HPC on Sun Today and Tomorrow VIRACOCHA: An Efficient Parallelization Framework Processing in Virtual Environments. Andreas Gerndt

Size: px
Start display at page:

Download "HPC on Sun Today and Tomorrow VIRACOCHA: An Efficient Parallelization Framework Processing in Virtual Environments. Andreas Gerndt"

Transcription

1 HPC on Sun Today and Tomorrow VIRACOCHA: An Efficient Parallelization Framework for Large-Scale CFD Post-Processing Processing in Virtual Environments Andreas Gerndt Aachen University (RWTH), Germany Center of Computing and Communication Virtual Reality Group Members of Virtual Reality Center Aachen (VRCA)

2 Outline CFD Post-Processing and Virtual Reality Parallelization Framework Viracocha Data Management System Streaming and Multi-Resolution Conclusion and Future Work

3 CFD Post-Processing Processing and Virtual Reality

4 CFD Post-Processing and Virtual Reality Large-Scale Datasets Data Set Year Grid Points Time Steps Size Tapered Cylinder MB McDonnell Douglas F/A MB Descending Delta Wing MB Bell-Boing V22 Tilrotor MB Bell-Boing V22 Tilrotor MB K. Reinders, Feature-Based Visualization of Time-Dependent Data, PhD Thesis, 2001

5 CFD Post-Processing and Virtual Reality Interaction Criteria Virtual Reality Real-Time Interaction Cannot handle large datasets simultaneously Minimum Frame Rate An application is not allowed to work with a frame rate lower than a threshold Bryson: 10 Hz Kreylos: 30 Hz Maximum System Response Time The response time of a Virtual Reality system after a user input was applied Bryson: 100 ms Kreylos: 100 ms

6 Parallelization Approaches

7 Parallelization Viracocha ViSTA FlowLib Viracocha VTK VTK Extraction Manager Scheduler Worker Worker TCP/IP Message Passing Visualization / VR (Client) Relieved from Extraction Requests via TCP/IP Preparation of Received Data Rendering Supercomputer (Server) Scheduler Receives Requests Workers Compute in Parallel Message Passing Algorithmic Layer Makes Use of VTK

8 Parallelization Viracocha ViSTA FlowLib Viracocha VTK VTK Extraction Manager Scheduler Worker Worker TCP/IP Message Passing System Design Constrains Platform Independence Arbitrary Main Memory Systems SMPs as well as Distributed Memory Systems CFD Demands Large Scale Datasets Unsteady Flow Fields

9 Parallelization Visualization Pipeline Input: Raw Datasets Filtering Produces More Comprehensive Data Converting Raw Datasets Appending / Cutting Data Resampling Data Extraction Connected in Series Multiple Input Mapping Creates Visualization Objects Rendering Dataset Filtering Extracted Data Mapping Visual Primitive Rendering Image Data

10 Parallelization Visualization Pipeline In General, Heavy Work at the Beginning of the Pipeline

11 Parallelization Data Parallelization Determine heavy work and duplicate these pipeline sections Split data and distribute them to several processes Combine partial results and execute remaining steps

12 Viracocha Data Management System

13 Viracocha Data Management System Data Data Data VDMS ViSTA FlowLib Extraction Manager Server Scheduler Proxy Viracocha Worker Proxy Worker TCP/IP Message Passing VDMS Server Part of the Scheduler, Non-blocking Statistical Unit / Name Service Can provide VisHost with data VDMS Status Information Already computed / cached data Upload additional command data Central Unit to coordinate VDMS VDMS Proxies Interface between Worker and VDMS If Worker needs data, it sends a request to the Proxy Proxy is a Black Box Usage of Proxy is optional Loading Strategies controlled by Server

14 Viracocha Data Management System Data Data Data VDMS ViSTA FlowLib Extraction Manager Server Scheduler Proxy Viracocha Worker Proxy Worker TCP/IP Message Passing Main Approaches Caching (Primary / Secondary) Once loaded, used several Times Prefetching Load probable data in advanced Optimized Load Strategies Data Access VDMS can handle arbitrary data Has no specific Information about actually used data types Algorithm Layer has to implement an optimized DataAccess-Object Methods of its interface are invoked by the VDMS

