Sensor Networks. Dr. Sumi Helal & Jeff King CEN 5531

Size: px
Start display at page:

Download "Sensor Networks. Dr. Sumi Helal & Jeff King CEN 5531"

Transcription

1 Sensor Networks CEN 5531 Slides adopted from presentations by Kirill Mechitov, David Culler, Joseph Polastre, Robert Szewczyk, Cory Sharp. Dr. Sumi Helal & Jeff King Computer & Information Science & Engineering Department University of Florida, Gainesville, FL Phone: (352) MobileIP 1

2 Outline What are Sensors and Sensor Networks? Motivation The Berkeley MOTE TinyOS & NesC The UF Sensor Platform Lab Demo MobileIP 2

3 Wireless Smart Sensors Ref: Kirill Mechitov MobileIP 3

4 Network Embedded Systems Ref: Kirill Mechitov Embedded systems are the future of computing Low-cost hardware Many application areas Already more embedded processors than desktops, and the gap is increasing Most embedded processors act independently Industrial control systems, u-controllers in cars, etc. Connecting embedded systems into networks enables new class of applications MobileIP 4

5 Network Embedded Systems Low-power, inexpensive embedded processors cannot perform very complex tasks But a network of such systems can be very powerful Example: sensor networks Each processor is equipped with a sensor Becomes a smart sensor node Ref: Kirill Mechitov MobileIP 5

6 Sensor Networks Data from multiple sensors is processed and combined into big picture Sensor coverage Sensors can be deployed to cover a large area Reliability Redundant sensor readings Resiliency to failure of individual sensors Cost Many inexpensive sensors can be cheaper than one powerful sensor Ref: Kirill Mechitov MobileIP 6

7 Wireless Sensor Networks Sensor networks where nodes communicate over wireless channels Ease of deployment No infrastructure required Once placed in the area of interest, sensors automatically assemble into an ad hoc network Reliability No wires that can be damaged or cut Ref: Kirill Mechitov MobileIP 7

8 WSN in the lab Ref: Kirill Mechitov MobileIP 8

9 WSN in the Field Ref: Kirill Mechitov MobileIP 9

10 WSN Environment Large-scale systems where: Nodes and links have limited capabilities. Real-time requirements must be met in the absence of a predefined global clock. Faults are common. Delays failures Ref: Kirill Mechitov MobileIP 10

11 Challenges Distributed processing Need algorithms that are not centralized, i.e., do not require all of the data Low bandwidth communication Efficiently move large amounts of sensor data for processing Large scale coordination Many independent sensor nodes need to act in concert with one another Real-time computation Ref: Kirill Mechitov New data is always coming, so it must be processed faster than it is generated MobileIP 11

12 Routing and Group Communication Routing delivers messages to a specific node in the network Multi-hop, ad hoc Old problem, but needs new approach in the sensor network environment Group communication (multicast) delivers messages to a subset of nodes in the network Needed to communicate to groups of sensors Parameters: reliability, efficiency, power consumption Ref: Kirill Mechitov MobileIP 12

13 Data Aggregation Combines data from many sensors into a more compact form before forwarding to a location for processing Needed to handle the large amount of data generated in sensor networks Parameters: efficiency, speed Ref: Kirill Mechitov Forwarding vs. Aggregation traffic vs. distance from sink without data aggregation MobileIP 13

14 Clock Synchronization Sensors clocks drift slightly over time Need to periodically adjust the local clocks so that time is consistent throughout the network Especially important for sensors around same joint to detect failures Parameters: precision, update frequency beacon exchange time of beacon & adjust clocks Ref: Kirill Mechitov MobileIP 14

15 Localization Determine the physical locations of the sensors If thousands of sensors are deployed, don t want to enter their locations by hand Use sensing or network connectivity to infer physical location Parameters: precision, efficiency Ref: Kirill Mechitov proximity triangulation MobileIP 15

16 Fault Tolerance Some sensors may fail Due to the large number of sensors in WSNs, faults are common: not an exception but the rule The network needs to keep working, even if with diminished capacity Parameters: resiliency, response time Ref: Kirill Mechitov MobileIP 16

17 The Berkeley MOTE MobileIP 17

18

19

20 Open Experimental Platform WeC 99 Smart Rock Rene 11/00 Dot 9/01 TinyOS Networking Mica 1/02 Services Telos 4/04 Robust Low Power 250kbps Easy to use Small microcontroller 8 kb code 512 B data Simple, low-power radio 10 kbps ASK EEPROM (32 KB) Simple sensors Designed for experimentation -sensor boards -power boards Demonstrate scale NEST open exp. Platform 128 kb code, 4 kb data 40kbps OOK/ASK radio 512 kb Flash Mica2 12/ kbps radio FSK Spec 6/03 Mote on a chip Commercial Off The Shelf Components (COTS) MobileIP 20 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler

21 Mote Evolution MobileIP 21 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler

22 Low Power Operation Efficient Hardware Integration and Isolation Complementary functionality (DMA, USART, etc) Selectable Power States (Off, Sleep, Standby) Operate at low voltages and low current Run to cut-off voltage of power source Efficient Software Fine grained control of hardware Utilize wireless broadcast medium Aggregate MobileIP 22 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler

23 Typical WSN Application Periodic Data Collection Network Maintenance Majority of operation Triggered Events Detection/Notification Infrequently occurs But must be reported quickly and reliably Long Lifetime Months to Years without changing batteries Power management is the key to WSN success Power sleep MobileIP 23 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler wakeup Time processing data acquisition communication

24 Design Principles Key to Low Duty Cycle Operation: Sleep majority of the time Wakeup quickly start processing Active minimize work & return to sleep MobileIP 24 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler

25 Sleep Majority of time, node is asleep >99% Minimize sleep current through Isolating and shutting down individual circuits Using low power hardware Need RAM retention Run auxiliary hardware components from low speed oscillators (typically 32kHz) Perform ADC conversions, DMA transfers, and bus operations while microcontroller core is stopped MobileIP 25 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler

26 Wakeup Overhead of switching from Sleep to Active Mode Microcontroller Radio (FSK) 292 ns 10ns 4ms typical 2.5 ms 1 10 ms typical MobileIP 26 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler

27 Active Microcontroller Fast processing, low active power Avoid external oscillators Radio High data rate, low power tradeoffs Narrowband radios Low power, lower data rate, simple channel encoding, faster startup Wideband radios More robust to noise, higher power, high data rates External Flash (stable storage) Data logging, network code reprogramming, aggregation High power consumption Long writes Radio vs. Flash 250kbps radio sending 1 byte Energy : 1.5µJ Duration : 32µs Atmel flash writing 1 byte Energy : 3µJ3 Duration : 78µs MobileIP 27 Joseph Polastre, Robert Szewczyk & Cory Sharp, David Culler

28 Crossbow (Berkeley) Motes Crossbow Mica2 motes: a representative WSN platform Small size <16 cubic centimeters Multi-modal sensing Acceleration, magnetic field, sound, light, temperature Low bandwidth radio transceiver Up to 80m range Low power consumption 2 AA batteries last for months with low duty cycle Limited storage capacity 4KB of fast data memory, 512KB of slower permanent storage, 128KB of program memory Ref: Kirill Mechitov MobileIP 28

29 TinyOS & NesC TinyOS Operating system for motes Lightweight Event-driven NesC Ref: Kirill Mechitov Programming language for motes C-based Low-level Modular MobileIP 29

30 A Operating System for Tiny Devices? Traditional approaches command processing loop (wait request, act, respond) monolithic event processing bring full thread/socket posix regime to platform Alternative provide framework for concurrency and modularity never poll, never block interleaving flows, events, energy management => allow appropriate abstractions to emerge 5/5/2003 MobiSys Tutorial, San Francisco 30 Ref: David Culler, et al.

31 Tiny OS Concepts Scheduler + Graph of Components constrained two-level scheduling model: threads + events Component: Commands, Event Handlers Frame (storage) Tasks (concurrency) Constrained Storage Model frame per component, shared stack, no heap Very lean multithreading Efficient Layering init Commands init Power(mode) TX_packet(buf) power(mode) send_msg (addr, type, data) Messaging Component internal thread Events msg_rec(type, data) Internal State msg_sen d_done) TX_pack et_done (success RX_pack ) et_done (buffer) 5/5/2003 MobiSys Tutorial, San Francisco 31 Ref: David Culler, et al.

32 Application = Graph of Components application Route map router sensor appln Active Messages bit byte packet Radio Packet Radio byte RFM Serial Packet UART Temp ADC photo clocks MobileIP 32 SW HW Example: ad hoc, multi-hop routing of photo sensor readings 3450 B code 226 B data Graph of cooperating state machines on shared stack Ref: David Culler, et al.

33 TOS Execution Model commands request action ack/nack at every boundary call cmd or post task events notify occurrence HW intrpt at lowest level may signal events call cmds post tasks Tasks provide logical concurrency preempted by events Migration of HW/SW boundary bit byte packet application comp active message Radio Packet Radio byte RFM event-driven message-event packet-pump driven crc data processing event-driven byte-pump encode/decode event-driven bit-pump MobileIP 33 Ref: David Culler, et al.

34 Programming TinyOS TinyOS 1.0 is written in an extension of C, called nesc Applications are too! just additional components composed with the OS components Provides syntax for TinyOS concurrency and storage model commands, events, tasks local frame variable Rich Compositional Support separation of definition and linkage robustness through narrow interfaces and reuse interpositioning Whole system analysis and optimization MobileIP 34 Ref: David Culler, et al.

35 Event-Driven Sensor Access Pattern command result_t StdControl.start() { } return call Timer.start(TIMER_REPEAT, 200); event result_t Timer.fired() { } return call sensor.getdata(); event result_t sensor.dataready(uint16_t data) { } display(data) return SUCCESS; clock event handler initiates data collection sensor signals data ready event data event handler calls output command device sleeps or handles other activity while waiting conservative send/ack at component boundary SENSE Timer Photo LED MobileIP 35 Ref: David Culler, et al.

36 TinyOS Commands and Events {... status = call CmdName(args)... } event EvtName)(args) {... return status; } command CmdName(args) {... return status; } {... status = signal EvtName(args)... } MobileIP 36 Ref: David Culler, et al.

37 TinyOS Execution Contexts Tasks events commands Interrupts Hardware Events generated by interrupts preempt tasks Tasks do not preempt tasks Both essential process state transitions MobileIP 37 Ref: David Culler, et al.

38 TinyOS Tutorial Tutorial: MobileIP 38

39 Other Commercial Platforms Cube University College Cork, Ireland Stackable design Tiny OS Stalled, No middleware Phidgets University of Calgary, Canada Cheap, lots of available sensors Used in the GTSH Limited to USB, small networks, not scalable MobileIP 39

40 Problems with Sensor Platforms From DCOSS 2005 Panel Almost all focus on wireless Almost all focus on battery power Almost all focus on miniaturization Not designed for pervasive computing spaces MobileIP 40

41 MobileIP 41

42 UF Sensor Platform Combination of hardware and middleware Modular, flexible, stackable design Supports virtually any kind of sensor or actuator Support for large-scale pervasive environments MobileIP 42

43 What s Different? Plug-and-play development Support for large-scale pervasive computing environments Uniform software interface to heterogeneous Supports various types and numbers of devices Flexibility of swappable components Inexpensive MobileIP 43

44 Sensor Platform Hardware Power Wired power option for use with indoor applications. Layered Design For flexible configuration of processing, power, communication, and sensor/actuator needs. Sensors / Actuators Interface layer supports up to 8 analog sensors or actuators. Quick Connect For easy and reliable stacking. IP Networking Swappable communication layers to support different mediums. Full TCP/IP stack using µip. More Power Daisy-chain sensor platforms to create large networks without tying up all outlets. Processor ATmega128 provides low-cost and low-power processing. Runs OS that monitors sensor connections and communicates with server. Internal storage MobileIP 44 for sensor/actuator OSGi bundles and data accumulation for on-node processing.

