EECE Hybrid and Embedded Systems: Computation

Size: px
Start display at page:

Download "EECE Hybrid and Embedded Systems: Computation"

Transcription

1 EECE Hybrid and Embedded Systems: Computation T. John Koo, Ph.D. Institute for Software Integrated Systems Department of Electrical Engineering and Computer Science Vanderbilt University 300 Featheringill Hall April 1,

2 Application: Time Automata 2

3 Outline Motivation Hybrid Systems Verification of Timed Automata A Design Example Future Works 3

4 Distributed Sensing and Sensor Networks Creation of a fundamental unifying framework for real-time distributed/decentralized information processing with applications to sensor networks System Architecture for Networked Sensor Route map router sensor appln application packet Radio Packet Active Messages Serial Packet Temp SW ATMEL 4 Mhz CPU RFM 916 MHz radio 64KB EEPROM Sensor Bus: byte bit Radio byte RFM UART i2c photo clocks HW 7 Analog sensors 2 I2C buses 1 SPI bus Runs Tiny OS 2 weeks on AA batteries 1% duty w/ solar power 4

5 Distributed Sensing and Sensor Networks Networked sensors dropped from an aerial vehicle Ad hoc networking 5

6 Distributed Sensing and Sensor Networks Recovering Flow from Distributed Networks In a dense sensor scenario, environmental data can be interpolated Over a few time steps, optical flow algorithms are applied to determine flow Accuracy of results is highly dependent on the smoothness of the flow Sense temperature at nodes Interpolate to grid points Compute flow 6

7 System Architecture for Networked Sensors application Route map router sensor appln Active Messages packet Radio Packet Serial Packet Temp SW byte Radio byte UART i2c photo HW bit RFM clocks Constrained two-level scheduling model: threads + events Components: Frame (storage), Threads (concurrency), Commands, and Handlers (events) Constrained Storage Model Very lean multithreading Layering: components issue commands to lower-level components 7

8 TinyOS TinyOS - component-based operating system Modularity by assembling only the software components to synthesize application from hardware components Components as reentrant cooperating finite state machines application sensing application packet Radio Packet byte Radio byte photo SW command bit RFM clocks ADC HW event 8

9 TinyOS A complete TinyOS application Application = Graph of components Scheduler Component Interface synchronous commands and asynchronous events Internal Storage Fixed-size frame containing the state of component Internal Implementation Light-weight threads tasks Command and event handlers Scheduling Events have higher priority Events preempt tasks Almost instantaneous event execution Tasks have lower priority Tasks do not preempt events or other tasks Scheduled by FIFO scheduler Handled rapidly without blocking or polling 9

10 Example: Communication Packet Level Byte Level RFM Bit Level 1 byte = 18 bits 1 packet = 30 bytes 10

11 Design Considerations Characteristic of sensor networks Dynamical behaviors depend on the environment Deploy once and leave without future maintenance Energy consumption varies between applications We suggest to use formal methods to verify system performance to guarantee correct operation in every circumstances predict lifetime of a given application scenario Functional Behaviors +Temporal Behaviors Timed Automata System States = Discrete States + Continuous States(Time + Energy) State Transitions = Discrete Transitions(Events) + Continuous Transitions 11

12 What Are Hybrid Systems? Dynamical systems with interacting continuous and discrete dynamics 12

13 Why Hybrid Systems? Modeling abstraction of Continuous systems with phased operation (e.g. walking robots, mechanical systems with collisions, circuits with diodes) Continuous systems controlled by discrete inputs (e.g. switches, valves, digital computers) Coordinating processes (multi-agent systems) Important in applications Hardware verification/cad, real time software Manufacturing, communication networks, multimedia Large scale, multi-agent systems Automated Highway Systems (AHS) Air Traffic Management Systems (ATM) Uninhabited Aerial Vehicles (UAV) Power Networks 13

14 Research Issues Modeling & Simulation Control: classify discrete phenomena, existence and uniqueness of execution, Zeno [Branicky, Brockett, van der Schaft, Astrom] Computer Science: composition and abstraction operations [Alur- Henzinger, Lynch, Sifakis, Varaiya] Analysis & Verification Control: stability, Lyapunov techniques [Branicky, Michel], LMI techniques [Johansson-Rantzer] Computer Science: Algorithmic [Alur-Henzinger, Sifakis, Pappas- Lafferrier-Sastry] or deductive methods [Lynch, Manna, Pnuelli], Abstraction [Pappas-Tabuada, Koo-Sastry] Controller Synthesis Control: optimal control [Branicky-Mitter, Bensoussan-Menaldi], hierarchical control [Caines, Pappas-Sastry], supervisory control [Lemmon-Antsaklis], safety specifications [Lygeros-Sastry, Tomlin- Lygeros-Sastry], control mode switching [Koo-Pappas-Sastry] Computer Science: algorithmic synthesis [Maler et.al., Wong-Toi], synthesis based on HJB [Mitchell-Tomlin] 14

15 Verification Deductive Methods Theorem-Proving techniques [Lynch, Manna, Pnuelli] Model Checking State-space exploration [Alur-Henzinger, Sifakis, Pappas-Lafferrier- Sastry] Reachability Problem Forward Reachable Set 15