15 Viracocha Data Management System Caching Replacement Strategies Least Recently Used (LRU) Least Frequently Used (LFU) Frequency Based Replacement (FBR) >>> PFBR Set a Priority Value as Ref. Counter for new Elements At Start-up: High Priority Runtime: Decreasing Priority Shows Better Behavior with Activated Prefetching SIZE Remove Largest Block RAND Upper Bound for Others FBR MRU New Partition Middle Partition Old Partition LRU 3 Partitions with fixed lengths Put the referenced element at the beginning (LRU) Reference Counter If it was in New Partition: do not increase Ref. Counter Prevents fast increasing counters of frequently accessed elements Else: increase counter by one Replacement Remove Element with lowest Ref. Counter in Old Partition

16 Viracocha Data Management System Prefetching Code Prefetching Non-blocking Fetch-Command System Prefetching Automatic Prefetching controlled by the VDMS Sequential Strategies One Block Look-ahead (OBL) Use (b), Prefetch (b+1) Prefetch on Miss Prefetch (b+1) if (b) not already in Cache Markov Prefetching >>> Important for Particle Tracing Markov + OBL Already Efficient in Learning Phase Markov a 1/3 1/3 2/3 3/3 2/3 c b Probability Graph, 1. Order I am coming from (a) It is highly probable (67%) that the next block is (b) Prefetch (b) The next block is actually (b) The new probability from (a) to (b) is now 75% Higher Order possible I am coming from (c,a) a 1/4 1/3 3/4 3/3 2/3 c b

17 Viracocha Data Management System Loading Strategies Load Local Condition: File on File System or in Sec. Cache Calls LoadData() of DataAccess Object Application Developer Dependent Load Manual Condition: as for Load Local Load as Byte Sequence DataAccess-Object has to interpret Byte Sequence Assesses Loading Cost Transfer Data If available, get data from neighbor caches Else, from File System Collective Load All Workers in Group load the same Data Block Platform Dependent ROMIO

18 Streaming and Multiresolution

19 Streaming and Multiresolution Decoupling VisHost and WorkHost Improvement of Interactivity within Virtual Environments However: Extraction Still Needs Time Solution: Data Streaming Motivation: Progressive JPG >>> Immediate Feedback / Impression Exploit First Approximate Results Data Exploration can be started early Possibly abort running Computation and restart it with new Parameters Problem Additional Communication and Computation Time Appropriate CFD-Algorithms Progressive Approaches hardly available Source:

20 Streaming and Multiresolution Block-wise Streaming Fig.: Vortex Extraction on a Propfan Multi-Block Dataset

Page 1. Multilevel Memories (Improving performance using a little cash )

Page 1. Multilevel Memories (Improving performance using a little cash ) Page 1 Multilevel Memories (Improving performance using a little cash ) 1 Page 2 CPU-Memory Bottleneck CPU Memory Performance of high-speed computers is usually limited by memory bandwidth & latency Latency

More information

Operating Systems. Operating Systems Sina Meraji U of T

Operating Systems. Operating Systems Sina Meraji U of T Operating Systems Operating Systems Sina Meraji U of T Recap Last time we looked at memory management techniques Fixed partitioning Dynamic partitioning Paging Example Address Translation Suppose addresses

More information

Improving System. Performance: Caches

Improving System. Performance: Caches Improving System Performance: Caches December 04 CSC201 Section 002 Fall, 2000 A Motivating Example Application: making a (mechanical) clock dozens of tools and pages of instructions, hundreds of parts

More information

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

I/O Management and Disk Scheduling. Chapter 11

I/O Management and Disk Scheduling. Chapter 11 I/O Management and Disk Scheduling Chapter 11 Categories of I/O Devices Human readable used to communicate with the user video display terminals keyboard mouse printer Categories of I/O Devices Machine

More information

Cache Controller with Enhanced Features using Verilog HDL

Cache Controller with Enhanced Features using Verilog HDL Cache Controller with Enhanced Features using Verilog HDL Prof. V. B. Baru 1, Sweety Pinjani 2 Assistant Professor, Dept. of ECE, Sinhgad College of Engineering, Vadgaon (BK), Pune, India 1 PG Student

More information

Chapter 8 Virtual Memory

Chapter 8 Virtual Memory Operating Systems: Internals and Design Principles Chapter 8 Virtual Memory Seventh Edition William Stallings Operating Systems: Internals and Design Principles You re gonna need a bigger boat. Steven

More information

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS.