45

46 Middleware Foundation - OSGi Tries to solve maintenance problem. Many components, many configurations. Standardized, component oriented, computing environment for networked services. Provides adds the capability to manage the life cycle of the software components in the device from anywhere in the network MobileIP 46

47 Scope of OSGi Standard software component model. Life cycle control. A secure sandbox environment. Dynamic discovery and use of services. Remote management architecture. Standardized, optional services. MobileIP 47

48 Middleware Architecture MobileIP 48

49 Programming the Hardware C code compiled by avr-gcc Driver bundle compiled and packaged by Java AVR Studio connects to JTAG and programs device MobileIP 49

50 What is the C code? uip network stack at the bottom Provides functions to encapsulate an application Hardware portion of the sensor platform middleware MobileIP 50

51 The C Code App.c Sensorplatform_init Init_connection Sensorplatform_app Sensorplatform_conf.h Sensorplatform_debug.h Main.c MobileIP 51

52 What is the driver/bundle? Implements PacketListener Interface Implements device-specific methods for its host device Manifest contains details of the bundles, which sensor platform ID, exported methods, vendor info, etc. MobileIP 52

53 Case Study: NILE PDT Application Level Nile-PDT Server Level Sensor Platform Sensor-network Level UFL Sensor Platform MobileIP 53

54 Nile-PDT Application MobileIP 54

55 Case Study: Gator Tech Smart House Smart Floor Smart Plugs Foundation of all systems MobileIP 55

56 On-going Research Increasing Plug-and-Playability Creating new communication layers Developing a smarter platform On-platform filtering and processing of data Secure and authorized transactions Privacy protections / localization of data MobileIP 56

57 Project Ideas Application using platforms Robotics Detection Monitoring and action Platform-level work Designing performance metrics & improving platform Improve uip MobileIP 57

Self-Organization in Autonomous Sensor/Actuator Networks [SelfOrg]

Self-Organization in Autonomous Sensor/Actuator Networks [SelfOrg] Self-Organization in Autonomous Sensor/Actuator Networks [SelfOrg] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

TinyOS. Lecture Overview. UC Berkeley Family of Motes. Mica2 and Mica2Dot. MTS300CA Sensor Board. Programming Board (MIB510) 1.

TinyOS. Lecture Overview. UC Berkeley Family of Motes. Mica2 and Mica2Dot. MTS300CA Sensor Board. Programming Board (MIB510) 1. Lecture Overview TinyOS Computer Network Programming Wenyuan Xu 1 2 UC Berkeley Family of Motes Mica2 and Mica2Dot ATmega128 CPU Self-programming 128KB Instruction EEPROM 4KB Data EEPROM Chipcon CC1000

More information

System Architecture Directions for Networked Sensors[1]

System Architecture Directions for Networked Sensors[1] System Architecture Directions for Networked Sensors[1] Secure Sensor Networks Seminar presentation Eric Anderson System Architecture Directions for Networked Sensors[1] p. 1 Outline Sensor Network Characteristics

More information

Sensors Network Simulators

Sensors Network Simulators Sensors Network Simulators Sensing Networking Qing Fang 10/14/05 Computation This Talk Not on how to run various network simulators Instead What differentiates various simulators Brief structures of the

More information

Hardware Support for a Wireless Sensor Network Virtual Machine

Hardware Support for a Wireless Sensor Network Virtual Machine Hardware Support for a Wireless Sensor Network Virtual Machine Hitoshi Oi The University of Aizu February 13, 2008 Mobilware 2008, Innsbruck, Austria Outline Introduction to the Wireless Sensor Network

More information

Technology Perspective

Technology Perspective Wireless Embedded Systems and Networking Foundations of IP-based Ubiquitous Sensor Networks Operating Systems for Communication-Centric Devices TinyOS-based IP-WSNs David E. Culler University of California,

More information

Politecnico di Milano Advanced Network Technologies Laboratory. Internet of Things. TinyOS Programming and TOSSIM (and Cooja)

Politecnico di Milano Advanced Network Technologies Laboratory. Internet of Things. TinyOS Programming and TOSSIM (and Cooja) Politecnico di Milano Advanced Network Technologies Laboratory Internet of Things TinyOS Programming and TOSSIM (and Cooja) 19 March 2018 Agenda Playing with TinyOS Programming and components Blink Application

More information

The Emergence of Networking Abstractions and Techniques in TinyOS

The Emergence of Networking Abstractions and Techniques in TinyOS The Emergence of Networking Abstractions and Techniques in TinyOS CS295-1 Paper Presentation Mert Akdere 10.12.2005 Outline Problem Statement & Motivation Background Information TinyOS HW Platforms Sample

More information

Hardware Design of Wireless Sensors

Hardware Design of Wireless Sensors 1 of 5 11/3/2008 10:46 AM MICA: The Commercialization of Microsensor Motes Miniaturization, integration, and customization make it possible to combine sensing, processing, and communications to produce

More information

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL 2.1 Topology Control in Wireless Sensor Networks Network topology control is about management of network topology to support network-wide requirement.

More information

The Atlas Platform. CEN5531 Mobile Computing. Raja Bose Dr. Sumi Helal September 21, 2006 Week 5

The Atlas Platform. CEN5531 Mobile Computing. Raja Bose Dr. Sumi Helal September 21, 2006 Week 5 The Atlas Platform CEN5531 Mobile Computing Raja Bose Dr. Sumi Helal September 21, 2006 Week 5 Atlas Overview Represents each of the devices (sensors and actuators) connected to it as software services

More information

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA Intel Research mote Ralph Kling Intel Corporation Research Santa Clara, CA Overview Intel mote project goals Project status and direction Intel mote hardware Intel mote software Summary and outlook Intel

More information

Static Analysis of Embedded C

Static Analysis of Embedded C Static Analysis of Embedded C John Regehr University of Utah Joint work with Nathan Cooprider Motivating Platform: TinyOS Embedded software for wireless sensor network nodes Has lots of SW components for

More information

Sensor Networks. Part 3: TinyOS. CATT Short Course, March 11, 2005 Mark Coates Mike Rabbat. Operating Systems 101