16 Computational Tools Verification based on Modal Checking Finite Automata Timed Automata Linear Automata Linear Hybrid Systems Nonlinear Hybrid Systems COSPAN SMV VIS Timed COSPAN KRONOS Timed HSIS VERITI UPPAAL HyTech Requiem Post 23 (x1) Post 2r (F) Post [0,2r] (F) Post 2r (x2) d/dt CheckMate Post r (x1) Post r (F) x1 Post [0,r] (F) Post r (x2) F x2 16

17 Simulation Computational Tools Ptolemy II: ptolemy.eecs.berkeley.edu Modelica: SHIFT: Dymola: OmSim: ABACUSS: yoric.mit.edu/abacuss/abacuss.html Stateflow: CHARON: Masaccio: 17

18 Computational Tools Simulation Masaccio CHARON Ptolemy II StateFlow/Simulink Dymola Modelica System Complexity ABACUSS OmSim SHIFT Models of Computation 18

19 Hybrid Modeling of Sensor Networks HyTech Verifies functional and temporal properties of linear hybrid automata Based on Model Checking and providing debugging traces Hybrid Automaton with flows which are linear in time SHIFT Models and simulates dynamic networks of hybrid automata Components created, interconnected, destroyed as the system evolves Components interact through their inputs, outputs and exported events 19

20 Hybrid Modeling of Sensor Networks HyTech Example start of an execution of the timed automaton 20

21 Hybrid Modeling of Sensor Networks HyTech Reachability Problem: Starting from somewhere in an initial set, would the set of states eventually reach somewhere in the target set? 21

22 Hybrid Modeling of Sensor Networks HyTech Equivalent Classes 12x2 30x2 18x2 Every point in an equivalent class has the same reachability property. 22

23 Hybrid Modeling of Sensor Networks HyTech Equivalent Classes 12x2 30x2 18x2 Idea: The reachability problem for timed automaton (Transition System) can be answered on a FSM (Quotient Transition System) which is defined on the quotient space of the bisimulation. 23

24 Bisimulation-based Abstraction Transition System To study the reachability properties of time automata, each timed automaton is converted into a transition system. Both initial and final sets are union of equivalence classes Consider the equivalence relation, we have the following definitions: 24

25 Bisimulation-based Abstraction Transition System 25

26 Bisimulation-based Abstraction Consider the transition system and the equivalence relation, we have the following result: Therefore, one can define the reachability preserving quotient system of the transition system 26

27 Bisimulation-based Abstraction Transition System and its Quotient System 27

28 Overall View of TinyOS Automata application sensing application packet Radio Packet byte bit Radio byte RFM Task handler Packet generation 28

29 Packet Generation and Application Automata! " #! $ #! " #! #! " #! " #! $ # " # "! " #! " #! " # % &! " # " &! " # 29

30 Radio Byte From TinyOS to Hytech rfm_rx_comp RFM Bit rfm_rx_ev rfm_clock Energy spent by the transceiver RFM! " #! $ " ' ( ) " Packet Gen.! " #! $ " & " & 30

31 ! #! " op-exec From TinyOS to HyTech Energy spent by processing events exec " " "! #! " * + Energy spent by posting tasks! $ #! " idle! $ #! " " " " " " ", " op-wait op + Energy spent by processing tasks 31

32 Verification of TinyOS with HyTech Packet Level Byte Level RFM Bit Level 32

33 Verification of TinyOS with HyTech Analysis commands for verification: init_reg :=..; final_reg := loc[rpacket]=transmit & loc[rbyte]=receive; reached := reach forward from init_reg endreach; if empty(reached & final_reg) then prints working fine else print trace to final_reg using reached; endif; 33

34 Power Analysis of TinyOS with HyTech Power analysis through variable energy by using trace generation feature of HyTech by setting final_reg = t>300000; Power Consumption vs. # of Children power 34

35 Power Analysis of TinyOS with HyTech As the number of children increases, time to wait before transmitting increases due to backoff number of packets to be forwarded increases -. 35

36 Hybrid Modeling of a Sensor Network Uniform Distribution 100 node 100m x 100m 4 Macro Clusters Children determined according to position distribution 36

37 Hybrid Modeling of a Sensor Network 4 Types of Node Automata. Create an instance for each node. Destroy the instance when the node dies. Distribute the load to its group. Notify upper group when there is a death. 37

38 Hybrid Modeling of a Sensor Network SHIFT - Describes dynamic networks of hybrid automata Components created, interconnected, destroyed as the system evolves Components interact through their inputs, outputs and exported events 38

39 Model of a node x Consumed energy f Power consumption S Group of nodes 39

40 Validation Results Need powerful nodes in group 1. Group 1 suffers from high load and backoff time. Group 4 dies at the same time. 40

41 Conclusion Sensor nodes are aimed to be left without maintenance. Verification is needed for reliability. Power is a detrimental concern in sensor world. Power analysis is needed for the life time of the node. Network power analysis is needed for the life time of the network. Modeling and Analysis are based on Hybrid Automata Verification and Power analysis with HyTech. Network power analysis with SHIFT. 41

42 End 42

Embedded Hybrid Systems

Embedded Hybrid Systems WORKSHOP ON HYBRID AND EMBEDDED SYSTEMS Embedded Hybrid Systems Prof. T. John Koo Embedded Computing Systems Laboratory Institute for Software Integrated Systems Department of Electrical Engineering and

More information

Verification and Power Analysis of an Event-Based System (TinyOS) and Sensor Network with Hybrid Automata