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS. Paging 11/10/16 Recall from Tuesday Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS Process 3 Process 3 OS: Place Process 3 Process 1 Process

More information

CACHE MEMORIES ADVANCED COMPUTER ARCHITECTURES. Slides by: Pedro Tomás

CACHE MEMORIES ADVANCED COMPUTER ARCHITECTURES. Slides by: Pedro Tomás CACHE MEMORIES Slides by: Pedro Tomás Additional reading: Computer Architecture: A Quantitative Approach, 5th edition, Chapter 2 and Appendix B, John L. Hennessy and David A. Patterson, Morgan Kaufmann,

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT 5 LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS xxi

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT 5 LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS xxi ix TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT 5 LIST OF TABLES xv LIST OF FIGURES xviii LIST OF SYMBOLS AND ABBREVIATIONS xxi 1 INTRODUCTION 1 1.1 INTRODUCTION 1 1.2 WEB CACHING 2 1.2.1 Classification

More information

Chapter 7: Large and Fast: Exploiting Memory Hierarchy

Chapter 7: Large and Fast: Exploiting Memory Hierarchy Chapter 7: Large and Fast: Exploiting Memory Hierarchy Basic Memory Requirements Users/Programmers Demand: Large computer memory ery Fast access memory Technology Limitations Large Computer memory relatively

More information

LECTURE 11. Memory Hierarchy

LECTURE 11. Memory Hierarchy LECTURE 11 Memory Hierarchy MEMORY HIERARCHY When it comes to memory, there are two universally desirable properties: Large Size: ideally, we want to never have to worry about running out of memory. Speed

More information

Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University

Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University Lecture 4: Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University http://eeclass.stanford.edu/ee282 Lecture 4-1 Announcements HW1 is out (handout and online) Due on 10/15

More information

Lecture 17: Memory Hierarchy: Cache Design

Lecture 17: Memory Hierarchy: Cache Design S 09 L17-1 18-447 Lecture 17: Memory Hierarchy: Cache Design James C. Hoe Dept of ECE, CMU March 24, 2009 Announcements: Project 3 is due Midterm 2 is coming Handouts: Practice Midterm 2 solutions The

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Ninth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Composite Metrics for System Throughput in HPC

Composite Metrics for System Throughput in HPC Composite Metrics for System Throughput in HPC John D. McCalpin, Ph.D. IBM Corporation Austin, TX SuperComputing 2003 Phoenix, AZ November 18, 2003 Overview The HPC Challenge Benchmark was announced last

More information

ECE519 Advanced Operating Systems

ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (8 th Week) (Advanced) Operating Systems 8. Virtual Memory 8. Outline Hardware and Control Structures Operating

More information

OPERATING SYSTEM. PREPARED BY : DHAVAL R. PATEL Page 1. Q.1 Explain Memory

OPERATING SYSTEM. PREPARED BY : DHAVAL R. PATEL Page 1. Q.1 Explain Memory Q.1 Explain Memory Data Storage in storage device like CD, HDD, DVD, Pen drive etc, is called memory. The device which storage data is called storage device. E.g. hard disk, floppy etc. There are two types

More information

idash: improved Dynamic Adaptive Streaming over HTTP using Scalable Video Coding

idash: improved Dynamic Adaptive Streaming over HTTP using Scalable Video Coding idash: improved Dynamic Adaptive Streaming over HTTP using Scalable Video Coding Yago Sánchez, Thomas Schierl, Cornelius Hellge, Thomas Wiegand - Fraunhofer HHI, Germany Dohy Hong - N2N Soft, France Danny

More information

Memory Management Outline. Operating Systems. Motivation. Paging Implementation. Accessing Invalid Pages. Performance of Demand Paging

Memory Management Outline. Operating Systems. Motivation. Paging Implementation. Accessing Invalid Pages. Performance of Demand Paging Memory Management Outline Operating Systems Processes (done) Memory Management Basic (done) Paging (done) Virtual memory Virtual Memory (Chapter.) Motivation Logical address space larger than physical

More information

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle Dynamic Fine Grain Scheduling of Pipeline Parallelism Presented by: Ram Manohar Oruganti and Michael TeWinkle Overview Introduction Motivation Scheduling Approaches GRAMPS scheduling method Evaluation

More information

Removing Belady s Anomaly from Caches with Prefetch Data

Removing Belady s Anomaly from Caches with Prefetch Data Removing Belady s Anomaly from Caches with Prefetch Data Elizabeth Varki University of New Hampshire varki@cs.unh.edu Abstract Belady s anomaly occurs when a small cache gets more hits than a larger cache,

More information

CFDC A Flash-aware Replacement Policy for Database Buffer Management

CFDC A Flash-aware Replacement Policy for Database Buffer Management CFDC A Flash-aware Replacement Policy for Database Buffer Management Yi Ou University of Kaiserslautern Germany Theo Härder University of Kaiserslautern Germany Peiquan Jin University of Science and Technology

