Chapter 9. Ethernet. Part II

Size: px
Start display at page:

Download "Chapter 9. Ethernet. Part II"

Transcription

1 Chapter 9 Ethernet Part II CCNA1-1 Chapter 9-2

2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go out to Rick Graziani of Cabrillo College. His material and additional information was used as a reference in their creation. If anyone finds any errors or omissions, please let me know at: tdame@stclaircollege.ca. CCNA1-2 Chapter 9-2

3 Ethernet Ethernet Physical Layer CCNA1-3 Chapter 9-2

4 Ethernet Physical Layer The differences between standard Ethernet, Fast Ethernet, Gigabit Ethernet, and 10 Gigabit Ethernet occur at the Physical layer. Ethernet is covered by the IEEE standards. Four data rates over fiber and twisted pair: 10 Mbps - 10Base-T Ethernet 100 Mbps - Fast Ethernet 1000 Mbps - Gigabit Ethernet 10 Gbps - 10 Gigabit Ethernet CCNA1-4 Chapter 9-2

5 Ethernet Physical Layer Ethernet Type Bandwidth Cable Type Maximum Distance (m) 10BASE5 10 Mbps Thick Coax BASE2 10 Mbps Thin Coax BASE-T 10 Mbps Cat3/Cat5 UTP BASE-TX 100 Mbps Cat5 UTP BASE-FX 100 Mbps MM or SM Fiber 400/ BASE-T 1 Gbps Cat5e UTP BASE-TX 1 Gbps Cat6 UTP BASE-SX 1 Gbps MM Fiber BASE-LX 1 Gbps SM Fiber GBASE-T 10 Gbps Cat6a/Cat7 UTP GBASE-LX4 10 Gbps MM Fiber GBASE-LX4 10Gbps SM Fiber 10,000 CCNA1-5 Chapter 9-2

6 10 Mbps Ethernet 10BASE5 using Thicknet coaxial cable. 10BASE2 using Thinnet coaxial cable. Early implementations and no longer supported under standard. CCNA1-6 Chapter 9-2

7 10 Mbps Ethernet 10BASE-T using Cat3/Cat5 unshielded twisted-pair cable. Considered to be classic Ethernet. Physical star topology. Up to 100 meters in length. 10BASE-T uses two pairs of a four-pair cable terminated with an RJ-45 jack. Pins 1 and 2 Transmit Pins 3 and 6 - Receive Generally not chosen for new LAN installations. There are still many 10BASE-T Ethernet networks in existence today. Links connected to a switch can support either halfduplex or full-duplex operation. CCNA1-7 Chapter 9-2

8 100 Mbps: Fast Ethernet 100 Mbps Ethernet implemented using twisted-pair copper wire or fiber media. 100BASE-TX using Cat5 or later UTP 100BASE-FX using fiber-optic cable Because the higher frequency signals used in Fast Ethernet are more susceptible to noise, two separate encoding steps are used by 100-Mbps Ethernet to enhance signal integrity. CCNA1-8 Chapter 9-2

9 100 Mbps: Fast Ethernet 100BASE-TX: Either two pairs of Category 5 UTP copper wire or two strands of optical fiber. Uses the same two pairs of UTP as 10BASE-T. Pins 1 and 2 Transmit Pins 3 and 6 Receive Requires Category 5 or later UTP. Physical star topology. 100BASE-TX networks typically use a switch at the center of the star instead of a hub. CCNA1-9 Chapter 9-2

10 100 Mbps: Fast Ethernet 100BASE-FX: Uses the same signaling procedure as 100BASE-TX. Uses optical fiber media rather than UTP copper. 100BASE-FX uses Low Cost Fiber Interface Connectors (commonly called the duplex SC connector). Fiber implementations are point-to-point connections: Two computers A computer and a switch Between two switches. CCNA1-10 Chapter 9-2

11 1000 Mbps: Gigabit Ethernet The development of Gigabit Ethernet standards resulted in specifications for UTP copper, single-mode fiber, and multimode fiber. With signals occurring in less time, the bits become more susceptible to noise, and therefore timing is critical. Gigabit Ethernet uses two separate encoding steps. More efficient to use codes that represent the binary bit stream. Synchronization. Efficient usage of bandwidth. Improved tolerance to noise. CCNA1-11 Chapter 9-2

12 1000 Mbps: Gigabit Ethernet 1000BASE-T Ethernet: Full-duplex transmission using all four pairs in Category 5 or later UTP cable. Gigabit Ethernet over copper wire enables an increase from 100 Mbps per wire pair to 125 Mbps per wire pair. 500 Mbps for the four pairs. Each wire pair signals in full duplex, doubling the 500 Mbps to 1000 Mbps. CCNA1-12 Chapter 9-2

13 1000 Mbps: Gigabit Ethernet 1000BASE-T Ethernet: Allows the transmission and reception of data in both directions - on the same wire and at the same time. This traffic flow creates permanent collisions on the wire pairs. The hybrid circuits detecting the signals use sophisticated techniques such as: Echo cancellation. Layer 1 Forward Error Correction (FEC). Selection of varying voltage levels. CCNA1-13 Chapter 9-2

14 1000 Mbps: Gigabit Ethernet 1000BASE-SX and 1000BASE-LX: Advantages over UTP: Noise immunity, small physical size and increased unrepeated distances and bandwidth. Support full-duplex binary transmission at 1250 Mbps over two strands of optical fiber. CCNA1-14 Chapter 9-2