Verification and Power Analysis of an Event-Based System (TinyOS) and Sensor Network with Hybrid Automata Verification and Power Analysis of an Event-Based System (TinyOS) and Sensor Network with Hybrid Automata Sinem Coleri & Mustafa Ergen Department of Electrical Engineering and Computer Science, University

More information

System Architecture Directions for Networked Sensors[1]

System Architecture Directions for Networked Sensors[1] System Architecture Directions for Networked Sensors[1] Secure Sensor Networks Seminar presentation Eric Anderson System Architecture Directions for Networked Sensors[1] p. 1 Outline Sensor Network Characteristics

More information

Lecture 9: Reachability

Lecture 9: Reachability Lecture 9: Reachability Outline of Lecture Reachability General Transition Systems Algorithms for Reachability Safety through Reachability Backward Reachability Algorithm Given hybrid automaton H : set

More information

Sensors Network Simulators

Sensors Network Simulators Sensors Network Simulators Sensing Networking Qing Fang 10/14/05 Computation This Talk Not on how to run various network simulators Instead What differentiates various simulators Brief structures of the

More information

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu Integrating Concurrency Control and Energy Management in Device Drivers Chenyang Lu Overview Ø Concurrency Control: q Concurrency of I/O operations alone, not of threads in general q Synchronous vs. Asynchronous

More information

Model Checking for Hybrid Systems

Model Checking for Hybrid Systems Model Checking for Hybrid Systems Bruce H. Krogh Carnegie Mellon University Hybrid Dynamic Systems Models Dynamic systems with both continuous & discrete state variables Continuous-State Systems differential

More information

Integrating Concurrency Control and Energy Management in Device Drivers

Integrating Concurrency Control and Energy Management in Device Drivers Integrating Concurrency Control and Energy Management in Device Drivers Kevin Klues, Vlado Handziski, Chenyang Lu, Adam Wolisz, David Culler, David Gay, and Philip Levis Overview Concurrency Control: Concurrency

More information

Automatic synthesis of switching controllers for linear hybrid systems: Reachability control

Automatic synthesis of switching controllers for linear hybrid systems: Reachability control Automatic synthesis of switching controllers for linear hybrid systems: Reachability control Massimo Benerecetti and Marco Faella Università di Napoli Federico II, Italy Abstract. We consider the problem

More information

Interfacing Java-DSP with Sensor Motes

Interfacing Java-DSP with Sensor Motes Interfacing Java-DSP with Sensor Motes by H. M. Kwon, V. Berisha and A. Spanias Ira A. Fulton School of Engineering, Department of Electrical Engineering, MIDL Lab Arizona State University, Tempe, AZ 85287-5706,

More information

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 A Holistic Approach in the Development and Deployment of WSN-based

More information

Reasoning about Timed Systems Using Boolean Methods

Reasoning about Timed Systems Using Boolean Methods Reasoning about Timed Systems Using Boolean Methods Sanjit A. Seshia EECS, UC Berkeley Joint work with Randal E. Bryant (CMU) Kenneth S. Stevens (Intel, now U. Utah) Timed System A system whose correctness

More information

Supervisory Control Synthesis the Focus in Model-Based Systems Engineering

Supervisory Control Synthesis the Focus in Model-Based Systems Engineering Supervisory Control Synthesis the Focus in Model-Based Systems Engineering Jos Baeten and Asia van de Mortel-Fronczak Systems Engineering Group Department of Mechanical Engineering November 23, 2011 What

More information

Model-based Analysis of Event-driven Distributed Real-time Embedded Systems

Model-based Analysis of Event-driven Distributed Real-time Embedded Systems Model-based Analysis of Event-driven Distributed Real-time Embedded Systems Gabor Madl Committee Chancellor s Professor Nikil Dutt (Chair) Professor Tony Givargis Professor Ian Harris University of California,

More information

The Montana Toolset: OSATE Plugins for Analysis and Code Generation

The Montana Toolset: OSATE Plugins for Analysis and Code Generation Fremont Associates Process Project QA The Montana Toolset: OSATE Plugins for Analysis and Code Generation Oleg Sokolsky University of Pennsylvania AADL Workshop 005 Paris, France October 17-18, 18, 005

More information

By: Chaitanya Settaluri Devendra Kalia

By: Chaitanya Settaluri Devendra Kalia By: Chaitanya Settaluri Devendra Kalia What is an embedded system? An embedded system Uses a controller to perform some function Is not perceived as a computer Software is used for features and flexibility

More information

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA Intel Research mote Ralph Kling Intel Corporation Research Santa Clara, CA Overview Intel mote project goals Project status and direction Intel mote hardware Intel mote software Summary and outlook Intel

More information

Using Hybrid Automata for Early Spacecraft Design Evaluation

Using Hybrid Automata for Early Spacecraft Design Evaluation Seminar Operating Systems: Winter Semester 18/19 Using Hybrid Automata for Early Spacecraft Design Evaluation Jafar Akhundov Motivation Motivation: Spacecraft Modelling Gaia - mission to chart a 3d-map

More information

Sensors as Software. TinyOS. TinyOS. Dario Rossi Motivation

Sensors as Software. TinyOS. TinyOS. Dario Rossi Motivation Sensors as Software Dario Rossi dario.rossi@polito.it Motivation Sensor networks Radically new computing environments Rapidly evolving hardware technology The key missing technology is system software