Sensor Networks. Part 3: TinyOS. CATT Short Course, March 11, 2005 Mark Coates Mike Rabbat. Operating Systems 101 Sensor Networks Part 3: TinyOS CATT Short Course, March 11, 2005 Mark Coates Mike Rabbat 1 Operating Systems 101 operating system (äp ǝr āt ing sis tǝm) n. 1 software that controls the operation of a computer

More information

Sensors as Software. TinyOS. TinyOS. Dario Rossi Motivation

Sensors as Software. TinyOS. TinyOS. Dario Rossi Motivation Sensors as Software Dario Rossi dario.rossi@polito.it Motivation Sensor networks Radically new computing environments Rapidly evolving hardware technology The key missing technology is system software

More information

Interfacing Java-DSP with Sensor Motes

Interfacing Java-DSP with Sensor Motes Interfacing Java-DSP with Sensor Motes by H. M. Kwon, V. Berisha and A. Spanias Ira A. Fulton School of Engineering, Department of Electrical Engineering, MIDL Lab Arizona State University, Tempe, AZ 85287-5706,

More information

MICA The Commercialization of Microsensor Motes

MICA The Commercialization of Microsensor Motes www.sensorsmag.com APRIL 2002 SENSOR TECHNOLOGY AND DESIGN MICA The Commercialization of Microsensor Motes Miniaturization, integration, and customization make it possible to combine sensing, processing,

More information

Lecture 8 Wireless Sensor Networks: Overview

Lecture 8 Wireless Sensor Networks: Overview Lecture 8 Wireless Sensor Networks: Overview Reading: Wireless Sensor Networks, in Ad Hoc Wireless Networks: Architectures and Protocols, Chapter 12, sections 12.1-12.2. I. Akyildiz, W. Su, Y. Sankarasubramaniam

More information

TinyOS. Wireless Sensor Networks

TinyOS. Wireless Sensor Networks TinyOS Laboratorio di Sistemi Wireless Ing. Telematica Università Kore Enna Ing. A. Leonardi Wireless Sensor Networks The number of nodes can be very high Nodes are densely deployed Low cost, low power

More information

Contiki a Lightweight and Flexible Operating System for Tiny Networked Sensors

Contiki a Lightweight and Flexible Operating System for Tiny Networked Sensors Contiki a Lightweight and Flexible Operating System for Tiny Networked Sensors Adam Dunkels, Björn Grönvall, Thiemo Voigt Swedish Institute of Computer Science IEEE EmNetS-I, 16 November 2004 Sensor OS

More information

System Architecture Directions for Networked Sensors. Jason Hill et. al. A Presentation by Dhyanesh Narayanan MS, CS (Systems)

System Architecture Directions for Networked Sensors. Jason Hill et. al. A Presentation by Dhyanesh Narayanan MS, CS (Systems) System Architecture Directions for Networked Sensors Jason Hill et. al. A Presentation by Dhyanesh Narayanan MS, CS (Systems) Sensor Networks Key Enablers Moore s s Law: More CPU Less Size Less Cost Systems

More information

The Emergence of Networking Abstractions and Techniques in TinyOS

The Emergence of Networking Abstractions and Techniques in TinyOS The Emergence of Networking Abstractions and Techniques in TinyOS Sam Madden MIT CSAIL madden@csail.mit.edu With Phil Levis, David Gay, Joe Polastre, Rob Szewczyk, Alec Woo, Eric Brewer, and David Culler

More information

Introduction to Programming Motes

Introduction to Programming Motes Introduction to Programming Motes Mohamed M. El Wakil http://mohamed.elwakil.net mohamed.elwakil@wmich.edu Wireless Sensornets (WiSe) Laboratory Department of Computer Science Western Michigan University

More information

TinyOS. Jan S. Rellermeyer

TinyOS. Jan S. Rellermeyer TinyOS Jan S. Rellermeyer jrellermeyer@student.ethz.ch Overview Motivation Hardware TinyOS Architecture Component Based Programming nesc TinyOS Scheduling Tiny Active Messaging TinyOS Multi Hop Routing

More information

Programming Sensor Networks

Programming Sensor Networks Programming Sensor Networks Distributed Computing Group Nicolas Burri Pascal von Rickenbach Overview TinyOS Platform Program Development Current Projects MOBILE COMPUTING 2 Sensor Nodes System Constraints

More information

Wireless Embedded Systems ( x) Ad hoc and Sensor Networks

Wireless Embedded Systems ( x) Ad hoc and Sensor Networks Wireless Embedded Systems (0120442x) Ad hoc and Sensor Networks Chaiporn Jaikaeo chaiporn.j@ku.ac.th Department of Computer Engineering Kasetsart University Materials taken from lecture slides by Karl

More information

Wireless Sensor Networks: From Science to Reality. Kay Römer ETH Zurich

Wireless Sensor Networks: From Science to Reality. Kay Römer ETH Zurich Wireless Sensor Networks: From Science to Reality Kay Römer ETH Zurich Sensor Networks Ad hoc network of sensor nodes Perceive (sensors) Process (microcontroller) Communicate (radio) Autonomous power supply

More information

WSN PLATFORMS, HARDWARE & SOFTWARE. Murat Demirbas SUNY Buffalo

WSN PLATFORMS, HARDWARE & SOFTWARE. Murat Demirbas SUNY Buffalo WSN PLATFORMS, HARDWARE & SOFTWARE Murat Demirbas SUNY Buffalo 1 Last lecture: Why use WSNs Ease of deployment: Wireless communication means no need for a communication infrastructure setup Low-cost of

More information

Voice Over Sensor Networks

Voice Over Sensor Networks Voice Over Sensor Networks Rahul Mangharam 1 Anthony Rowe 1 Raj Rajkumar 1 Ryohei Suzuki 2 1 Dept. of Electrical & Computer Engineering 2 Ubiquitous Networking Lab Carnegie Mellon University, U.S.A. {rahulm,agr,raj}@ece.cmu.edu