More information

15-740/ Computer Architecture Lecture 12: Advanced Caching. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 12: Advanced Caching. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 12: Advanced Caching Prof. Onur Mutlu Carnegie Mellon University Announcements Chuck Thacker (Microsoft Research) Seminar Tomorrow RARE: Rethinking Architectural

More information

Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays

Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays Wagner T. Corrêa James T. Klosowski Cláudio T. Silva Princeton/AT&T IBM OHSU/AT&T EG PGV, Germany September 10, 2002 Goals Render

More information

HydraFS: a High-Throughput File System for the HYDRAstor Content-Addressable Storage System

HydraFS: a High-Throughput File System for the HYDRAstor Content-Addressable Storage System HydraFS: a High-Throughput File System for the HYDRAstor Content-Addressable Storage System Cristian Ungureanu, Benjamin Atkin, Akshat Aranya, Salil Gokhale, Steve Rago, Grzegorz Calkowski, Cezary Dubnicki,

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

Lecture-16 (Cache Replacement Policies) CS422-Spring

Lecture-16 (Cache Replacement Policies) CS422-Spring Lecture-16 (Cache Replacement Policies) CS422-Spring 2018 Biswa@CSE-IITK 1 2 4 8 16 32 64 128 From SPEC92 Miss rate: Still Applicable Today 0.14 0.12 0.1 0.08 0.06 0.04 1-way 2-way 4-way 8-way Capacity

More information

Efficient Prefetching with Hybrid Schemes and Use of Program Feedback to Adjust Prefetcher Aggressiveness

Efficient Prefetching with Hybrid Schemes and Use of Program Feedback to Adjust Prefetcher Aggressiveness Journal of Instruction-Level Parallelism 13 (11) 1-14 Submitted 3/1; published 1/11 Efficient Prefetching with Hybrid Schemes and Use of Program Feedback to Adjust Prefetcher Aggressiveness Santhosh Verma

More information

Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Highly-Associative Caches

Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Highly-Associative Caches Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging 6.823, L8--1 Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Highly-Associative

More information

Performance Tools for Technical Computing

Performance Tools for Technical Computing Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University Intel Software Conference 2010 April 13th, Barcelona, Spain Agenda o Motivation and Methodology

More information

Web Caching and Content Delivery

Web Caching and Content Delivery Web Caching and Content Delivery Caching for a Better Web Performance is a major concern in the Web Proxy caching is the most widely used method to improve Web performance Duplicate requests to the same

More information

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance 6.823, L11--1 Cache Performance and Memory Management: From Absolute Addresses to Demand Paging Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Cache Performance 6.823,

More information

CIT 668: System Architecture. Caching

CIT 668: System Architecture. Caching CIT 668: System Architecture Caching Topics 1. Cache Types 2. Web Caching 3. Replacement Algorithms 4. Distributed Caches 5. memcached A cache is a system component that stores data so that future requests

More information

CHAPTER 4 OPTIMIZATION OF WEB CACHING PERFORMANCE BY CLUSTERING-BASED PRE-FETCHING TECHNIQUE USING MODIFIED ART1 (MART1)

CHAPTER 4 OPTIMIZATION OF WEB CACHING PERFORMANCE BY CLUSTERING-BASED PRE-FETCHING TECHNIQUE USING MODIFIED ART1 (MART1) 71 CHAPTER 4 OPTIMIZATION OF WEB CACHING PERFORMANCE BY CLUSTERING-BASED PRE-FETCHING TECHNIQUE USING MODIFIED ART1 (MART1) 4.1 INTRODUCTION One of the prime research objectives of this thesis is to optimize

More information

EITF20: Computer Architecture Part4.1.1: Cache - 2

EITF20: Computer Architecture Part4.1.1: Cache - 2 EITF20: Computer Architecture Part4.1.1: Cache - 2 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Cache performance optimization Bandwidth increase Reduce hit time Reduce miss penalty Reduce miss

More information

Computer Science 432/563 Operating Systems The College of Saint Rose Spring Topic Notes: Memory Hierarchy

Computer Science 432/563 Operating Systems The College of Saint Rose Spring Topic Notes: Memory Hierarchy Computer Science 432/563 Operating Systems The College of Saint Rose Spring 2016 Topic Notes: Memory Hierarchy We will revisit a topic now that cuts across systems classes: memory hierarchies. We often

