Least Recently Frequently Used Caching Algorithm with Filtering Policies

Size: px
Start display at page:

Download "Least Recently Frequently Used Caching Algorithm with Filtering Policies"

Transcription

1 VLSI Project Least Recently Frequently Used Caching Algorithm with Filtering Policies Alexander Zlotnik Marcel Apfelbaum Supervised by: Michael Behar, Winter 2005/2006 VLSI Project Winter 2005/2006 1

2 Introduction (cont.) Cache definition Memory chip part of the Processor Same technology Speed: same order of magnitude as accessing Registers Relatively small and expensive Acts like an HASH function : holds part of the address spaces. VLSI Project Winter 2005/2006 2

3 Introduction (cont.) Cache memories Main idea When processor needs instruction or data it first looks for it in i the cache. If that fails, it brings the data from the main memory to the cache and uses it from there. Address space is partitioned into blocks Cache holds lines, each line holds a block A block may not exist in the cache -> > cache miss If we miss the Cache Entire block is fetched into a line buffer, and then put into the e cache Before putting the new block in the cache, another block may need to be evicted from the cache (to make room for the new block) VLSI Project Winter 2005/2006 3

4 Introduction (cont.) Cache aim Fast access time Fast search mechanism High Hit-Ratio Highly effective replacement mechanism High Adaptability - fast replacement of not need lines Long sighted - estimation if a block will be used in future VLSI Project Winter 2005/2006 4

5 Project Objective Develop an LRFU caching mechanism Implementation of a cache entrance filtering technique Compare and analyze against LRU Researching various configurations of LRFU, on order to achieve maximum hit rate VLSI Project Winter 2005/2006 5

6 Project Requirements Develop for SimpleScalar platform to simulate processor caches Run developed caching & filtering mechanisms on accepted benchmarks C language No hardware components equivalence needed, software implementation only VLSI Project Winter 2005/2006 6

7 Background and Theory Cache Replacement options: FIFO, LRU, Random, Pseudo LRU, LFU Currently used algorithms: LRU(2 ways requires 1 bit per set to mark latest accessed) Pseudo LRU (4 ways and more, Fully associative) Pseudo LRU (4-way example) Bit 0 specify if way is (0,1) or (2,3) Bit 1 specify who was between 0 and 1 Bit 2 specify who was between 2 and 3 Bit 0 Bit 1 Bit 2 VLSI Project Winter 2005/2006 7

8 Background and Theory (cont) LRU Advantages High Adaptability 1 cycle algorithm Low memory usage Disadvantage Short sighted LFU Advantage Long sighted Smarter Disadvantages Cache pollution Requires many cycles More memory needed VLSI Project Winter 2005/2006 8

9 Background and Theory (cont) Observation Both recency and frequency affect the likelihood of future references Goal A replacement algorithm that allows a flexible trade-off between recency and frequency The idea: LRFU (Least Recently/Frequently Used) Subsumes both LRU and LFU algorithms Overcome the cycles used by LFU by filtering Cache entrances Yields better performance than them VLSI Project Winter 2005/2006 9

10 Development Stages 1. Studying the background 2. Learning SimpleScalar sim-cache platform 3. Develop LRFU caching algorithm for SimpleScalar 4. Develop filtering policy 5. Benchmarking (smart environment) 6. Analyzing various LRFU configurations and comparison with LRU algorithm VLSI Project Winter 2005/

11 Principles The LRFU policy associates a value with each block. This value quantifies the likelihood that the block will be referenced in the near future. Each reference to a block in the past adds a contribution to this value and its contribution is determined by a weighing function F. time t1 δ1 t2 δ2 δ3 t3 Current time tc Ctc(block) = F(δ1) + F(δ2) + F(δ3) tc -t1 tc -t2 tc -t3 VLSI Project Winter 2005/

12 Principles (cont) 1/2) λx Weighing function F(x) = (1/2) Monotonically decreasing Subsume LRU and LFU When λ = 0, (i.e. F(x) = 1), then it becomes LFU When λ = 1, (i.e. F(x) = (1/2) x ), then it becomes LRU When 0 < λ < 1, it is between LFU and LRU F(x) F(x) = 1 (LFU extreme) 1 Spectrum (LRU/LFU) 0 F(x) = (1/2) x (LRU extreme) VLSI Project Winter 2005/ current time - reference time X

13 Principles (cont) Update of C(block) over time Only two counters for each block are needed to calculate C(block) Proof: time t1 δ 1 δ 2 t2 δ 3 t3 t1 δ = (t2 -t1) t2 C t2(b) = F (δ1+δ) + F (δ2+δ) + F (δ3+δ) = (1/2) λ(δ 1+ δ) + (1/2) λ (δ 2+ δ) + (1/2) λ (δ 3+ δ) = ((1/2) λδ 1 + (1/2) λδ 2 + (1/2) λδ 3 ) (1/2) λδ = C t1(b) x F (δ) VLSI Project Winter 2005/