15 Ethernet Hubs and Switches CCNA1-15 Chapter 9-2

16 Hubs and Switches Collision Domain: The area of a network where collisions can occur. Includes a hub and all connected devices. Each port on a switch is considered a separate collision domain even if there is only one device attached to the port. Broadcast Domain: The area of a network where connected devices can receive a broadcast. Usually includes Layer 1 and 2 devices. A collection of collision domains. A router (Layer 3 device) is the usual boundary since routers block broadcasts. CCNA1-16 Chapter 9-2

17 Legacy Ethernet: Using Hubs CCNA1-17 Chapter 9-2

18 Legacy Ethernet: Using Hubs So, what does a hub do when it receives information? Remember, a hub is nothing more than a multiport repeater. CCNA1-18 Chapter 9-2

19 Legacy Ethernet: Using Hubs The hub will flood it out all ports except for the incoming port. A hub is a Layer 1 device and does NOT look at Layer 2 addresses, so it is fast in transmitting data. A hub or series of hubs is called a single Collision Domain. CCNA1-19 Chapter 9-2

20 Legacy Ethernet: Using Hubs Wasted Bandwidth Disadvantages: Collision Domains Wasted Bandwidth All ports of the hub share the total available bandwidth. Limited Scalability Increased Latency CCNA1-20 Chapter 9-2

21 Legacy Ethernet: Using Hubs Where is the collision domain? CCNA1-21 Chapter 9-2

22 Legacy Ethernet: Using Hubs When a node wishes to communicate with ALL hosts on the network, it sends a BROADCAST frame with a destination MAC address of 0xFFFFFFFFFFFF. All nodes on the network recognize that they should look at the contents of the frame. Broadcasts are used in the Address Resolution Protocol (ARP), the Dynamic Host Configuration Protocol (DHCP) and other areas. (More Later!) CCNA1-22 Chapter 9-2

23 Legacy Ethernet: Using Hubs Broadcasts cannot be entirely avoided if you are to have a dynamic network. However, too many broadcasts can create a lot of unnecessary traffic on a network and they should be minimized as much as possible. Layer 1 and Layer 2 devices (repeaters, hubs, bridges and switches) must forward a broadcast. Layer 1 devices have no choice because they do not look at MAC addresses. Layer 2 devices have no other choice because they cannot learn the 0xFFFFFFFFFFFF address. CCNA1-23 Chapter 9-2

24 Legacy Ethernet: Using Hubs Host 1111 sends a broadcast to all nodes on the network. All hosts recognize the MAC broadcast address and act on the information in the frame. Where is the Broadcast Domain? CCNA1-24 Chapter 9-2

25 Ethernet: Using Switches CCNA1-25 Chapter 9-2

26 Ethernet: Using Switches Switches are also known as learning bridges or learning switches. A switch has a source address table in cache (RAM) where it stores source MAC addresses for each port. CCNA1-26 Chapter 9-2

27 Ethernet: Using Switches Switch receives an Ethernet frame. Searches the source address table for the destination MAC address. CCNA1-27 Chapter 9-2

28 Ethernet: Using Switches If it finds a match, it forwards the frame by only sending it out that port (selective forwarding). If the destination address is not in the table, it floods it out all ports. CCNA1-28 Chapter 9-2

29 How does a switch learn an address? First, the switch will see if the SA (1111) is in it s table. If it is, it resets a timer. If it is NOT in the table it adds it, with the port number. Next the switch will flood the frame out all other ports, because the DA is not in the source address table. CCNA1-29 Chapter 9-2

30 How does a switch learn an address? Most communications involve some sort of client-server relationship or exchange of information. Now 3333 sends data back to The switch sees if it has the SA stored. It does NOT so it adds it. Next, it checks the DA and sends it out port 1. CCNA1-30 Chapter 9-2

31 How does a switch learn an address? Now, with both MAC addresses in the table, any information between 1111 and 3333 can be sent (selectively forwarded) out the appropriate port. CCNA1-31 Chapter 9-2

32 Multiple Transmissions - No Collisions Unlike a hub, a collision does NOT occur, which would cause the two PCs to have to retransmit the frames. The switch buffers the frames and sends them out port #6 one at a time. The sending PCs have no idea that there was another PC wanting to send to the same destination. CCNA1-32 Chapter 9-2

33 Collision Domains When there is only one device on a switch port, the collision domain is only between the PC and the switch. With a full-duplex PC and switch port, there will be no collision, since the devices and the medium can send and receive at the same time. CCNA1-33 Chapter 9-2

34 What happens here? Notice the Source Address Table has multiple entries for port 1. The switch selectively forwards the frame out port #1. CCNA1-34 Chapter 9-2

35 What happens here? But the hub is only a layer 1 device, so a hub floods it out all ports. How many collision domains exist? CCNA1-35 Chapter 9-2

36 What happens here? Notice the Source Address Table has multiple entries for port 1. Does that matter in this case? CCNA1-36 Chapter 9-2

37 What happens here? Broadcast Domain The switch is a Layer 2 device so the broadcast frame is sent out all of the ports. The hubs are Layer 1 devices and also forward the frame. CCNA1-37 Chapter 9-2

38 Switches: Five Basic Operations Learning: Adds source MAC address/port to the table. Aging: Addresses will be cleared after a specific length of inactivity. Flooding: Sends a frame out all ports if the SA is not in the table. Forwarding: Sends a frame out the proper port on a match. Filtering: Will not forward a frame out the received port. Drops corrupt frames. CCNA1-38 Chapter 9-2

39 Ethernet Address Resolution Protocol (ARP) CCNA1-39 Chapter 9-2

40 Resolving IPv4 addresses to MAC Addresses Two address types: MAC address: Physical address of the host Burned in to the NIC Layer 2 address Network Address: Logical address of the host Assigned by network administrator Layer 3 address CCNA1-40 Chapter 9-2