More information

GFS: The Google File System. Dr. Yingwu Zhu

GFS: The Google File System. Dr. Yingwu Zhu GFS: The Google File System Dr. Yingwu Zhu Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one big CPU More storage, CPU required than one PC can

More information

Unit 2 Buffer Pool Management

Unit 2 Buffer Pool Management Unit 2 Buffer Pool Management Based on: Pages 318-323, 541-542, and 586-587 of Ramakrishnan & Gehrke (text); Silberschatz, et. al. ( Operating System Concepts ); Other sources Original slides by Ed Knorr;

More information

Lecture 15: Cache Design (in Isolation) James C. Hoe Department of ECE Carnegie Mellon University

Lecture 15: Cache Design (in Isolation) James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 15: Cache Design (in Isolation) James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L15 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping recover from Spring

More information

ECE/CS 752 Final Project: The Best-Offset & Signature Path Prefetcher Implementation. Qisi Wang Hui-Shun Hung Chien-Fu Chen

ECE/CS 752 Final Project: The Best-Offset & Signature Path Prefetcher Implementation. Qisi Wang Hui-Shun Hung Chien-Fu Chen ECE/CS 752 Final Project: The Best-Offset & Signature Path Prefetcher Implementation Qisi Wang Hui-Shun Hung Chien-Fu Chen Outline Data Prefetching Exist Data Prefetcher Stride Data Prefetcher Offset Prefetcher

More information

Chapter 2: Memory Hierarchy Design Part 2

Chapter 2: Memory Hierarchy Design Part 2 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (4 th Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (4 th Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (4 th Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

EITF20: Computer Architecture Part 5.1.1: Virtual Memory

EITF20: Computer Architecture Part 5.1.1: Virtual Memory EITF20: Computer Architecture Part 5.1.1: Virtual Memory Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Cache optimization Virtual memory Case study AMD Opteron Summary 2 Memory hierarchy 3 Cache

More information

Physical characteristics (such as packaging, volatility, and erasability Organization.

Physical characteristics (such as packaging, volatility, and erasability Organization. CS 320 Ch 4 Cache Memory 1. The author list 8 classifications for memory systems; Location Capacity Unit of transfer Access method (there are four:sequential, Direct, Random, and Associative) Performance

More information

Unit 2 Buffer Pool Management

Unit 2 Buffer Pool Management Unit 2 Buffer Pool Management Based on: Sections 9.4, 9.4.1, 9.4.2 of Ramakrishnan & Gehrke (text); Silberschatz, et. al. ( Operating System Concepts ); Other sources Original slides by Ed Knorr; Updates

More information

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6.

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Cache Memories From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Today Cache memory organization and operation Performance impact of caches The memory mountain Rearranging

More information

SMD149 - Operating Systems - VM Management

SMD149 - Operating Systems - VM Management SMD149 - Operating Systems - VM Management Roland Parviainen November 17, 2005 1 / 35 Outline Overview Virtual memory management Fetch, placement and replacement strategies Placement strategies Paging,

More information

PAGE REPLACEMENT. Operating Systems 2015 Spring by Euiseong Seo

PAGE REPLACEMENT. Operating Systems 2015 Spring by Euiseong Seo PAGE REPLACEMENT Operating Systems 2015 Spring by Euiseong Seo Today s Topics What if the physical memory becomes full? Page replacement algorithms How to manage memory among competing processes? Advanced

More information

Lecture notes for CS Chapter 2, part 1 10/23/18

Lecture notes for CS Chapter 2, part 1 10/23/18 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

Virtual Memory. Virtual Memory

Virtual Memory. Virtual Memory Virtual Memory Virtual Memory Main memory is cache for secondary storage Secondary storage (disk) holds the complete virtual address space Only a portion of the virtual address space lives in the physical

More information

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner CPS104 Computer Organization and Programming Lecture 16: Virtual Memory Robert Wagner cps 104 VM.1 RW Fall 2000 Outline of Today s Lecture Virtual Memory. Paged virtual memory. Virtual to Physical translation:

More information

Reducing Hit Times. Critical Influence on cycle-time or CPI. small is always faster and can be put on chip

Reducing Hit Times. Critical Influence on cycle-time or CPI. small is always faster and can be put on chip Reducing Hit Times Critical Influence on cycle-time or CPI Keep L1 small and simple small is always faster and can be put on chip interesting compromise is to keep the tags on chip and the block data off

More information

Chapter 11. I/O Management and Disk Scheduling

Chapter 11. I/O Management and Disk Scheduling Operating System Chapter 11. I/O Management and Disk Scheduling Lynn Choi School of Electrical Engineering Categories of I/O Devices I/O devices can be grouped into 3 categories Human readable devices