More information

CS 425 / ECE 428 Distributed Systems Fall 2014

CS 425 / ECE 428 Distributed Systems Fall 2014 CS 425 / ECE 428 Distributed Systems Fall 2014 Indranil Gupta Sensor Networks Lecture 24 A Reading: Links on website All Slides IG 1 Some questions What is the smallest transistor out there today? 2 Some

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

Indriya_DP_03A14. Features. Block Diagram. XBEE based Wireless Sensor Network development platform

Indriya_DP_03A14. Features. Block Diagram. XBEE based Wireless Sensor Network development platform Indriya TM is a hardware development environment for building ambient intelligence based wireless sensor network applications. Features Simple, pervasive & low power 8-bit microcontroller core with low-power

More information

Presented by: Murad Kaplan

Presented by: Murad Kaplan Presented by: Murad Kaplan Introduction. Design of SCP-MAC. Lower Bound of Energy Performance with Periodic Traffic. Protocol Implementation. Experimental Evaluation. Related Work. 2 Energy is a critical

More information

Mobile and Ubiquitous Computing Routing Protocols. Niki Trigoni

Mobile and Ubiquitous Computing Routing Protocols. Niki Trigoni Mobile and Ubiquitous Computing Routing Protocols Niki Trigoni www.dcs.bbk.ac.uk/~niki niki@dcs.bbk.ac.uk Overview Intro to routing in ad-hoc networks Routing methods Link-State Distance-Vector Distance-vector

More information

Service-Based Universal Application Interface for Demand Response Energy Systems (UC Berkeley Project)

Service-Based Universal Application Interface for Demand Response Energy Systems (UC Berkeley Project) Service-Based Universal Application Interface for Demand Response Energy Systems (UC Berkeley Project) Goal: Develop and demonstrate an application development environment for a scalable and extendible

More information

An Efficient Low Power Transmission Over Long Range in Wireless Sensor Networks for environmental studies

An Efficient Low Power Transmission Over Long Range in Wireless Sensor Networks for environmental studies International Journal of Applied Environmental Sciences ISSN 0973-6077 Volume 11, Number 2 (2016), pp. 657-665 Research India Publications http://www.ripublication.com An Efficient Low Power Transmission

More information

Energy-aware Reconfiguration of Sensor Nodes

Energy-aware Reconfiguration of Sensor Nodes Energy-aware Reconfiguration of Sensor Nodes Andreas Weissel Simon Kellner Department of Computer Sciences 4 Distributed Systems and Operating Systems Friedrich-Alexander University Erlangen-Nuremberg

More information

CM5000 DATASHEET v0.1

CM5000 DATASHEET v0.1 CM5000 DATASHEET - 2 - http://www.advanticsys.com/cm5000.html v0.1 Table of Contents 1. INTRODUCTION... 5 2. HARDWARE CHARACTERISTICS... 6 2.1 CM5000 DIAGRAMS... 6 2.2 MICROCONTROLLER DESCRIPTION - TI

More information

The Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol The Flooding Time Synchronization Protocol Miklos Maroti, Branislav Kusy, Gyula Simon and Akos Ledeczi Vanderbilt University Contributions Better understanding of the uncertainties of radio message delivery

More information

Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) Wireless Sensor Networks (WSN) Introduction M. Schölzel Difference to existing wireless networks Infrastructure-based networks e.g., GSM, UMTS, Base stations connected to a wired backbone network Mobile

More information

ARDUINO MEGA INTRODUCTION

ARDUINO MEGA INTRODUCTION ARDUINO MEGA INTRODUCTION The Arduino MEGA 2560 is designed for projects that require more I/O llines, more sketch memory and more RAM. With 54 digital I/O pins, 16 analog inputs so it is suitable for

More information

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri TinySec: A Link Layer Security Architecture for Wireless Sensor Networks Chris Karlof, Naveen Sastry,, David Wagner Presented by Paul Ruggieri 1 Introduction What is TinySec? Link-layer security architecture

More information

Tag a Tiny Aggregation Service for Ad-Hoc Sensor Networks. Samuel Madden, Michael Franklin, Joseph Hellerstein,Wei Hong UC Berkeley Usinex OSDI 02

Tag a Tiny Aggregation Service for Ad-Hoc Sensor Networks. Samuel Madden, Michael Franklin, Joseph Hellerstein,Wei Hong UC Berkeley Usinex OSDI 02 Tag a Tiny Aggregation Service for Ad-Hoc Sensor Networks Samuel Madden, Michael Franklin, Joseph Hellerstein,Wei Hong UC Berkeley Usinex OSDI 02 Outline Introduction The Tiny AGgregation Approach Aggregate

More information

XMEGA Series Of AVR Processor. Presented by: Manisha Biyani ( ) Shashank Bolia (

XMEGA Series Of AVR Processor. Presented by: Manisha Biyani ( ) Shashank Bolia ( XMEGA Series Of AVR Processor Presented by: Manisha Biyani (200601217) Shashank Bolia (200601200 Existing Microcontrollers Problems with 8/16 bit microcontrollers: Old and inefficient architecture. Most

More information

Presented by Viraj Anagal Kaushik Mada. Presented to Dr. Mohamed Mahmoud. ECE 6900 Fall 2014 Date: 09/29/2014 1

Presented by Viraj Anagal Kaushik Mada. Presented to Dr. Mohamed Mahmoud. ECE 6900 Fall 2014 Date: 09/29/2014 1 Presented by Viraj Anagal Kaushik Mada Presented to Dr. Mohamed Mahmoud ECE 6900 Fall 2014 Date: 09/29/2014 1 Outline Motivation Overview Wireless Sensor Network Components Characteristics of Wireless

More information

Towards a Resilient Operating System for Wireless Sensor Networks

Towards a Resilient Operating System for Wireless Sensor Networks Towards a Resilient Operating System for Wireless Sensor Networks Hyoseung Kim Hojung Cha Yonsei University, Korea 2006. 6. 1. Hyoseung Kim hskim@cs.yonsei.ac.kr Motivation (1) Problems: Application errors

More information

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set Available online at www.sciencedirect.com Procedia Computer Science 6 (2011) 408 412 Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science