More information

nesc Prof. Chenyang Lu How should network msg be handled? Too much memory for buffering and threads

nesc Prof. Chenyang Lu How should network msg be handled? Too much memory for buffering and threads nesc Prof. Chenyang Lu CSE 521S 1 How should network msg be handled? Socket/TCP/IP? Too much memory for buffering and threads Data buffered in network stack until application threads read it Application

More information

COMPLEX EMBEDDED SYSTEMS

COMPLEX EMBEDDED SYSTEMS COMPLEX EMBEDDED SYSTEMS Embedded System Design and Architectures Summer Semester 2012 System and Software Engineering Prof. Dr.-Ing. Armin Zimmermann Contents System Design Phases Architecture of Embedded

More information

Specification and Analysis of Real-Time Systems Using Real-Time Maude

Specification and Analysis of Real-Time Systems Using Real-Time Maude Specification and Analysis of Real-Time Systems Using Real-Time Maude Peter Csaba Ölveczky1,2 and José Meseguer 1 1 Department of Computer Science, University of Illinois at Urbana-Champaign 2 Department

More information

Hybrid System Modeling: Operational Semantics Issues

Hybrid System Modeling: Operational Semantics Issues Hybrid System Modeling: Operational Semantics Issues Edward A. Lee Professor UC Berkeley OMG Technical Meeting Feb. 4, 2004 Anaheim, CA, USA Special thanks to Jie Liu, Xiaojun Liu, Steve Neuendorffer,

More information

EL6483: Basic Concepts of Embedded System ModelingSpring and Hardware-In-The-Loo

EL6483: Basic Concepts of Embedded System ModelingSpring and Hardware-In-The-Loo : Basic Concepts of Embedded System Modeling and Hardware-In-The-Loop Simulation Spring 2016 : Basic Concepts of Embedded System ModelingSpring and Hardware-In-The-Loo 2016 1 / 26 Overall system : Basic

More information

Heterogeneous Modeling: Hybrid Systems

Heterogeneous Modeling: Hybrid Systems Heterogeneous Modeling: Hybrid Systems Hybrid Models Automotive Powertrain Languages and Verification Problems Simulink and StateFlow CheckMate Charon Masaccio Motivation Hybrid Systems are becoming a

More information

Advanced Tool Architectures. Edited and Presented by Edward A. Lee, Co-PI UC Berkeley. Tool Projects. Chess Review May 10, 2004 Berkeley, CA

Advanced Tool Architectures. Edited and Presented by Edward A. Lee, Co-PI UC Berkeley. Tool Projects. Chess Review May 10, 2004 Berkeley, CA Advanced Tool Architectures Edited and Presented by Edward A. Lee, Co-PI UC Berkeley Chess Review May 10, 2004 Berkeley, CA Tool Projects Concurrent model-based design Giotto (Henzinger) E machine & S

More information

Modelling and verification of cyber-physical system

Modelling and verification of cyber-physical system Modelling and verification of cyber-physical system Michal Pluska, David Sinclair LERO @ DCU Dublin City University School of Computing Dublin 9, Ireland michal.pluska@computing.dcu.ie Abstract * Embedded

More information

TinyOS. Lecture Overview. UC Berkeley Family of Motes. Mica2 and Mica2Dot. MTS300CA Sensor Board. Programming Board (MIB510) 1.

TinyOS. Lecture Overview. UC Berkeley Family of Motes. Mica2 and Mica2Dot. MTS300CA Sensor Board. Programming Board (MIB510) 1. Lecture Overview TinyOS Computer Network Programming Wenyuan Xu 1 2 UC Berkeley Family of Motes Mica2 and Mica2Dot ATmega128 CPU Self-programming 128KB Instruction EEPROM 4KB Data EEPROM Chipcon CC1000

More information

Integrated Design and Analysis Tools for Software Based Control Systems

Integrated Design and Analysis Tools for Software Based Control Systems Integrated Design and Analysis Tools for Software Based Control Systems Principal Investigator: Tom Henzinger Co-Principal Investigator: Edward A. Lee Co-Principal Investigator: Shankar Sastry Program

More information

Verification of Infinite-State Dynamic Systems Using Approximate Quotient Transition Systems

Verification of Infinite-State Dynamic Systems Using Approximate Quotient Transition Systems IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 46, NO 9, SEPTEMBER 2001 1401 Verification of Infinite-State Dynamic Systems Using Approximate Quotient Transition Systems Alongkrit Chutinan and Bruce H Krogh,

More information

Energy consumption in embedded systems; abstractions for software models, programming languages and verification methods

Energy consumption in embedded systems; abstractions for software models, programming languages and verification methods Energy consumption in embedded systems; abstractions for software models, programming languages and verification methods Florence Maraninchi orcid.org/0000-0003-0783-9178 thanks to M. Moy, L. Mounier,

More information

Embedded Software Engineering

Embedded Software Engineering Embedded Software Engineering 3 Unit Course, Spring 2002 EECS Department, UC Berkeley Christoph Kirsch www.eecs.berkeley.edu/~fresco/giotto/course-2002 It s significant $4 billion development effort >

More information

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

Hierarchical Modeling and Analysis of Embedded Systems

Hierarchical Modeling and Analysis of Embedded Systems University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 1-1-2003 Hierarchical Modeling and Analysis of Embedded Systems Rajeev Alur University