More information

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has Swapping Active processes use more physical memory than system has Operating Systems I Address Binding can be fixed or relocatable at runtime Swap out P P Virtual Memory OS Backing Store (Swap Space) Main

More information

Simply Top Talkers Jeroen Massar, Andreas Kind and Marc Ph. Stoecklin

Simply Top Talkers Jeroen Massar, Andreas Kind and Marc Ph. Stoecklin IBM Research - Zurich Simply Top Talkers Jeroen Massar, Andreas Kind and Marc Ph. Stoecklin 2009 IBM Corporation Motivation and Outline Need to understand and correctly handle dominant aspects within the

More information

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg Computer Architecture and System Software Lecture 09: Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Midterm returned + solutions in class today SSD

More information

Switching Between Page Replacement Algorithms Based on Work Load During Runtime in Linux Kernel

Switching Between Page Replacement Algorithms Based on Work Load During Runtime in Linux Kernel San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-22-2017 Switching Between Page Replacement Algorithms Based on Work Load During Runtime in Linux

More information

Operating System Concepts

Operating System Concepts Chapter 9: Virtual-Memory Management 9.1 Silberschatz, Galvin and Gagne 2005 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

An Integration Approach of Data Mining with Web Cache Pre-Fetching

An Integration Approach of Data Mining with Web Cache Pre-Fetching An Integration Approach of Data Mining with Web Cache Pre-Fetching Yingjie Fu 1, Haohuan Fu 2, and Puion Au 2 1 Department of Computer Science City University of Hong Kong, Hong Kong SAR fuyingjie@tsinghua.org.cn

More information

Virtual Memory III. Jo, Heeseung

Virtual Memory III. Jo, Heeseung Virtual Memory III Jo, Heeseung Today's Topics What if the physical memory becomes full? Page replacement algorithms How to manage memory among competing processes? Advanced virtual memory techniques Shared

More information

Reducing Miss Penalty: Read Priority over Write on Miss. Improving Cache Performance. Non-blocking Caches to reduce stalls on misses

Reducing Miss Penalty: Read Priority over Write on Miss. Improving Cache Performance. Non-blocking Caches to reduce stalls on misses Improving Cache Performance 1. Reduce the miss rate, 2. Reduce the miss penalty, or 3. Reduce the time to hit in the. Reducing Miss Penalty: Read Priority over Write on Miss Write buffers may offer RAW

More information

Most common example today: wireless (cell) phones

Most common example today: wireless (cell) phones Virtual Memory Separate the concept of: address space (name) from physical memory address (location) Most common example today: wireless (cell) phones Phone number is your id or name Location varies as

More information

Chapter 4 File Systems. Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved

Chapter 4 File Systems. Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved Chapter 4 File Systems File Systems The best way to store information: Store all information in virtual memory address space Use ordinary memory read/write to access information Not feasible: no enough

More information

Fig 7.30 The Cache Mapping Function. Memory Fields and Address Translation

Fig 7.30 The Cache Mapping Function. Memory Fields and Address Translation 7-47 Chapter 7 Memory System Design Fig 7. The Mapping Function Example: KB MB CPU Word Block Main Address Mapping function The cache mapping function is responsible for all cache operations: Placement

More information

EECS 470. Lecture 15. Prefetching. Fall 2018 Jon Beaumont. History Table. Correlating Prediction Table

EECS 470. Lecture 15. Prefetching. Fall 2018 Jon Beaumont.   History Table. Correlating Prediction Table Lecture 15 History Table Correlating Prediction Table Prefetching Latest A0 A0,A1 A3 11 Fall 2018 Jon Beaumont A1 http://www.eecs.umich.edu/courses/eecs470 Prefetch A3 Slides developed in part by Profs.

More information

Operating Systems. Overview Virtual memory part 2. Page replacement algorithms. Lecture 7 Memory management 3: Virtual memory

Operating Systems. Overview Virtual memory part 2. Page replacement algorithms. Lecture 7 Memory management 3: Virtual memory Operating Systems Lecture 7 Memory management : Virtual memory Overview Virtual memory part Page replacement algorithms Frame allocation Thrashing Other considerations Memory over-allocation Efficient

More information

Hybrid Parallelization: Performance from SMP Building Blocks

Hybrid Parallelization: Performance from SMP Building Blocks Parallelization: Performance from SMP Building Blocks Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University, Germany September 29th, Leogang, Austria