More information

KMote - Design and Implementation of a low cost, low power platform for wireless sensor networks. Naveen Madabhushi

KMote - Design and Implementation of a low cost, low power platform for wireless sensor networks. Naveen Madabhushi KMote - Design and Implementation of a low cost, low power platform for wireless sensor networks Naveen Madabhushi Presentation Outline Introduction Related Work Motivation and Problem Statement Design

More information

LabVIEW ON SMALL TARGET

LabVIEW ON SMALL TARGET LabVIEW ON SMALL TARGET Silviu FOLEA *, Marius GHERCIOIU **, Horia HEDESIU *, Crisan GRATIAN **, Ciprian CETERAS **, Ioan MONOSES ** * Technical University of Cluj-Napoca, ** National Instruments USA,

More information

Outline. Mate: A Tiny Virtual Machine for Sensor Networks Philip Levis and David Culler. Motivation. Applications. Mate.

Outline. Mate: A Tiny Virtual Machine for Sensor Networks Philip Levis and David Culler. Motivation. Applications. Mate. Outline Mate: A Tiny Virtual Machine for Sensor Networks Philip Levis and David Culler Presented by Mark Tamola CSE 521 Fall 2004 Motivation Mate Code Propagation Conclusions & Critiques 1 2 Motivation

More information

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director AVR XMEGA TM A New Reference for 8/16-bit Microcontrollers Ingar Fredriksen AVR Product Marketing Director Kristian Saether AVR Product Marketing Manager Atmel AVR Success Through Innovation First Flash

More information

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software!

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software! Summer Training 2016 Advance Embedded Systems Fast track of AVR and detailed working on STM32 ARM Processor with RTOS- Real Time Operating Systems Covering 1. Hands on Topics and Sessions Covered in Summer

More information

CSE 466 Software for Embedded Systems. CSE 466 Software for Embedded Systems

CSE 466 Software for Embedded Systems. CSE 466 Software for Embedded Systems CSE 466 Software for Embedded Systems Instructor: Gaetano Borriello CSE 572, Hours: by app t gaetano@cs.washington.edu Teaching Assistants: Brain French CSE 003, Hours TTh 2:30-5:30 bmf@cs.washington.edu

More information

nesc Prof. Chenyang Lu How should network msg be handled? Too much memory for buffering and threads

nesc Prof. Chenyang Lu How should network msg be handled? Too much memory for buffering and threads nesc Prof. Chenyang Lu CSE 521S 1 How should network msg be handled? Socket/TCP/IP? Too much memory for buffering and threads Data buffered in network stack until application threads read it Application

More information

Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings

Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings By Lars Schor, Philipp Sommer, Roger Wattenhofer Computer Engineering and Networks Laboratory ETH Zurich, Switzerland

More information

AIM: To create a project for implement a wireless communication protocol on an embedded system- ZigBee.

AIM: To create a project for implement a wireless communication protocol on an embedded system- ZigBee. AIM: To create a project for implement a wireless communication protocol on an embedded system- ZigBee. Introduction ZigBee is one of the Advanced Wireless Technology and CC2430 is the first single-chip

More information

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks RESEARCH ARTICLE An Industrial Employee Development Application Protocol Using Wireless Sensor Networks 1 N.Roja Ramani, 2 A.Stenila 1,2 Asst.professor, Dept.of.Computer Application, Annai Vailankanni

More information

Distributed Pervasive Systems

Distributed Pervasive Systems Distributed Pervasive Systems CS677 Guest Lecture Tian Guo Lecture 26, page 1 Outline Distributed Pervasive Systems Popular Application domains Sensor nodes and networks Energy in Distributed Systems (Green

More information

Wireless Sensor networks: a data centric overview. Politecnico di Milano Joint work with: C. Bolchini F.A. Schreiber other colleagues and students

Wireless Sensor networks: a data centric overview. Politecnico di Milano Joint work with: C. Bolchini F.A. Schreiber other colleagues and students Wireless Sensor networks: a data centric overview Politecnico di Milano Joint work with: C. Bolchini F.A. Schreiber other colleagues and students Wireless embedded sensor networks Thousands of tiny low

More information

Smart Transducer Networks

Smart Transducer Networks Smart Transducer Networks Wilfried Elmenreich Bernhard Huber Implementation Requirements 2 Definition A smart transducer is the integration of an analog or digital sensor or actuator element, a processing

More information

Video of the Day. Ø LA Express Park Explained!

Video of the Day. Ø LA Express Park Explained! Video of the Day LA Express Park Explained! 1 Proposal One proposal/team, 1 page! Team members! Concise description of project! Responsibilities of each member! Specific equipment needed! Written proposal

More information

Clock and Fuses. Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar

Clock and Fuses. Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar Clock and Fuses Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar Reference WHY YOU NEED A CLOCK SOURCE - COLIN O FLYNN avrfreaks.net http://en.wikibooks.org/wiki/atmel_avr

More information

Agilla/Agimone: Middleware for Sensor Networks

Agilla/Agimone: Middleware for Sensor Networks Agilla/Agimone: Middleware for Sensor Networks Motivation Existing sensor network software lacks flexibility Entire network runs just one application Cannot adapt to changes in the environment the network

More information

End-To-End Delay Optimization in Wireless Sensor Network (WSN)

End-To-End Delay Optimization in Wireless Sensor Network (WSN) Shweta K. Kanhere 1, Mahesh Goudar 2, Vijay M. Wadhai 3 1,2 Dept. of Electronics Engineering Maharashtra Academy of Engineering, Alandi (D), Pune, India 3 MITCOE Pune, India E-mail: shweta.kanhere@gmail.com,

More information

TI SimpleLink dual-band CC1350 wireless MCU

TI SimpleLink dual-band CC1350 wireless MCU TI SimpleLink dual-band CC1350 wireless MCU Sub-1 GHz and Bluetooth low energy in a single-chip Presenter Low-Power Connectivity Solutions 1 SimpleLink ultra-low power platform CC2640: Bluetooth low energy