41 Resolving IPv4 addresses to MAC Addresses Physical (MAC): The physical address uniquely identifies the host from all other hosts on all other networks at Layer 2. This is the address that is absolutely necessary to get the information into the host. The IP address by itself won't accomplish that. CCNA1-41 Chapter 9-2

42 Resolving IPv4 addresses to MAC Addresses Logical (IP): The logical address uniquely identifies the host and the network to which it belongs at Layer 3. Routers base their decisions on the IP address when determining the best path for the packet. CCNA1-42 Chapter 9-2

43 Resolving IPv4 addresses to MAC Addresses So..How do we obtain both addresses to build the packets and frames? MAC Address: ARP (Address Resolution Protocol) IP Address: Static and Dynamic CCNA1-43 Chapter 9-2

44 Resolving IPv4 addresses to MAC Addresses Address Resolution Protocol (ARP): Binds an IP address to a MAC address. Devices, (hosts, routers, servers, etc.) use IP addresses to reach other devices within their own network/subnet or across different networks/subnets. The Layer 3 IP addresses in the packet consist of both the original source and the final destination address. Once the packet is sent, these addresses do not change. CCNA1-44 Chapter 9-2

45 Resolving IPv4 addresses to MAC Addresses Address Resolution Protocol (ARP): Data Link layer addresses, such as Ethernet MAC addresses are used to get the IP packet from one hop to the next. If the sender and the receiver are on different networks (or subnets) the data link address in the data link frame will be modified to reflect the new data link address source and destination. Again, The IP addresses in the Layer 3 packet do not change. CCNA1-45 Chapter 9-2

46 Resolving IPv4 addresses to MAC Addresses Address Resolution Protocol (ARP): Why do devices need to map a MAC address to an IP address? There is no built-in connection or relationship between the MAC (physical) address and the assigned IP (logical) address. IP hosts and routers use Address Resolution Protocol (ARP) to resolve a known IP address to the corresponding MAC address. CCNA1-46 Chapter 9-2

47 The ARP Process: The Same Subnet CCNA1-47 Chapter 9-2

48 The ARP Process: Different Subnet CCNA1-48 Chapter 9-2

49 The ARP Process: Removing Mappings CCNA1-49 Chapter 9-2

50 The ARP Process: Issues Overhead on the Media: As a broadcast frame, an ARP request is received and processed by every device on the local network. Usually minimal but can be significant if all users and devices were to power up and start using network services at the same time. CCNA1-50 Chapter 9-2

51 The ARP Process: Issues Security: ARP spoofing, or ARP poisoning, is a technique used by an attacker to inject the wrong MAC address association into a network by issuing fake ARP requests. An attacker forges the MAC address of a device and then frames can be sent to the wrong destination. CCNA1-51 Chapter 9-2

52 The ARP Process: One Final Note Ethernet encapsulates an ARP packet in the same manner as an IP packet as it travels on the physical network from one computer to another. ARP is a separate protocol residing at Layer 3 of the OSI Model and does not use the services of IP since ARP requests are never routed. CCNA1-52 Chapter 9-2

Objectives. Hexadecimal Numbering and Addressing. Ethernet / IEEE LAN Technology. Ethernet

Objectives. Hexadecimal Numbering and Addressing. Ethernet / IEEE LAN Technology. Ethernet 2007 Cisco Systems, Inc. All rights reserved. Cisco Public Objectives Ethernet Network Fundamentals Chapter 9 ITE PC v4.0 Chapter 1 1 Introduce Hexadecimal number system Describe the features of various

More information

10- and 100-Mbps Ethernet

10- and 100-Mbps Ethernet Ethernet Basics 10-Mbps Ethernet Three 10-Mbps Ethernet standards: 10BASE5 10BASE2 10BASE-T 10BASE2 and 10BASE5 were around more than 20 years and have been replaced by newer alternatives 10BASE-T s use

More information

Switching & ARP Week 3

Switching & ARP Week 3 Switching & ARP Week 3 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 Many Slides courtesy of Tony Chen 1 Ethernet Using Switches In the last few years, switches have quickly

More information

Ethernet Technologies

Ethernet Technologies Ethernet Technologies CCNA 1 v3 Module 7 NESCOT CATC 1 10 Mbps Ethernet Legacy Ethernet means: 10BASE5 10BASE2 10BASE-T Common features are: frame format timing parameters transmission process basic design

More information

CCNA Exploration Network Fundamentals. Chapter 09 Ethernet

CCNA Exploration Network Fundamentals. Chapter 09 Ethernet CCNA Exploration Network Fundamentals Chapter 09 Ethernet Updated: 07/07/2008 1 9.0.1 Introduction 2 9.0.1 Introduction Internet Engineering Task Force (IETF) maintains the functional protocols and services

More information

Chapter 7. OSI Data Link Layer

Chapter 7. OSI Data Link Layer Chapter 7 OSI Data Link Layer CCNA1-1 Chapter 7 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go

More information

Chapter 7. OSI Data Link Layer. CCNA1-1 Chapter 7

Chapter 7. OSI Data Link Layer. CCNA1-1 Chapter 7 Chapter 7 OSI Data Link Layer CCNA1-1 Chapter 7 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go

More information

Chapter 2. Switch Concepts and Configuration. Part I

Chapter 2. Switch Concepts and Configuration. Part I Chapter 2 Switch Concepts and Configuration Part I CCNA3-1 Chapter 2-1 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor,

More information

Lecture 8: Switched Ethernet and Collision Domains

Lecture 8: Switched Ethernet and Collision Domains Lecture 8: Switched Ethernet and Collision Domains Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE426: Communication Networks Ethernet Installations 2 1 Twisted Pair and Fiber

