

More information

COM-208: Computer Networks - Homework 6

COM-208: Computer Networks - Homework 6 COM-208: Computer Networks - Homework 6. (P22) Suppose you are interested in detecting the number of hosts behind a NAT. You observe that the IP layer stamps an identification number sequentially on each

More information

On the Impact of Route Processing and MRAI Timers on BGP Convergence Times

On the Impact of Route Processing and MRAI Timers on BGP Convergence Times On the Impact of Route Processing and MRAI Timers on BGP Convergence Times Shivani Deshpande and Biplab Sikdar Department of ECSE, Rensselaer Polytechnic Institute, Troy, NY 12180 Abstract Fast convergence

More information

Understanding the Reachability of IPv6 Limited Visibility Prefixes

Understanding the Reachability of IPv6 Limited Visibility Prefixes Understanding the Reachability of IPv6 Limited Visibility Prefixes Andra Lutu 1,2, Marcelo Bagnulo 2, Cristel Pelsser 3, and Olaf Maennel 4 1 Institute IMDEA Networks, Spain 2 University Carlos III of

More information

The BGP Visibility Scanner

The BGP Visibility Scanner The BGP Visibility Scanner Andra Lutu 1,2, Marcelo Bagnulo 2 and Olaf Maennel 3 Institute IMDEA Networks 1, University Carlos III Madrid 2, Loughborough University 3 Problem Statement The routing preferences

More information

Authors: Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind Krishnamurthy, Thomas Anderson, Jie Gao

Authors: Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind Krishnamurthy, Thomas Anderson, Jie Gao Title: Moving Beyond End-to-End Path Information to Optimize CDN Performance Authors: Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind Krishnamurthy, Thomas Anderson, Jie Gao

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano December 10, 2014 Outline Hierarchical routing BGP Routing 2005 2007 Antonio Carzaniga

More information

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011 Lecture 4: Intradomain Routing CS 598: Advanced Internetworking Matthew Caesar February 1, 011 1 Robert. How can routers find paths? Robert s local DNS server 10.1.8.7 A 10.1.0.0/16 10.1.0.1 Routing Table

More information

The BGP Visibility Scanner

The BGP Visibility Scanner The BGP Visibility Scanner Andra Lutu 1,2, Marcelo Bagnulo 2 and Olaf Maennel 3 Institute IMDEA Networks 1, University Carlos III Madrid 2, Loughborough University 3 Problem Statement } The routing preferences

More information

Inferring BGP Blackholing in the Internet

Inferring BGP Blackholing in the Internet Inferring BGP Blackholing in the Internet Vasileios Giotsas, Georgios Smaragdakis, Christoph Dietzel, Philipp Richter, Anja Feldmann, and Arthur Berger TU Berlin CAIDA MIT DE-CIX Akamai DDoS A&acks are

More information

On characterizing BGP routing table growth

On characterizing BGP routing table growth University of Massachusetts Amherst From the SelectedWorks of Lixin Gao 00 On characterizing BGP routing table growth T Bu LX Gao D Towsley Available at: https://works.bepress.com/lixin_gao/66/ On Characterizing

More information

Hot Potatoes Heat Up BGP Routing

Hot Potatoes Heat Up BGP Routing Hot Potatoes Heat Up BGP Routing Renata Teixeira Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie Amsterdam Internet Routing Architecture Verio AT&T AOL Web Server UCSD Sprint User

More information

Revisiting router architectures with Zipf

Revisiting router architectures with Zipf Revisiting router architectures with Zipf Steve Uhlig Deutsche Telekom Laboratories/TU Berlin Nadi Sarrar, Anja Feldmann Deutsche Telekom Laboratories/TU Berlin Rob Sherwood, Xin Huang Deutsche Telekom

More information

Understanding the effect of streaming overlay construction on AS level traffic

Understanding the effect of streaming overlay construction on AS level traffic Understanding the effect of streaming overlay construction on AS level traffic Reza Motamedi and Reza Rejaie Information and Computer Science Department University of Oregon e-mail: {reza.motamedi,reza}@cs.uoregon.edu

More information

Methodology for Estimating Network Distances of Gnutella Neighbors

Methodology for Estimating Network Distances of Gnutella Neighbors Methodology for Estimating Network Distances of Gnutella Neighbors Vinay Aggarwal 1, Stefan Bender 2, Anja Feldmann 1, Arne Wichmann 1 1 Technische Universität München, Germany {vinay,anja,aw}@net.in.tum.de

More information

Interdomain Routing and Connectivity

Interdomain Routing and Connectivity Interdomain Routing and Connectivity Brighten Godfrey CS 538 February 28 2018 slides 2010-2018 by Brighten Godfrey unless otherwise noted Routing Choosing paths along which messages will travel from source

More information

Internet Measurements. Motivation

Internet Measurements. Motivation Internet Measurements Arvind Krishnamurthy Fall 2004 Motivation Types of measurements Understand the topology of the Internet Measure performance characteristics Tools: BGP Tables Traceroute measurements

More information

SIMROT: A Scalable Inter-domain Routing Toolbox

SIMROT: A Scalable Inter-domain Routing Toolbox SIMROT: A Scalable Inter-domain Routing Toolbox Ahmed Elmokashfi Simula Research Laboratory Constantine Dovrolis Georgia Institute of Technology Amund Kvalbein Simula Research Laboratory ABSTRACT BGP plays

More information

NIRA: A New Internet Routing Architecture

NIRA: A New Internet Routing Architecture NIRA: A New Internet Routing Architecture Xiaowei Yang MIT Computer Science and Artificial Intelligence Laboratory yxw@lcs.mit.edu 1 Why a New Internet Routing Architecture? Users have little control over

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 16, 2017 1 Hierarchical routing Our routing study thus far - idealization all routers identical network flat not true in

More information

Computer Networks CS 552

Computer Networks CS 552 Computer Networks CS 552 Badri Nath Rutgers University badri@cs.rutgers.edu Internet measurements-why? Why measure? What s the need? Do we need to measure? Can we just google it? What is the motivation?