More information

Atlas: A Service-Oriented Sensor Platform Hardware and Middleware to Enable Programmable Pervasive Spaces

Atlas: A Service-Oriented Sensor Platform Hardware and Middleware to Enable Programmable Pervasive Spaces Atlas: A Service-Oriented Sensor Platform Hardware and Middleware to Enable Programmable Pervasive Spaces Jeffrey King, Raja Bose, Hen-I Yang, Steven Pickles, Abdelsalam Helal Mobile & Pervasive Computing

More information

Learning Module 9. Managing the Sensor: Embedded Computing. Paul Flikkema. Department of Electrical Engineering Northern Arizona University

Learning Module 9. Managing the Sensor: Embedded Computing. Paul Flikkema. Department of Electrical Engineering Northern Arizona University Learning Module 9 Managing the Sensor: Embedded Computing Paul Flikkema Department of Electrical Engineering Northern Arizona University Outline Networked Embedded Systems Hardware Software Languages Operating

More information

SDCI Student Project 6 Sensing Capabilites Go Wireless. Mario Caruso Francesco Leotta Leonardo Montecchi Marcello Pietri

SDCI Student Project 6 Sensing Capabilites Go Wireless. Mario Caruso Francesco Leotta Leonardo Montecchi Marcello Pietri SDCI 2012 Student Project 6 Sensing Capabilites Go Wireless Mario Caruso Francesco Leotta Leonardo Montecchi Marcello Pietri Overview Wireless Sensor Network Is a collection of nodes organized into a cooperative

More information

Embedded System Design : Project Specification Crowd Information Monitor

Embedded System Design : Project Specification Crowd Information Monitor August 1, 2005 1 Introduction Efficient organisation of large exhibitions, conferences, gatherings etc. require the presence of a sophisticated, accurate yet easy to install and use crowd information monitoring

More information

Mote Design Supported with Remote Hardware Modifications Capability for Wireless Sensor Network applications

Mote Design Supported with Remote Hardware Modifications Capability for Wireless Sensor Network applications Mote Design Supported with Remote Hardware Modifications Capability for Wireless Sensor Network applications ABSTRACT Ali El Kateeb University of Michigan-Dearborn Email: elkateeb@umich.edu Many Wireless

More information

Basic Components of Digital Computer

Basic Components of Digital Computer Digital Integrated Circuits & Microcontrollers Sl. Mihnea UDREA, mihnea@comm.pub.ro Conf. Mihai i STANCIU, ms@elcom.pub.ro 1 Basic Components of Digital Computer CPU (Central Processing Unit) Control and

More information

Integrating Concurrency Control and Energy Management in Device Drivers

Integrating Concurrency Control and Energy Management in Device Drivers Integrating Concurrency Control and Energy Management in Device Drivers Kevin Klues, Vlado Handziski, Chenyang Lu, Adam Wolisz, David Culler, David Gay, and Philip Levis Overview Concurrency Control: Concurrency

More information

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu Integrating Concurrency Control and Energy Management in Device Drivers Chenyang Lu Overview Ø Concurrency Control: q Concurrency of I/O operations alone, not of threads in general q Synchronous vs. Asynchronous

More information

The Internet vs. Sensor Nets

The Internet vs. Sensor Nets The Internet vs. Sensor Nets, Philip Levis 5/5/04 0 The Internet vs. Sensor Nets What they ve learned, Philip Levis 5/5/04 1 The Internet vs. Sensor Nets What they ve learned, and we ve forgotten. Philip

More information

INTEGRATION OF AD HOC WIRELESS SENSOR NETWORKS IN A VIRTUAL INSTRUMENTATION CONFIGURATION

INTEGRATION OF AD HOC WIRELESS SENSOR NETWORKS IN A VIRTUAL INSTRUMENTATION CONFIGURATION Bulletin of the Transilvania University of Braşov Vol. 7 (56) No. 2-2014 Series I: Engineering Sciences INTEGRATION OF AD HOC WIRELESS SENSOR NETWORKS IN A VIRTUAL INSTRUMENTATION CONFIGURATION Mihai MACHEDON-PISU

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks c.buratti@unibo.it +39 051 20 93147 Office Hours: Tuesday 3 5 pm @ Main Building, second floor Credits: 6 Ouline 1. WS(A)Ns Introduction 2. Applications 3. Energy Efficiency Section

More information

Computer Hardware Requirements for Real-Time Applications

Computer Hardware Requirements for Real-Time Applications Lecture (4) Computer Hardware Requirements for Real-Time Applications Prof. Kasim M. Al-Aubidy Computer Engineering Department Philadelphia University Real-Time Systems, Prof. Kasim Al-Aubidy 1 Lecture

More information

Smart Transducer Networks. Embedded Systems Engineering Armin Wasicek

Smart Transducer Networks. Embedded Systems Engineering Armin Wasicek Smart Transducer Networks Embedded Systems Engineering Armin Wasicek Overview Motivation & Design Principles TTP/A Fieldbus Protocol Implementation Requirements Smart Transducer Interface Standard Conclusion

More information

A VIRTUALLAB APPROACH FOR WIRELESS SENSOR MOTES AND WIRELESS SENSOR NETWORKS

A VIRTUALLAB APPROACH FOR WIRELESS SENSOR MOTES AND WIRELESS SENSOR NETWORKS A VIRTUALLAB APPROACH FOR WIRELESS SENSOR MOTES AND WIRELESS SENSOR NETWORKS Anghel V. CONŢIU, Adina ŢOPA, Vasile T. DĂDÂRLAT Technical University of Cluj-Napoca, Str. Ctin Daicoviciu nr. 15, 400027 Cluj-Napoca,

More information

Processor Choice For Wireless Sensor Networks

Processor Choice For Wireless Sensor Networks Processor Choice For Wireless Sensor Networks Ciarán Lynch Centre for Adaptive Wireless Systems Cork Institute of Technology Cork Ireland ciaranlynch@cit.ie Fergus O Reilly Centre for Adaptive Wireless

More information

Message acknowledgement and an optional beacon. Channel Access is via Carrier Sense Multiple Access with