More information

Modal Models in Ptolemy

Modal Models in Ptolemy Modal Models in Ptolemy Edward A. Lee Stavros Tripakis UC Berkeley Workshop on Equation-Based Object-Oriented Modeling Languages and Tools 3rd International Workshop on Equation-Based Object-Oriented Modeling

More information

Decoupling Among Design Concerns

Decoupling Among Design Concerns Decoupling Among Design Concerns Nicholas Kottenstette, Xenofon Koutsoukos, Janos Sztipanovits ISIS, Vanderbilt University Third International Workshop on Foundations and Applications of Component-based

More information

What are Embedded Systems? Lecture 1 Introduction to Embedded Systems & Software

What are Embedded Systems? Lecture 1 Introduction to Embedded Systems & Software What are Embedded Systems? 1 Lecture 1 Introduction to Embedded Systems & Software Roopa Rangaswami October 9, 2002 Embedded systems are computer systems that monitor, respond to, or control an external

More information

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Insup Lee 1, Oleg Sokolsky 1, Anna Philippou 2 1 RTG (Real-Time Systems Group) Department of

More information

Timed Automata with Asynchronous Processes: Schedulability and Decidability

Timed Automata with Asynchronous Processes: Schedulability and Decidability Timed Automata with Asynchronous Processes: Schedulability and Decidability Elena Fersman, Paul Pettersson and Wang Yi Uppsala University, Sweden Abstract. In this paper, we exend timed automata with asynchronous

More information

Lecture 2. Decidability and Verification

Lecture 2. Decidability and Verification Lecture 2. Decidability and Verification model temporal property Model Checker yes error-trace Advantages Automated formal verification, Effective debugging tool Moderate industrial success In-house groups:

More information

Hardware Design of Wireless Sensors

Hardware Design of Wireless Sensors 1 of 5 11/3/2008 10:46 AM MICA: The Commercialization of Microsensor Motes Miniaturization, integration, and customization make it possible to combine sensing, processing, and communications to produce

More information

Introduction to Electronic Design Automation. Model of Computation. Model of Computation. Model of Computation

Introduction to Electronic Design Automation. Model of Computation. Model of Computation. Model of Computation Introduction to Electronic Design Automation Model of Computation Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Spring 03 Model of Computation In system design,

More information

Editor. Analyser XML. Scheduler. generator. Code Generator Code. Scheduler. Analyser. Simulator. Controller Synthesizer.

Editor. Analyser XML. Scheduler. generator. Code Generator Code. Scheduler. Analyser. Simulator. Controller Synthesizer. TIMES - A Tool for Modelling and Implementation of Embedded Systems Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi? Uppsala University, Sweden Abstract. Times is a new modelling,

More information

Sensor Networks. Part 3: TinyOS. CATT Short Course, March 11, 2005 Mark Coates Mike Rabbat. Operating Systems 101

Sensor Networks. Part 3: TinyOS. CATT Short Course, March 11, 2005 Mark Coates Mike Rabbat. Operating Systems 101 Sensor Networks Part 3: TinyOS CATT Short Course, March 11, 2005 Mark Coates Mike Rabbat 1 Operating Systems 101 operating system (äp ǝr āt ing sis tǝm) n. 1 software that controls the operation of a computer

More information

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University Eugene Syriani Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science McGill University 1 OVERVIEW In the context In Theory: Timed Automata The language: Definitions and Semantics

More information

TOWARDS HARDWARE VERIFICATION

TOWARDS HARDWARE VERIFICATION TOWARDS HARDWARE VERIFICATION Aleš SMRČKA, Doctoral Degree Programme (2) Dept. of Intelligent systems, FIT, BUT E-mail: smrcka@fit.vutbr.cz Supervised by: Prof. Milan Češka, Dr. Tomáš Vojnar ABSTRACT This

More information

Formal Specification and Verification. Formal methods for rigorous specification and verification of correctness requirements have witnessed increased

Formal Specification and Verification. Formal methods for rigorous specification and verification of correctness requirements have witnessed increased Model-Based Design of Embedded Software Λ Rajeev Alur Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19103 Email: alur@cis.upenn.edu URL: www.cis.upenn.edu/~alur/

More information

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12 Model Checking mc Revision:.2 Model Checking for Infinite Systems mc 2 Revision:.2 check algorithmically temporal / sequential properties fixpoint algorithms with symbolic representations: systems are

More information

Optimised Embedded Distributed Controller for Automated Lighting Systems

Optimised Embedded Distributed Controller for Automated Lighting Systems Optimised Embedded Distributed Controller for Automated Lighting Systems Alie El-Din Mady, Menouer Boubekeur and Gregory Provan Prof. Gregory Provan Cork Complex Systems Lab Computer Science Department,

More information

System Architecture Directions for Networked Sensors. Jason Hill et. al. A Presentation by Dhyanesh Narayanan MS, CS (Systems)

System Architecture Directions for Networked Sensors. Jason Hill et. al. A Presentation by Dhyanesh Narayanan MS, CS (Systems) System Architecture Directions for Networked Sensors Jason Hill et. al. A Presentation by Dhyanesh Narayanan MS, CS (Systems) Sensor Networks Key Enablers Moore s s Law: More CPU Less Size Less Cost Systems

More information

AN ABSTRACTION TECHNIQUE FOR REAL-TIME VERIFICATION

AN ABSTRACTION TECHNIQUE FOR REAL-TIME VERIFICATION AN ABSTRACTION TECHNIQUE FOR REAL-TIME VERIFICATION Edmund M. Clarke, Flavio Lerda, Muralidhar Talupur Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {flerda,tmurali,emc}@cs.cmu.edu