More information

Network Media and Layer 1 Functionality

Network Media and Layer 1 Functionality Network Media and Layer 1 Functionality BSAD 146 Dave Novak Dean, Chapter 3, pp 93-124 Objectives Introduction to transmission media Basic cabling Coaxial Twisted pair Optical fiber Basic wireless (NIC)

More information

More on LANS. LAN Wiring, Interface

More on LANS. LAN Wiring, Interface More on LANS Chapters 10-11 LAN Wiring, Interface Mostly covered this material already NIC = Network Interface Card Separate processor, buffers incoming/outgoing data CPU might not be able to keep up network

More information

Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on

Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on CBCN4103 Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on the correct path across the complete network

More information

NT1210 Introduction to Networking. Unit 5:

NT1210 Introduction to Networking. Unit 5: NT1210 Introduction to Networking Unit 5: Chapter 5, Ethernet LANs 1 Objectives Identify the major needs and stakeholders for computer networks and network applications. Identify the classifications of

More information

Chapter 5. RIP Version 1 (RIPv1)

Chapter 5. RIP Version 1 (RIPv1) Chapter 5 RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must

More information

IEEE 802 LANs SECTION C

IEEE 802 LANs SECTION C IEEE 802 LANs SECTION C Outline of the Lecture Basic characteristics of LAN Topology Transmission Media MAC IEEE 802 LANs 802.3 - CSMA/CD based (Ethernet) 802.4 Token bus-based 802.5 Token ring-based Comparison

More information

Part3. Local Area Networks (LAN)

Part3. Local Area Networks (LAN) Part3 Local Area Networks (LAN) LAN Characteristics Small geographical area Relatively high data rate Single management Topologies Bus, star, ring Specifications at physical and data link layer mostly

More information

The Network Access Layer. In This Lecture. Network Access Layer. Hour 3

The Network Access Layer. In This Lecture. Network Access Layer. Hour 3 The Network Access Layer Hour 3 In This Lecture Explain what the Network Access layer is Discuss how TCP/IP's Network Access layer relates to the OSI networking model Explain what a network architecture

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT September 23, 2016 Aloha Advantages: Different size packets No need for synchronization Simple operation If low upstream traffic, the solution

More information

1. Which layer of the OSI model is responsible for specifying the encapsulation method used for specific types of media?

1. Which layer of the OSI model is responsible for specifying the encapsulation method used for specific types of media? CCNA 1 Chapter 4 v5.0 Exam Answers 2015 (100%) 1. Which layer of the OSI model is responsible for specifying the encapsulation method used for specific types of media? application transport data link physical

More information

Ethernet Hub. Campus Network Design. Hubs. Sending and receiving Ethernet frames via a hub

Ethernet Hub. Campus Network Design. Hubs. Sending and receiving Ethernet frames via a hub Campus Network Design Thana Hongsuwan Ethernet Hub 2003, Cisco Systems, Inc. All rights reserved. 1-1 2003, Cisco Systems, Inc. All rights reserved. BCMSN v2.0 1-2 Sending and receiving Ethernet frames

More information

Computer Networks. Week 04 Media and Devices. College of Information Science and Engineering Ritsumeikan University

Computer Networks. Week 04 Media and Devices. College of Information Science and Engineering Ritsumeikan University Computer Networks Week 04 Media and Devices College of Information Science and Engineering Ritsumeikan University Network Media and Devices l When you build a network, the network hardware may be used

More information

Chapter 9 Ethernet Part 1

Chapter 9 Ethernet Part 1 Chapter 9 Ethernet Part 1 Introduction to Ethernet Ethernet Local Area Networks (LANs) LAN (Local Area Network) - A computer network connected through a wired or wireless medium by networking devices (s,

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 10:- Local Area Network Overview Aims:- LAN topologies and media LAN protocol architecture bridges, hubs, layer 2 & 3 switches 1 LAN Applications (1) personal computer LANs low cost limited data

More information

TCP/IP and OSI Model Ethernet LAN Network Cables Network Devices Network Topologies Redundant Internet Connections VLANs Wireless LANs Upcoming

TCP/IP and OSI Model Ethernet LAN Network Cables Network Devices Network Topologies Redundant Internet Connections VLANs Wireless LANs Upcoming 2 TCP/IP and OSI Model Ethernet LAN Network Cables Network Devices Network Topologies Redundant Internet Connections VLANs Wireless LANs Upcoming Network Technologies 3 4 Elements of the Network Sender

More information

Chapter 4: Network Access

Chapter 4: Network Access 4.0.1.1 Chapter 4: Network Access To support our communication, the OSI model divides the functions of a data network into layers. Each layer works with the layers above and below to transmit data. 4.0.1.2

More information

Chapter 8. The Routing Table: A Closer Look

Chapter 8. The Routing Table: A Closer Look Chapter 8 The Routing Table: A Closer Look CCNA2-1 Chapter 8 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks

More information

Chapter 5. Spanning Tree Protocol (STP) Part I

Chapter 5. Spanning Tree Protocol (STP) Part I Chapter 5 Spanning Tree Protocol (STP) Part I CCNA3-1 Chapter 5-1 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.

More information

Introduction to LAN Topologies Cabling. 2000, Cisco Systems, Inc. 3-1

Introduction to LAN Topologies Cabling. 2000, Cisco Systems, Inc. 3-1 Introduction to LAN Topologies Cabling 2000, Cisco Systems, Inc. 3-1 Objectives Upon completion of this chapter, you will be able to perform the following tasks: Media / Cabling Local Area Network Cabling

More information

THE OSI MODEL. Application Presentation Session Transport Network Data-Link Physical. OSI Model. Chapter 1 Review.