More information

Computer Networks CS 552

Computer Networks CS 552 Computer Networks CS 552 Badri Nath Rutgers University badri@cs.rutgers.edu 1. Measurements 1 Internet measurements-why? Why measure? What s the need? Do we need to measure? Can we just google it? What

More information

Inferring Autonomous System Relationships in the Internet. Lixin Gao

Inferring Autonomous System Relationships in the Internet. Lixin Gao Inferring Autonomous System Relationships in the Internet Lixin Gao Motivation Routing policies are constrained by the contractual commercial agreements between administrative domains For example: AS sets

More information

BGP Route Propagation between Neighboring Domains

BGP Route Propagation between Neighboring Domains BGP Route Propagation between Neighboring Domains Renata Teixeira 1, Steve Uhlig 2, and Christophe Diot 3 1 Univ. Pierre et Marie Curie, LIP6-CNRS, renata.teixeira@lip6.fr 2 Delft University of Technology

More information

FACT: Flow-based Approach for Connectivity Tracking

FACT: Flow-based Approach for Connectivity Tracking FACT: Flow-based Approach for Connectivity Tracking Dominik Schatzmann 1, Simon Leinen 2, Jochen Kögel 3, and Wolfgang Mühlbauer 1 1 ETH Zurich, {schatzmann,muehlbauer}@tik.ee.ethz.ch 2 SWITCH, simon.leinen@switch.ch

More information

Design and development of the reactive BGP peering in softwaredefined routing exchanges

Design and development of the reactive BGP peering in softwaredefined routing exchanges Design and development of the reactive BGP peering in softwaredefined routing exchanges LECTURER: HAO-PING LIU ADVISOR: CHU-SING YANG (Email: alen6516@gmail.com) 1 Introduction Traditional network devices

More information

Interdomain routing with BGP4 C BGP. A new approach to BGP simulation. (1/2)

Interdomain routing with BGP4 C BGP. A new approach to BGP simulation.  (1/2) Interdomain routing with BGP4 C BGP A new approach to BGP simulation http://cbgp.info.ucl.ac.be/ (1/2) Bruno Quoitin (bqu@info.ucl.ac.be) Université Catholique de Louvain Computer Science and Engineering

More information

On the Importance of Local Connectivity for Internet Topology Models

On the Importance of Local Connectivity for Internet Topology Models On the Importance of Local Connectivity for Internet Topology Models Hamed Haddadi, Damien Fay, Almerima Jamakovic, Olaf Maennel, Andrew W. Moore, Richard Mortier, Steve Uhlig Max Planck Institute for

More information

Modeling BGP Table Fluctuations

Modeling BGP Table Fluctuations Modeling BGP Table Fluctuations Ashley Flavel, Matthew Roughan, Nigel Bean and Olaf Maennel School of Mathematical Sciences University of Adelaide Abstract. In this paper we develop a mathematical model

More information

A content delivery perspective on mobility in the Internet

A content delivery perspective on mobility in the Internet A content delivery perspective on mobility in the Internet Prof. Steve Uhlig Queen Mary, University of London steve@eecs.qmul.ac.uk Credit to collaborators: Bernhard Ager, Anja Feldmann, Benjamin Frank,

More information

New levels of cooperation between eyeball ISPs and OTT/CDNs. RIPE 75 Dubai Oct 24, 2017 Falk von Bornstaedt, DTAG ICSS

New levels of cooperation between eyeball ISPs and OTT/CDNs. RIPE 75 Dubai Oct 24, 2017 Falk von Bornstaedt, DTAG ICSS New levels of cooperation between eyeball ISPs and OTT/CDNs. RIPE 75 Dubai Oct 24, 2017 Falk von Bornstaedt, DTAG ICSS 1 LACK OF TRANSPARENCY IMPAIRS internet performance Appl e Traffic Generators Clouds

More information

Information, Gravity, and Traffic Matrices

Information, Gravity, and Traffic Matrices Information, Gravity, and Traffic Matrices Yin Zhang, Matthew Roughan, Albert Greenberg, Nick Duffield, David Donoho 1 Problem Have link traffic measurements Want to know demands from source to destination

More information

The Border Gateway Protocol and its Convergence Properties

The Border Gateway Protocol and its Convergence Properties The Border Gateway Protocol and its Convergence Properties Ioana Kalaydjieva (kalaydji@in.tum.de) Seminar Internet Routing, Technical University Munich, June, 2003 Abstract The Border Gateway Protocol

More information

UCLA UCLA Previously Published Works

UCLA UCLA Previously Published Works UCLA UCLA Previously Published Works Title IPv address allocation and the BGP routing table evolution Permalink https://escholarship.org/uc/item/8b6dw Journal Computer Communication Review, () ISSN 6-8

More information