More information

Hardware Support for a Wireless Sensor Network Virtual Machine

Hardware Support for a Wireless Sensor Network Virtual Machine Hardware Support for a Wireless Sensor Network Virtual Machine Hitoshi Oi The University of Aizu February 13, 2008 Mobilware 2008, Innsbruck, Austria Outline Introduction to the Wireless Sensor Network

More information

Real Time Software PROBLEM SETTING. Real Time Systems. Real Time Systems. Who is Who in Timed Systems. Real Time Systems

Real Time Software PROBLEM SETTING. Real Time Systems. Real Time Systems. Who is Who in Timed Systems. Real Time Systems Schedulability Analysis of Timed Systems with contributions from PROBLEM SETTING Tobias Amnell, Elena Fersma, John Håkansson, Pavel Kracal, Leonid Mokrushine, Christer Nordström, Paul Pettersson and Anders

More information

Flight Systems are Cyber-Physical Systems

Flight Systems are Cyber-Physical Systems Flight Systems are Cyber-Physical Systems Dr. Christopher Landauer Software Systems Analysis Department The Aerospace Corporation Computer Science Division / Software Engineering Subdivision 08 November

More information

plant OUTLINE The Same Goal: Reliable Controllers Who is Who in Real Time Systems

plant OUTLINE The Same Goal: Reliable Controllers Who is Who in Real Time Systems OUTLINE Introduction Lecture 1: Motivation, examples, problems to solve Modeling and Verication of Timed Systems Lecture 2: Timed automata, and timed automata in UAAL Lecture 3: Symbolic verification:

More information

Codesign Framework. Parts of this lecture are borrowed from lectures of Johan Lilius of TUCS and ASV/LL of UC Berkeley available in their web.

Codesign Framework. Parts of this lecture are borrowed from lectures of Johan Lilius of TUCS and ASV/LL of UC Berkeley available in their web. Codesign Framework Parts of this lecture are borrowed from lectures of Johan Lilius of TUCS and ASV/LL of UC Berkeley available in their web. Embedded Processor Types General Purpose Expensive, requires

More information

Overview of Timed Automata and UPPAAL

Overview of Timed Automata and UPPAAL Overview of Timed Automata and UPPAAL Table of Contents Timed Automata Introduction Example The Query Language UPPAAL Introduction Example Editor Simulator Verifier Conclusions 2 Introduction to Timed

More information

Verification of Behavior-Based Control Systems in their Physical Environment

Verification of Behavior-Based Control Systems in their Physical Environment Verification of Behavior-Based Control Systems in their Physical Environment Thorsten Ropertz, Prof. Dr. Karsten Berns Robotics Research Lab Department of Computer Science University of Kaiserslautern,

More information

The Embedded Systems Design Challenge. EPFL Verimag

The Embedded Systems Design Challenge. EPFL Verimag The Embedded Systems Design Challenge Tom Henzinger Joseph Sifakis EPFL Verimag Formal Methods: A Tale of Two Cultures Engineering Computer Science Differential Equations Linear Algebra Probability Theory

More information

Sensor Networks. Dr. Sumi Helal & Jeff King CEN 5531

Sensor Networks. Dr. Sumi Helal & Jeff King CEN 5531 Sensor Networks CEN 5531 Slides adopted from presentations by Kirill Mechitov, David Culler, Joseph Polastre, Robert Szewczyk, Cory Sharp. Dr. Sumi Helal & Jeff King Computer & Information Science & Engineering

More information

Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols

Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols Lee Pike (Presenting), Galois, Inc. leepike@galois.com Geoffrey M. Brown, Indiana University geobrown@cs.indiana.edu

More information

Fault Detection of Reachability Testing with Game Theoretic Approach

Fault Detection of Reachability Testing with Game Theoretic Approach Fault Detection of Reachability Testing with Game Theoretic Approach S. Preetha Dr.M. Punithavalli Research Scholar, Karpagam University, Coimbatore. Director, Sri Ramakrishna Engineering College, Coimbatore.

More information

lecture 22 Input / Output (I/O) 4

lecture 22 Input / Output (I/O) 4 lecture 22 Input / Output (I/O) 4 - asynchronous bus, handshaking - serial bus Mon. April 4, 2016 "synchronous" bus = clock based (system bus clock is slower than CPU clock) "asynchronous" bus = not clock

More information

Implementing Scheduling Algorithms. Real-Time and Embedded Systems (M) Lecture 9

Implementing Scheduling Algorithms. Real-Time and Embedded Systems (M) Lecture 9 Implementing Scheduling Algorithms Real-Time and Embedded Systems (M) Lecture 9 Lecture Outline Implementing real time systems Key concepts and constraints System architectures: Cyclic executive Microkernel

More information

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis (abridged version of DAC slides) Sanjit A. Seshia Associate Professor EECS Department UC Berkeley Design Automation

More information

Translation of Modelica Code into Hybrid Automata

Translation of Modelica Code into Hybrid Automata Research Project Madhumitha Hariharan Translation of Modelica Code into Hybrid Automata December 15, 2016 supervised by: Prof. Dr. Sibylle Schupp Mr. Timo Kamph Hamburg University of Technology (TUHH)