THE OSI MODEL. Application Presentation Session Transport Network Data-Link Physical. OSI Model. Chapter 1 Review. THE OSI MODEL Application Presentation Session Transport Network Data-Link Physical OSI Model Chapter 1 Review By: Allan Johnson Table of Contents Go There! Go There! Go There! Go There! Go There! Go There!

More information

GAYATRI COMPUTERS Prepared by : VENKAT.G 1. Module 1: NETWORK BASICS

GAYATRI COMPUTERS Prepared by : VENKAT.G 1. Module 1: NETWORK BASICS GAYATRI COMPUTERS Prepared by : VENKAT.G 1 What is Networking? Module 1: NETWORK BASICS Networking: Connecting two or more computers or network devices(routers/print Servers / Firewall Devices..etc) for

More information

Local Area Network Overview

Local Area Network Overview Local Area Network Overview Chapter 15 CS420/520 Axel Krings Page 1 LAN Applications (1) Personal computer LANs Low cost Limited data rate Back end networks Interconnecting large systems (mainframes and

More information

Lecture (07) Media & Switching III Ethernet Protocol & Network Hardware Components

Lecture (07) Media & Switching III Ethernet Protocol & Network Hardware Components Lecture (07) Media & Switching III Ethernet Protocol & Network Hardware Components By: Dr. Ahmed ElShafee ١ Agenda Ethernet Protocol Physical layer Physical layer devices The Data Link Layer ٢ Ethernet

More information

2. LAN Topologies Gilbert Ndjatou Page 1

2. LAN Topologies Gilbert Ndjatou Page 1 2. LAN Topologies Two basic categories of network topologies exist, physical topologies and logical topologies. The physical topology of a network is the cabling layout used to link devices. This refers

More information

The following pages contain a guide for the installation

The following pages contain a guide for the installation INDEX The goal of this section is to illustrate how Siemon Company products can be used to support some of the most popular and emerging networks on the market. Section Contents 100Base-T....................................

More information

Chapter 4 NETWORK HARDWARE

Chapter 4 NETWORK HARDWARE Chapter 4 NETWORK HARDWARE 1 Network Devices As Organizations grow, so do their networks Growth in number of users Geographical Growth Network Devices : Are products used to expand or connect networks.

More information

Section 3 Understanding Ethernet and Switch Operations

Section 3 Understanding Ethernet and Switch Operations Section 3 Understanding Ethernet and Switch Operations Ethernet is the technology of choice for today s LANs. It is fast, has low costs, and is easy to maintain. Today s Ethernet standards support speeds

More information

3 Chapter Introduction. 3.2 Copper Cable

3 Chapter Introduction. 3.2 Copper Cable 3 Chapter 3 3.1 Introduction The Network Media is the device that physically carries the data from computer to computer. The three major types of network media are: Copper Cable Fiber-Optic Cable Wireless

More information

Ethernet. Computer Networks. Lecture 4.

Ethernet. Computer Networks. Lecture 4. Ethernet Computer Networks Lecture 4 http://goo.gl/pze5o8 The History of Ethernet Originally: DIX Ethernet (DEC-Intel-Xerox, Ethernet II) - 10Mbps. No LLC sublayer Later standardized as: IEEE 802.3 Frame

More information

Chapter 3. Virtual Local Area Networks (VLANs) Part II

Chapter 3. Virtual Local Area Networks (VLANs) Part II Chapter 3 Virtual Local Area Networks (VLANs) Part II CCNA3-1 Chapter 3-2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor,

More information

A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers,

A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers, CBCN4103 A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers, servers, and other devices. LANs offer computer

More information

LAN Systems. Bus topology LANs

LAN Systems. Bus topology LANs Bus topology LANs LAN Systems Design problems: not only MAC algorithm, not only collision domain management, but at the Physical level the signal balancing problem (signal adjustment): Signal must be strong

More information

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi Ethernet The term Ethernet refers to the family of local-area network (LAN) products covered by the IEEE 802.3 standard that defines what is commonly known as the CSMA/CD protocol. Four data rates are

More information

Lecture (04) Data link layer

Lecture (04) Data link layer Lecture (04) Data link layer By: Dr. Ahmed ElShafee Standards Overview CSMA/CD Ethernet standards 10 base 5 10 base 2 10 base T Fast Ethernet Gigabit Ethernet ١ ٢ Standards Overview Like most protocols,

More information

Goal and Outline. Computer Networking. What Do We Need? Today s Story Lecture 3: Packet Switched Networks Peter Steenkiste

Goal and Outline. Computer Networking. What Do We Need? Today s Story Lecture 3: Packet Switched Networks Peter Steenkiste Goal and Outline 15-441 15-641 Computer Networking Lecture 3: Packet Switched Networks Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15 441 F16 Goal: gain a basic understanding of how you can build a

More information

Chapter 2. Communicating Over The Network

Chapter 2. Communicating Over The Network Chapter 2 Communicating Over The Network CCNA1-1 Chapter 2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks

More information

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017 CS 43: Computer Networks Switches and LANs Kevin Webb Swarthmore College December 5, 2017 Ethernet Metcalfe s Ethernet sketch Dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology

More information

Chapter 5: Ethernet. Introduction to Networks - R&S 6.0. Cisco Networking Academy. Mind Wide Open

Chapter 5: Ethernet. Introduction to Networks - R&S 6.0. Cisco Networking Academy. Mind Wide Open Chapter 5: Ethernet Introduction to Networks - R&S 6.0 Cisco Networking Academy Mind Wide Open Chapter 5 - Sections 5.1 Ethernet Protocol Describe the Ethernet MAC address and frame fields 5.2 LAN Switches