More information

Announcements (March 1) Query Processing: A Systems View. Physical (execution) plan. Announcements (March 3) Physical plan execution

Announcements (March 1) Query Processing: A Systems View. Physical (execution) plan. Announcements (March 3) Physical plan execution Announcements (March 1) 2 Query Processing: A Systems View CPS 216 Advanced Database Systems Reading assignment due Wednesday Buffer management Homework #2 due this Thursday Course project proposal due

More information

Computer Organization & Assembly Language Programming

Computer Organization & Assembly Language Programming Computer Organization & Assembly Language Programming CSE 2312-002 (Fall 2011) Lecture 5 Memory Junzhou Huang, Ph.D. Department of Computer Science and Engineering Fall 2011 CSE 2312 Computer Organization

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

Tradeoff between coverage of a Markov prefetcher and memory bandwidth usage

Tradeoff between coverage of a Markov prefetcher and memory bandwidth usage Tradeoff between coverage of a Markov prefetcher and memory bandwidth usage Elec525 Spring 2005 Raj Bandyopadhyay, Mandy Liu, Nico Peña Hypothesis Some modern processors use a prefetching unit at the front-end

More information

Role of OS in virtual memory management

Role of OS in virtual memory management Role of OS in virtual memory management Role of OS memory management Design of memory-management portion of OS depends on 3 fundamental areas of choice Whether to use virtual memory or not Whether to use

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 21-23 - Virtual Memory Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian,

More information

Basic Memory Hierarchy Principles. Appendix C (Not all will be covered by the lecture; studying the textbook is recommended!)

Basic Memory Hierarchy Principles. Appendix C (Not all will be covered by the lecture; studying the textbook is recommended!) Basic Memory Hierarchy Principles Appendix C (Not all will be covered by the lecture; studying the textbook is recommended!) Cache memory idea Use a small faster memory, a cache memory, to store recently

More information

Operating Systems. IV. Memory Management

Operating Systems. IV. Memory Management Operating Systems IV. Memory Management Ludovic Apvrille ludovic.apvrille@telecom-paristech.fr Eurecom, office 470 http://soc.eurecom.fr/os/ @OS Eurecom Outline Basics of Memory Management Hardware Architecture

More information

Principles in Computer Architecture I CSE 240A (Section ) CSE 240A Homework Three. November 18, 2008

Principles in Computer Architecture I CSE 240A (Section ) CSE 240A Homework Three. November 18, 2008 Principles in Computer Architecture I CSE 240A (Section 631684) CSE 240A Homework Three November 18, 2008 Only Problem Set Two will be graded. Turn in only Problem Set Two before December 4, 2008, 11:00am.

More information

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability Topics COS 318: Operating Systems File Performance and Reliability File buffer cache Disk failure and recovery tools Consistent updates Transactions and logging 2 File Buffer Cache for Performance What

More information

Operating Systems Virtual Memory. Lecture 11 Michael O Boyle

Operating Systems Virtual Memory. Lecture 11 Michael O Boyle Operating Systems Virtual Memory Lecture 11 Michael O Boyle 1 Paged virtual memory Allows a larger logical address space than physical memory All pages of address space do not need to be in memory the

More information

Multiresolution Motif Discovery in Time Series

Multiresolution Motif Discovery in Time Series Tenth SIAM International Conference on Data Mining Columbus, Ohio, USA Multiresolution Motif Discovery in Time Series NUNO CASTRO PAULO AZEVEDO Department of Informatics University of Minho Portugal April

More information

Dac-Man: Data Change Management for Scientific Datasets on HPC systems

Dac-Man: Data Change Management for Scientific Datasets on HPC systems Dac-Man: Data Change Management for Scientific Datasets on HPC systems Devarshi Ghoshal Lavanya Ramakrishnan Deborah Agarwal Lawrence Berkeley National Laboratory Email: dghoshal@lbl.gov Motivation Data

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

Rsyslog: going up from 40K messages per second to 250K. Rainer Gerhards

Rsyslog: going up from 40K messages per second to 250K. Rainer Gerhards Rsyslog: going up from 40K messages per second to 250K Rainer Gerhards What's in it for you? Bad news: will not teach you to make your kernel component five times faster Perspective user-space application

More information

HW/SW Codesign. WCET Analysis

HW/SW Codesign. WCET Analysis HW/SW Codesign WCET Analysis 29 November 2017 Andres Gomez gomeza@tik.ee.ethz.ch 1 Outline Today s exercise is one long question with several parts: Basic blocks of a program Static value analysis WCET

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Fall 2016 Lecture 11: Page Replacement Geoffrey M. Voelker Administrivia Lab time This week: Thu 4pm, Sat 2pm Next week: Tue, Wed At Washington University in St.