Message acknowledgement and an optional beacon. Channel Access is via Carrier Sense Multiple Access with ZigBee IEEE 802.15.4 Emerging standard for low-power wireless monitoring and control Scale to many devices Long lifetime is important (contrast to Bluetooth) 10-75m range typical Designed for industrial

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Main reference: Christopher T. Kilian, (2001), Modern Control Technology: Components and Systems Publisher: Delmar

More information

Wireless Sensor Network Protocol for Smart Parking Application

Wireless Sensor Network Protocol for Smart Parking Application Wireless Sensor Network Protocol for Smart Parking Application Experimental Study on the Arduino Platform Ostiz L., Pita C., Doggen J.*, Dams T., Van Houtven P. *jeroen.doggen@artesis.be September 25,

More information

Smart Dust : Dispersed, Un-tethered Geospatial Monitoring. Dr. Raja R. Kadiyala Chief Technology Officer CH2M HILL - Oakland, CA

Smart Dust : Dispersed, Un-tethered Geospatial Monitoring. Dr. Raja R. Kadiyala Chief Technology Officer CH2M HILL - Oakland, CA Smart Dust : Dispersed, Un-tethered Geospatial Monitoring Dr. Raja R. Kadiyala Chief Technology Officer CH2M HILL - Oakland, CA raja@ch2m.com Drivers and Trends Sensing, Communication and Computation MEMS

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang,

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang, Network Embedded Systems Sensor Networks Fall 2013 Hardware Marcus Chang, mchang@cs.jhu.edu 1 Embedded Systems Designed to do one or a few dedicated and/or specific functions Embedded as part of a complete

More information

High-Performance 32-bit

High-Performance 32-bit High-Performance 32-bit Microcontroller with Built-in 11-Channel Serial Interface and Two High-Speed A/D Converter Units A 32-bit microcontroller optimal for digital home appliances that integrates various

More information

Ultra Low Power Microcontroller - Design Criteria - June 2017

Ultra Low Power Microcontroller - Design Criteria - June 2017 Ultra Low Power Microcontroller - Design Criteria - June 2017 Agenda 1. Low power technology features 2. Intelligent Clock Generator 3. Short wake-up times 4. Intelligent memory access 5. Use case scenario

More information

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 2: ANATOMY OF A SENSOR NODE Anna Förster

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 2: ANATOMY OF A SENSOR NODE Anna Förster INTRODUCTION TO WIRELESS SENSOR NETWORKS CHAPTER 2: ANATOMY OF A SENSOR NODE Anna Förster OVERVIEW 1. Hardware components 2. Power Consumption 3. Operating Systems and Concepts 1. Memory Management 2.

More information

CODE BLUE Sensor Networks for Emergency Response Challenges and Opportunities

CODE BLUE Sensor Networks for Emergency Response Challenges and Opportunities Sensor networks CODE BLUE Sensor Networks for Emergency Response Challenges and Opportunities New class of devices having the potential to revolutionize the capture, processing and communication of critical

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

Wireless Sensor Networks CS742

Wireless Sensor Networks CS742 Wireless Sensor Networks CS742 Outline Overview Environment Monitoring Medical application Data-dissemination schemes Media access control schemes Distributed algorithms for collaborative processing Architecture

More information

Improving Energy-Efficiency Efficiency in Sensor Networks by Raising Communication Throughput Using Software Thread Integration

Improving Energy-Efficiency Efficiency in Sensor Networks by Raising Communication Throughput Using Software Thread Integration Improving Energy-Efficiency Efficiency in Sensor Networks by Raising Communication Throughput Using Software Thread Integration Ramnath Venugopalan and Alexander Dean Center for Embedded Systems Research

More information

Agriculture Wireless Temperature and Humidity Sensor Network Based on ZigBee Technology

Agriculture Wireless Temperature and Humidity Sensor Network Based on ZigBee Technology Agriculture Wireless Temperature and Humidity Sensor Network Based on ZigBee Technology Xi Wang 1 and Hui Gao 2 1 Heilongjiang Bayi Agricultural Reclamation University, Daqing 163319, China 2 Lanzhou Jiaotong

More information

What is Mechatronics

What is Mechatronics Mechatronics What is Mechatronics What Is Mechatronics? Mechatronics is a methodology used for the optimal design of electromechanical products. Multi-disciplinary system design has employed a sequential

More information

Smart cards and smart objects communication protocols: Looking to the future. ABSTRACT KEYWORDS

Smart cards and smart objects communication protocols: Looking to the future. ABSTRACT KEYWORDS Smart cards and smart objects communication protocols: Looking to the future. Denis PRACA Hardware research manager, Gemplus research Lab, France Anne-Marie PRADEN Silicon design program manager, Gemplus

More information

Introducing STM32 L0x Series. April

Introducing STM32 L0x Series. April Introducing STM32 L0x Series April 2014 www.emcu.it 20- to 80pins 20- to 100pins 48- to 144pins Memory size (Bytes) ST s Ultra-low-power Continuum (1/2) 2 512K 256K 192K STM32L0 Cortex TM -M0+ STM32L1

More information

PXA270 EPIC Computer with Power Over Ethernet & Six Serial Protocols SBC4670

PXA270 EPIC Computer with Power Over Ethernet & Six Serial Protocols SBC4670 PXA270 EPIC Computer with Power Over Ethernet & Six Serial Protocols SBC4670 Features RoHS 520MHz Low-power ARM processor w/ 800 x 600 Color LCD Power Over Ethernet and 10/100BASE-T Ethernet GPS module

More information

COL862 - Low Power Computing

COL862 - Low Power Computing COL862 - Low Power Computing Power Measurements using performance counters and studying the low power computing techniques in IoT development board (PSoC 4 BLE Pioneer Kit) and Arduino Mega 2560 Submitted

More information

EECE Hybrid and Embedded Systems: Computation

EECE Hybrid and Embedded Systems: Computation EECE 396-1 Hybrid and Embedded Systems: Computation T. John Koo, Ph.D. Institute for Software Integrated Systems Department of Electrical Engineering and Computer Science Vanderbilt University 300 Featheringill

More information