More information

Lecture (04) Network Layer (Physical/Data link) 2

Lecture (04) Network Layer (Physical/Data link) 2 Lecture (04) Network Layer (Physical/Data link) 2 By: Dr. Ahmed ElShafee ١ Dr. Ahmed elshafee, ACU : Spring 2018, CSE401 Computer Networks Agenda Ethernet standards 10 base 5 10 base 2 10 base T Fast Ethernet

More information

A+ Guide to Managing & Maintaining Your PC, 8th Edition. Chapter 16 Networking Types, Devices, and Cabling

A+ Guide to Managing & Maintaining Your PC, 8th Edition. Chapter 16 Networking Types, Devices, and Cabling A+ Guide to Managing & Maintaining Your PC, Chapter 16 Networking Types, Devices, and Cabling Objectives Learn about network types and topologies Learn about the hardware used to build local networks Learn

More information

Chapter 7. RIP Version 2 (RIPv2)

Chapter 7. RIP Version 2 (RIPv2) Chapter 7 RIP Version 2 (RIPv2) CCNA2-1 Chapter 7 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must

More information

Chapter 12. Network Organization and Architecture

Chapter 12. Network Organization and Architecture Chapter 12 Network Organization and Architecture Chapter 12 Objectives Learn the basic physical components of networks. Become familiar with routing protocols. 2 Computer networks are often classified

More information

Chapter 9 & 12: Wired LAN

Chapter 9 & 12: Wired LAN hapter 9 & 12: Wired LAN Abdullah Konak School of Information Sciences and Technology Penn State Berks LAN Applications and Models LANs P LANs (Office/Home Networks) High Speed Office Networks Backend

More information

Cisco Cisco Certified Network Associate (CCNA)

Cisco Cisco Certified Network Associate (CCNA) Cisco 200-125 Cisco Certified Network Associate (CCNA) http://killexams.com/pass4sure/exam-detail/200-125 Question: 769 Refer to exhibit: Which destination addresses will be used by Host A to send data

More information

Although the CCNA certification exams test you on some difficult and in-depth networking

Although the CCNA certification exams test you on some difficult and in-depth networking Chapter 1 Networking Devices, Technologies, and Models Although the CCNA certification exams test you on some difficult and in-depth networking issues, the ICND1 exam also tests you on basic networking

More information

EECS Introduction to Computer Networking. Local Area Networks / Ethernet. Hub

EECS Introduction to Computer Networking. Local Area Networks / Ethernet. Hub Ethernet -- Topology: Ethernet MAC: Hub Single collision domain Hub Hub Relay Collision! After a collision, stop for a random time wait for a random time, then try again. (Walrand/Varaiya slides) - computers

More information

CCNA 1 Capítulo 8 OSI Physical Layer. 2004, Cisco Systems, Inc. All rights reserved.

CCNA 1 Capítulo 8 OSI Physical Layer. 2004, Cisco Systems, Inc. All rights reserved. CCNA 1 Capítulo 8 OSI Physical Layer 1 Physical Layer Protocols & Services There are three basic forms of network media on which data is represented: Copper cable Fiber Wireless 2 Physical Layer Protocols

More information

LAN. CS 4/55231 Internet Engineering. Kent State University Dept. of Computer Science

LAN. CS 4/55231 Internet Engineering. Kent State University Dept. of Computer Science 1 CS 4/55231 Internet Engineering Kent State University Dept. of Computer Science LECT-4A4 LAN 1 2 LAN Topologies-1 In the last class we saw how two computers can connect to each other. In this class we

More information

Chapter 15 Local Area Network Overview

Chapter 15 Local Area Network Overview Chapter 15 Local Area Network Overview LAN Topologies Bus and Tree Bus: stations attach through tap to bus full duplex allows transmission and reception transmission propagates throughout medium heard

More information

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space provided.

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space provided. 83 Chapter 6 Ethernet Technologies and Ethernet Switching Ethernet and its associated IEEE 802.3 protocols are part of the world's most important networking standards. Because of the great success of the

More information

Chapter 6 Connecting Device

Chapter 6 Connecting Device Computer Networks Al-Mustansiryah University Elec. Eng. Department College of Engineering Fourth Year Class Chapter 6 Connecting Device 6.1 Functions of network devices Separating (connecting) networks

More information

Computer Networks and Internet

Computer Networks and Internet Computer Networks and Internet Objectives Computer Networks Internet 2 Computer Networks Introducing Computer Networks A computer network consists of two or more computers linked together to exchange data

More information

Physical Layer V What does the physical layer provide?

Physical Layer V What does the physical layer provide? SEMESTER 1 Chapter 8 Physical Layer V 4.0 90 Points 8.1.1 What does the physical layer provide? What are the four elements of delivering frames across the media? 8.1.2 What are the three basic forms of

More information

Introductory to Computer Networks Local Area Networks. Lecture 16 Fall Isfahan University of technology Dr.

Introductory to Computer Networks Local Area Networks. Lecture 16 Fall Isfahan University of technology Dr. Introductory to Computer Networks Local Area Networks Lecture 16 Fall 2010 Isfahan University of technology Dr. Faramarz Hendessi What is a LAN? Local area means: Private ownership freedom from regulatory

More information

Modern Ethernet. Chapter 6

Modern Ethernet. Chapter 6 Modern Ethernet Chapter 6 Contents Define the characteristics, cabling, and connectors used in 10BaseT and 10BaseFL Explain how to connect multiple Ethernet segments Define the characteristics, cabling,

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 16 High Speed LANs Eighth Edition by William Stallings Why High Speed LANs? speed and power of PCs has risen graphics-intensive applications and GUIs see LANs as

More information

Internetwork Basic. Possible causes of LAN traffic congestion are

Internetwork Basic. Possible causes of LAN traffic congestion are Internetworking 1 C H A P T E R 2 Internetworking Basics Internetworking Model The OSI Reference Model Ethernet Networking Wireless Networking Data Encapsulation Topic 3 1 Internetwork Basic 4 Possible

More information

1. What type of network cable is used between a terminal and a console port? cross-over straight-through rollover patch cable 2.