More information

NPE-300 and NPE-400 Overview

NPE-300 and NPE-400 Overview CHAPTER 3 This chapter describes the network processing engine (NPE) models NPE-300 and NPE-400 and contains the following sections: Supported Platforms, page 3-1 Software Requirements, page 3-1 NPE-300

More information

TinyOS. Jan S. Rellermeyer

TinyOS. Jan S. Rellermeyer TinyOS Jan S. Rellermeyer jrellermeyer@student.ethz.ch Overview Motivation Hardware TinyOS Architecture Component Based Programming nesc TinyOS Scheduling Tiny Active Messaging TinyOS Multi Hop Routing

More information

Outline. SLD challenges Platform Based Design (PBD) Leveraging state of the art CAD Metropolis. Case study: Wireless Sensor Network

Outline. SLD challenges Platform Based Design (PBD) Leveraging state of the art CAD Metropolis. Case study: Wireless Sensor Network By Alberto Puggelli Outline SLD challenges Platform Based Design (PBD) Case study: Wireless Sensor Network Leveraging state of the art CAD Metropolis Case study: JPEG Encoder SLD Challenge Establish a

More information

Cyber Physical System Verification with SAL

Cyber Physical System Verification with SAL Cyber Physical System Verification with July 22, 2013 Cyber Physical System Verification with Outline 1 2 3 4 5 Cyber Physical System Verification with Table of Contents 1 2 3 4 5 Cyber Physical System

More information

Model-Based Testing and Monitoring for Hybrid Embedded Systems

Model-Based Testing and Monitoring for Hybrid Embedded Systems Department of Computer & Information Science Departmental Papers (CIS) University of Pennsylvania Year 24 Model-Based Testing and Monitoring for Hybrid Embedded Systems Li Tan Jesung Kim Oleg Sokolsky

More information

Embedded Systems: Hardware Components (part II) Todor Stefanov

Embedded Systems: Hardware Components (part II) Todor Stefanov Embedded Systems: Hardware Components (part II) Todor Stefanov Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded

More information

Technology Perspective

Technology Perspective Wireless Embedded Systems and Networking Foundations of IP-based Ubiquitous Sensor Networks Operating Systems for Communication-Centric Devices TinyOS-based IP-WSNs David E. Culler University of California,

More information

Part I: Introduction to Wireless Sensor Networks. Xenofon Fafoutis

Part I: Introduction to Wireless Sensor Networks. Xenofon Fafoutis Part I: Introduction to Wireless Sensor Networks Xenofon Fafoutis Sensors 2 DTU Informatics, Technical University of Denmark Wireless Sensor Networks Sink Sensor Sensed Area 3 DTU Informatics,

More information

TIMES A Tool for Modelling and Implementation of Embedded Systems

TIMES A Tool for Modelling and Implementation of Embedded Systems TIMES A Tool for Modelling and Implementation of Embedded Systems Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi Uppsala University, Sweden. {tobiasa,elenaf,leom,paupet,yi}@docs.uu.se.

More information

Kronos: A Model-Checking Tool for Real-Time Systems*

Kronos: A Model-Checking Tool for Real-Time Systems* Kronos: A Model-Checking Tool for Real-Time Systems* Marius Bozga ], Conrado Daws 1, Oded Maler 1, Alfredo Olivero 2, Stavros Tripakis 1 and Sergio Yovine 3 ~ 1 VERIMAG, Centre ]~quation, 2 avenue de Vignate,

More information

Lecture 9 Extensions and Open Problems

Lecture 9 Extensions and Open Problems Lecture 9 Extensions and Open Problems Richard M. Murray Nok Wongpiromsarn Ufuk Topcu California Institute of Technology EECI, 18 May 2012 Outline: Review key concepts from the course Discussion open issues,

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK VI SEMESTER EE6602 EMBEDDED SYSTEMS Regulation 2013 Academic Year

More information

Electrical Engineering and Computer Sciences (EECS)

Electrical Engineering and Computer Sciences (EECS) University of California, Berkeley 1 Electrical Engineering and Computer Sciences (EECS) Courses EECS 47D Completion of work in Electrical Engineering 16A 1-3 Units Terms offered: Prior to 2007 This course

More information

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling ECE 587 Hardware/Software Co-Design Spring 2018 1/20 ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling Professor Jia Wang Department of Electrical and Computer Engineering

More information

Course Development. Recall the Goal. Edited and Presented by Edward A. Lee, Co-PI UC Berkeley. Chess Review November 18, 2004 Berkeley, CA

Course Development. Recall the Goal. Edited and Presented by Edward A. Lee, Co-PI UC Berkeley. Chess Review November 18, 2004 Berkeley, CA Course Development Edited and Presented by Edward A. Lee, Co-PI UC Berkeley Chess Review November 18, 2004 Berkeley, CA Recall the Goal To create a integrated computational systems theory and systems design

More information

An Introduction to UPPAAL. Purandar Bhaduri Dept. of CSE IIT Guwahati

An Introduction to UPPAAL. Purandar Bhaduri Dept. of CSE IIT Guwahati An Introduction to UPPAAL Purandar Bhaduri Dept. of CSE IIT Guwahati Email: pbhaduri@iitg.ernet.in OUTLINE Introduction Timed Automata UPPAAL Example: Train Gate Example: Task Scheduling Introduction UPPAAL:

More information

DISCRETE-event dynamic systems (DEDS) are dynamic

DISCRETE-event dynamic systems (DEDS) are dynamic IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999 175 The Supervised Control of Discrete-Event Dynamic Systems François Charbonnier, Hassane Alla, and René David Abstract The supervisory

More information

Model Checking with Automata An Overview

Model Checking with Automata An Overview Model Checking with Automata An Overview Vanessa D Carson Control and Dynamical Systems, Caltech Doyle Group Presentation, 05/02/2008 VC 1 Contents Motivation Overview Software Verification Techniques

More information

Model-Integrated Computing for Composition of Complex QoS Applications

Model-Integrated Computing for Composition of Complex QoS Applications Institute for Software Integrated Systems Vanderbilt University Model-Integrated Computing for Composition of Complex QoS Applications Sandeep Neema, Ted Bapty, Jeff Gray, Aniruddha Gokhale Institute for

More information

Self-Organization in Autonomous Sensor/Actuator Networks [SelfOrg]

Self-Organization in Autonomous Sensor/Actuator Networks [SelfOrg] Self-Organization in Autonomous Sensor/Actuator Networks [SelfOrg] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Modeling and Simulation of System-on. Platorms. Politecnico di Milano. Donatella Sciuto. Piazza Leonardo da Vinci 32, 20131, Milano

Modeling and Simulation of System-on. Platorms. Politecnico di Milano. Donatella Sciuto. Piazza Leonardo da Vinci 32, 20131, Milano Modeling and Simulation of System-on on-chip Platorms Donatella Sciuto 10/01/2007 Politecnico di Milano Dipartimento di Elettronica e Informazione Piazza Leonardo da Vinci 32, 20131, Milano Key SoC Market

More information

Sérgio Campos, Edmund Clarke

Sérgio Campos, Edmund Clarke Sérgio Campos, Edmund 1 / 23 Model checking is a technique that relies on building a finite model of a system and checking that a desired property holds in that model. The check is performed by an exhaustive

More information

Operating Systems (2INC0) 2018/19. Introduction (01) Dr. Tanir Ozcelebi. Courtesy of Prof. Dr. Johan Lukkien. System Architecture and Networking Group

Operating Systems (2INC0) 2018/19. Introduction (01) Dr. Tanir Ozcelebi. Courtesy of Prof. Dr. Johan Lukkien. System Architecture and Networking Group Operating Systems (2INC0) 20/19 Introduction (01) Dr. Courtesy of Prof. Dr. Johan Lukkien System Architecture and Networking Group Course Overview Introduction to operating systems Processes, threads and

More information

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

A Process Model suitable for defining and programming MpSoCs

A Process Model suitable for defining and programming MpSoCs A Process Model suitable for defining and programming MpSoCs MpSoC-Workshop at Rheinfels, 29-30.6.2010 F. Mayer-Lindenberg, TU Hamburg-Harburg 1. Motivation 2. The Process Model 3. Mapping to MpSoC 4.

More information

C8051F700 Serial Peripheral Interface (SPI) Overview

C8051F700 Serial Peripheral Interface (SPI) Overview C8051F700 Serial Peripheral Interface (SPI) Overview Agenda C8051F700 block diagram C8051F700 device features SPI operation overview SPI module overview Where to learn more 2 Introducing The C8051F700

More information

Timed Automata From Theory to Implementation

Timed Automata From Theory to Implementation Timed Automata From Theory to Implementation Patricia Bouyer LSV CNRS & ENS de Cachan France Chennai january 2003 Timed Automata From Theory to Implementation p.1 Roadmap Timed automata, decidability issues

More information

Simulation and Verification of Timed and Hybrid Systems

Simulation and Verification of Timed and Hybrid Systems Simulation and Verification of Timed and Hybrid Systems Bert van Beek and Koos Rooda Systems Engineering Group Eindhoven University of Technology ISC 2007 Delft 11 June 2007 Bert van Beek and Koos Rooda

More information

Partitioning Methods. Outline

Partitioning Methods. Outline Partitioning Methods 1 Outline Introduction to Hardware-Software Codesign Models, Architectures, Languages Partitioning Methods Design Quality Estimation Specification Refinement Co-synthesis Techniques

More information

Rapidly Developing Embedded Systems Using Configurable Processors

Rapidly Developing Embedded Systems Using Configurable Processors Class 413 Rapidly Developing Embedded Systems Using Configurable Processors Steven Knapp (sknapp@triscend.com) (Booth 160) Triscend Corporation www.triscend.com Copyright 1998-99, Triscend Corporation.

More information

II. NETWORK MODEL The network consists of two types of nodes:

II. NETWORK MODEL The network consists of two types of nodes: Initialization and Routing Optimization for Ad Hoc Underwater Acoustic Networks Ethem M. Sözer, Milica Stojanovic & John G. Proakis Northeastern University, Communications and Digital Signal Processing

More information

Piecewise Quadratic Optimal Control

Piecewise Quadratic Optimal Control EECE 571M/491M, Spring 2007 Lecture 15 Piecewise Quadratic Optimal Control Meeko Oishi, Ph.D. Electrical and Computer Engineering University of British Columbia, BC http://www.ece.ubc.ca/~elec571m.html

More information

Universal Serial Bus Host Interface on an FPGA

Universal Serial Bus Host Interface on an FPGA Universal Serial Bus Host Interface on an FPGA Application Note For many years, designers have yearned for a general-purpose, high-performance serial communication protocol. The RS-232 and its derivatives

More information