More information

Vnodes. Every open file has an associated vnode struct All file system types (FFS, NFS, etc.) have vnodes

Vnodes. Every open file has an associated vnode struct All file system types (FFS, NFS, etc.) have vnodes Vnodes Every open file has an associated vnode struct All file system types (FFS, NFS, etc.) have vnodes - v data points to FS-specific data - Function pointers for operations (open/read/write/... ) When

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 18: Page Replacement Terminology in Paging A virtual page corresponds to physical page/frame Segment should not be used anywhere Page out = Page eviction

More information

Disks, Memories & Buffer Management

Disks, Memories & Buffer Management Disks, Memories & Buffer Management The two offices of memory are collection and distribution. - Samuel Johnson CS3223 - Storage 1 What does a DBMS Store? Relations Actual data Indexes Data structures

More information

Google File System (GFS) and Hadoop Distributed File System (HDFS)

Google File System (GFS) and Hadoop Distributed File System (HDFS) Google File System (GFS) and Hadoop Distributed File System (HDFS) 1 Hadoop: Architectural Design Principles Linear scalability More nodes can do more work within the same time Linear on data size, linear

More information

WEEK 7. Chapter 4. Cache Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved.

WEEK 7. Chapter 4. Cache Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved. WEEK 7 + Chapter 4 Cache Memory Location Internal (e.g. processor registers, cache, main memory) External (e.g. optical disks, magnetic disks, tapes) Capacity Number of words Number of bytes Unit of Transfer

More information

Computer System Overview. Chapter 1

Computer System Overview. Chapter 1 Computer System Overview Chapter 1 Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users Manages secondary memory and I/O devices Basic Elements

More information

Extending RTAI Linux with Fixed-Priority Scheduling with Deferred Preemption

Extending RTAI Linux with Fixed-Priority Scheduling with Deferred Preemption Extending RTAI Linux with Fixed-Priority Scheduling with Deferred Preemption Mark Bergsma, Mike Holenderski, Reinder J. Bril, Johan J. Lukkien System Architecture and Networking Department of Mathematics

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 4: Memory Organization Our goal: understand the basic types of memory in computer understand memory hierarchy and the general process to access memory

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2014 Lecture 14

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2014 Lecture 14 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2014 Lecture 14 LAST TIME! Examined several memory technologies: SRAM volatile memory cells built from transistors! Fast to use, larger memory cells (6+ transistors

More information

CFLRU:A A Replacement Algorithm for Flash Memory

CFLRU:A A Replacement Algorithm for Flash Memory CFLRU:A A Replacement Algorithm for Flash Memory CASES'06, October 23 25, 2006, Seoul, Korea. Copyright 2006 ACM 1-59593-543-6/06/0010 Yen-Ting Liu Outline Introduction CFLRU Algorithm Simulation Implementation

More information

Two-Level Address Storage and Address Prediction

Two-Level Address Storage and Address Prediction Two-Level Address Storage and Address Prediction Enric Morancho, José María Llabería and Àngel Olivé Computer Architecture Department - Universitat Politècnica de Catalunya (Spain) 1 Abstract. : The amount

More information

Monitoring Agent for Unix OS Version Reference IBM

Monitoring Agent for Unix OS Version Reference IBM Monitoring Agent for Unix OS Version 6.3.5 Reference IBM Monitoring Agent for Unix OS Version 6.3.5 Reference IBM Note Before using this information and the product it supports, read the information in

More information

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013 CSE325 Principles of Operating Systems Virtual Memory David P. Duggan dduggan@sandia.gov March 7, 2013 Reading Assignment 9 Chapters 10 & 11 File Systems, due 3/21 3/7/13 CSE325 - Virtual Memory 2 Outline

More information

Virtual Memory Management

Virtual Memory Management Virtual Memory Management CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed., by Andrew Tanenbaum and from Operating

More information

LRU. Pseudo LRU A B C D E F G H A B C D E F G H H H C. Copyright 2012, Elsevier Inc. All rights reserved.

LRU. Pseudo LRU A B C D E F G H A B C D E F G H H H C. Copyright 2012, Elsevier Inc. All rights reserved. LRU A list to keep track of the order of access to every block in the set. The least recently used block is replaced (if needed). How many bits we need for that? 27 Pseudo LRU A B C D E F G H A B C D E

More information