1. What type of network cable is used between a terminal and a console port? cross-over straight-through rollover patch cable 2. 1. What type of network cable is used between a terminal and a console port? cross-over straight-through rollover patch cable 2. Refer to the exhibit. A network administrator has decided to use packet

More information

Number: Passing Score: 750 Time Limit: 120 min File Version: 1.0. Microsoft Exam Name: Identity with Windows Server 2016 (beta)

Number: Passing Score: 750 Time Limit: 120 min File Version: 1.0. Microsoft Exam Name: Identity with Windows Server 2016 (beta) 70-742 Number: 70-742 Passing Score: 750 Time Limit: 120 min File Version: 1.0 Microsoft 70-742 Exam Name: Identity with Windows Server 2016 (beta) Sections 1. Understanding Local Area Networks 2. Defining

More information

Chapter 10: Local Area Networks

Chapter 10: Local Area Networks Chapter 10: Local Area Networks MULTIPLE CHOICE 1. CSMA stands for: a. Client-Server Multi-Access c. Carrier Server Master Application b. Carrier Sense Multiple Access d. none of the above 2. The CD in

More information

Darshan Institute of Engineering & Technology for Diploma Studies

Darshan Institute of Engineering & Technology for Diploma Studies 1. Explain different network devices in detail. Or Explain NIC (Network Interface Card) in detail. Network interface cards are add on cards as hardware cards on the motherboard. This is additional hardware

More information

Computer Networks. Lecture 8 Local Area Network, IEEE 802.x

Computer Networks. Lecture 8 Local Area Network, IEEE 802.x Computer Networks Lecture 8 Local Area Network, IEEE 802.x Local area network A local area network (LAN) is a computer network that interconnects computers within a limited area such as a home, school,

More information

Network basics. Unit objectives Describe the basic components of a network Identify characteristics of network technologies Analyze the OSI model

Network basics. Unit objectives Describe the basic components of a network Identify characteristics of network technologies Analyze the OSI model Network basics Unit objectives Describe the basic components of a network Identify characteristics of network technologies Analyze the OSI model Topic A Topic A: Network concepts Topic B: Network architectures

More information

3.5 CONNECTING DEVICES

3.5 CONNECTING DEVICES 3.5 CONNECTING DEVICES LANs or WANs do not normally operate in isolation. They are connected to one another or to the Internet. To connect LANs and WANs together we use connecting devices. Connecting devices

More information

Technology in Action. Chapter 12 Behind the Scenes: Networking and Security. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Technology in Action. Chapter 12 Behind the Scenes: Networking and Security. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Technology in Action Chapter 12 Behind the Scenes: Networking and Security 1 Networking Advantages Networks Increase productivity Enable the sharing of hardware resources Facilitate knowledge sharing Enable

More information

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Design Technologies. Lecture 17: Prof. Shervin Shirmohammadi CEG

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Design Technologies. Lecture 17: Prof. Shervin Shirmohammadi CEG Lecture 17: Design Technologies Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 17-1 Design Goals From the architecture and its components and simulation, we

More information

Introduction to Networking Devices

Introduction to Networking Devices Introduction to Networking Devices Objectives Explain the uses, advantages, and disadvantages of repeaters, hubs, wireless access points, bridges, switches, and routers Define the standards associated

More information

Imi :... Data:... Nazwisko:... Stron:...

Imi :... Data:... Nazwisko:... Stron:... Imi :.................................................... Data:....................... Nazwisko:............................................... Stron:...................... 1. Which of the following protocols

More information

Local Area Network(LAN)

Local Area Network(LAN) Local Area Network() Sarawuth Chaimool ศราว ธ ช ยม ล jaounarak@hotmail.com Wireless Communications Research Group (WCR) Department of Electrical Engineering King Mongkut s Institute of Technology North

More information

Tutorial 3 (Ethernet)

Tutorial 3 (Ethernet) Tutorial 3 (Ethernet) Name: Class: Please complete this worksheet and print it out. The following questions are multiple choice. Please select from a d. 3.1 The base bit rate of standard Ethernet is: 1

More information

1: Review Of Semester Provide an overview of encapsulation.

1: Review Of Semester Provide an overview of encapsulation. 1: Review Of Semester 1 1.1.1.1. Provide an overview of encapsulation. Networking evolves to support current and future applications. By dividing and organizing the networking tasks into separate layers/functions,

More information

LAN Overview (part 2) Interconnecting LANs - Hubs

LAN Overview (part 2) Interconnecting LANs - Hubs LAN Overview (part 2) CSE 3213 Fall 2011 1 November 2011 Interconnecting LANs - Hubs active central element of star layout each station connected to hub by two UTP lines hub acts as a repeater limited

More information

Lecture Outline. Lecture 2. OSI model and networking. The OSI model and networking. The OSI model and networking. The OSI model and networking

Lecture Outline. Lecture 2. OSI model and networking. The OSI model and networking. The OSI model and networking. The OSI model and networking Lecture 2 The OSI model Chapter 2, specifically pages 42-58 Dave Novak School of Business Administration, University of Vermont Sources: 1) Network+ Guide to Networks, Dean 2013 2) Comer, Computer Networks

More information

Appendix B Networks, Routing, and Firewall Basics

Appendix B Networks, Routing, and Firewall Basics Appendix B Networks, Routing, and Firewall Basics This appendix provides an overview of IP networks, routing, and firewalls. Related Publications As you read this document, you may be directed to various

More information

Chapter 5. Spanning Tree Protocol (STP) Part II

Chapter 5. Spanning Tree Protocol (STP) Part II Chapter 5 Spanning Tree Protocol (STP) Part II CCNA3-1 Chapter 5-2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.

More information

Chapter 5 Reading Organizer After completion of this chapter, you should be able to:

Chapter 5 Reading Organizer After completion of this chapter, you should be able to: Chapter 5 Reading Organizer After completion of this chapter, you should be able to: Describe the operation of the Ethernet sublayers. Identify the major fields of the Ethernet frame. Describe the purpose

More information

CS 416: Operating Systems Design April 11, 2011

CS 416: Operating Systems Design April 11, 2011 Modes of connection Operating Systems Design 3. Client-Server Networking Paul Krzyzanowski pxk@cs.rutgers.edu Circuit-switched dedicated path guaranteed (fixed) bandwidth [almost] constant latency Packet-switched

More information

Question 7: What are Asynchronous links?

Question 7: What are Asynchronous links? Question 1:.What is three types of LAN traffic? Unicasts - intended for one host. Broadcasts - intended for everyone. Multicasts - intended for an only a subset or group within an entire network. Question2:

More information

M242 COMPUTER NETWORS AND SECURITY

M242 COMPUTER NETWORS AND SECURITY M242 COMPUTER NETWORS AND SECURITY 2.1. Network Models: UNIT - II OSI MODEL AND LAN PROTOCOLS 1. Explain Network model A network is a combination of hardware and software that sends data from one location

More information

Internet Architecture and Protocol

Internet Architecture and Protocol Internet Architecture and Protocol Set# 03 Local Area Networks Delivered By: Engr Tahir Niazi Layer Reference to Protocol Application Presentation Session Application FTP, Telnet, SMTP, HTTP, SNMP.. Transport

More information

Extending the LAN. Context. Info 341 Networking and Distributed Applications. Building up the network. How to hook things together. Media NIC 10/18/10

Extending the LAN. Context. Info 341 Networking and Distributed Applications. Building up the network. How to hook things together. Media NIC 10/18/10 Extending the LAN Info 341 Networking and Distributed Applications Context Building up the network Media NIC Application How to hook things together Transport Internetwork Network Access Physical Internet

More information

5-Port 1000BASE-T. Gigabit Ethernet Switch. User s Guide

5-Port 1000BASE-T. Gigabit Ethernet Switch. User s Guide 5-Port 1000BASE-T Gigabit Ethernet Switch User s Guide FCC Warning This equipment has been tested and found to comply with the regulations for a Class A digital device, pursuant to Part 15 of the FCC

More information

Ethernet Basics. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

Ethernet Basics. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics History Ethernet Frames CSMA/CD Obsolete versions 10Mbps versions Segments Spanning Tree Protocol

More information

ROYAL INSTITUTE OF INFORMATION & MANAGEMENT

ROYAL INSTITUTE OF INFORMATION & MANAGEMENT ROYAL INSTITUTE OF INFORMATION & MANAGEMENT BASICS NETWORKING CHAPTER 1 Networking Basics to Networking Advantages of Networking Types of Network 1 Local Area Network (LAN) LAN features Basic LAN components

More information

Ethernet Standard. Campus Network Design. Ethernet address. OSI Model. Thana Hongsuwan

Ethernet Standard. Campus Network Design. Ethernet address. OSI Model. Thana Hongsuwan Campus etwork Design Thana Hongsuwan Ethernet Standard 2003, Cisco Systems, Inc. All rights reserved. 1-1 2003, Cisco Systems, Inc. All rights reserved. BCMS v2.0 1-2 OSI Model Ethernet address Six bytes

More information

CH : 15 LOCAL AREA NETWORK OVERVIEW

CH : 15 LOCAL AREA NETWORK OVERVIEW CH : 15 LOCAL AREA NETWORK OVERVIEW P. 447 LAN (Local Area Network) A LAN consists of a shared transmission medium and a set of hardware and software for interfacing devices to the medium and regulating

More information

(Network Programming) Basic Networking Hardware

(Network Programming) Basic Networking Hardware EEE 448 Computer Networks with (Network Programming) Basic Networking Hardware Lecture #2 Dept of Electrical and Electronics Engineering Çukurova University Agenda What is a network device? Network Media

More information

Media and Access Method. Tory Klementsen, MCP A+ Sno Isle Skill Center Network+ Module 2

Media and Access Method. Tory Klementsen, MCP A+ Sno Isle Skill Center Network+ Module 2 Media and Access Method Tory Klementsen, MCP A+ Sno Isle Skill Center Network+ Module 2 Transmission Media The stuff that carries signals from computer to computer or device on a network. Different media

More information

Data Link Layer, Part 3 Medium Access Control. Preface

Data Link Layer, Part 3 Medium Access Control. Preface Data Link Layer, Part 3 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

Lecture (03) Ethernet Protocol & Network Hardware Components

Lecture (03) Ethernet Protocol & Network Hardware Components Lecture (03) Ethernet Protocol & Network Hardware Components Dr. Ahmed M. ElShafee 1 Agenda Ethernet Protocol/ and cable types Network interface card Network nodes Servers Clients Storage area network

More information

King Fahd University of Petroleum & Minerals Electrical Engineering Department EE 400, Experiment # 2

King Fahd University of Petroleum & Minerals Electrical Engineering Department EE 400, Experiment # 2 King Fahd University of Petroleum & Minerals Electrical Engineering Department EE 400, Experiment # 2 IP Addressing and Subnetting: Establishing Elementary Networks using Hubs, Switches and Routers. Objectives:

More information