14 Design and Implementation Filtering Data Address In cache Not in cache END In Victims cache? In cache Not in cache END Filter Filter out Insert Data into Victims Cache Insert into cache Insert Data removed from cache by LRFU VLSI Project Winter 2005/

15 Design and Implementation (cont) Data structure LRFU uses for each block two BOUNDED counters VLSI Project Winter 2005/

16 Hardware budget Counters Each block in cache requires two bounded counters Previous C(t) Time that passed from previous access Victims cache The size will be based on empirical analysis VLSI Project Winter 2005/

17 Algorithms Filtering We implemented a very simple filtering algorithm, whose single task is to cause less changes in cache. After a cache miss, the brought block is entered in cache with a probability 0<p<1, p configurable. If the block is not entered in i cache, is entered automatically in victims cache. Replacement After a cache miss, C(t) is calculated for each block in set and the one with the smallest C(t) is selected for replacement. VLSI Project Winter 2005/

18 Results Hit Rate Cache Size (# of blocks) VLSI Project Winter 2005/

19 Results (cont) Hit rate λ VLSI Project Winter 2005/

20 Special Problems Software simulation of hardware Utilizing existing data structures of SimpleScalar Finding the perfect C(t) Applying mathematical theory into practice VLSI Project Winter 2005/

21 Conclusions We implemented a different cache replacement mechanism and received exciting results Hardware implementation of the mechanism is hard, but possible The Implementation achieved the goals Subsumes both the LRU and LFU algorithms Yields better performance than them (up to 30%!!!) VLSI Project Winter 2005/

22 Future Research Implementation of better filtering techniques Dynamic version of the LRFU algorithm Adjust λ periodically depending on the evolution of workload Research of hardware needed for LRFU VLSI Project Winter 2005/

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

SF-LRU Cache Replacement Algorithm

SF-LRU Cache Replacement Algorithm SF-LRU Cache Replacement Algorithm Jaafar Alghazo, Adil Akaaboune, Nazeih Botros Southern Illinois University at Carbondale Department of Electrical and Computer Engineering Carbondale, IL 6291 alghazo@siu.edu,

More information

LBM: A Low-power Buffer Management Policy for Heterogeneous Storage in Mobile Consumer Devices

LBM: A Low-power Buffer Management Policy for Heterogeneous Storage in Mobile Consumer Devices LBM: A Low-power Buffer Management Policy for Heterogeneous Storage in Mobile Consumer Devices Hyojung Kang Department of Computer Science, Ewha University, Seoul, Korea Junseok Park Semiconductor Business,

More information

Operating Systems. Memory: replacement policies

Operating Systems. Memory: replacement policies Operating Systems Memory: replacement policies Last time caching speeds up data lookups if the data is likely to be re-requested again data structures for O(1)-lookup data source set-associative (hardware)

More information

Marten van Dijk Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen. Department of Electrical & Computer Engineering University of Connecticut

Marten van Dijk Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen. Department of Electrical & Computer Engineering University of Connecticut CSE 5095 & ECE 4451 & ECE 5451 Spring 2017 Lecture 5a Caching Review Marten van Dijk Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen Department of Electrical & Computer Engineering University of Connecticut

More information

CMPSC 311- Introduction to Systems Programming Module: Caching

CMPSC 311- Introduction to Systems Programming Module: Caching CMPSC 311- Introduction to Systems Programming Module: Caching Professor Patrick McDaniel Fall 2016 Reminder: Memory Hierarchy L0: Registers CPU registers hold words retrieved from L1 cache Smaller, faster,

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 21-23 - Virtual Memory Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian,

More information

Lecture 10: Large Cache Design III

Lecture 10: Large Cache Design III Lecture 10: Large Cache Design III Topics: Replacement policies, prefetch, dead blocks, associativity Sign up for class mailing list Pseudo-LRU has a 9% higher miss rate than true LRU 1 Overview 2 Set

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier edition of the course text Operating

More information

Eastern Mediterranean University School of Computing and Technology CACHE MEMORY. Computer memory is organized into a hierarchy.

Eastern Mediterranean University School of Computing and Technology CACHE MEMORY. Computer memory is organized into a hierarchy. Eastern Mediterranean University School of Computing and Technology ITEC255 Computer Organization & Architecture CACHE MEMORY Introduction Computer memory is organized into a hierarchy. At the highest

More information

Basic Page Replacement

Basic Page Replacement Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select

More information

Chapter 09: Caches. Lesson 04: Replacement policy

Chapter 09: Caches. Lesson 04: Replacement policy Chapter 09: Caches Lesson 04: Replacement policy 1 Objective Understand the replacement Policy Comparisons between write back and write through caches 2 Replacement policy 3 Replacement after eviction

More information

Lecture 14: Large Cache Design II. Topics: Cache partitioning and replacement policies

Lecture 14: Large Cache Design II. Topics: Cache partitioning and replacement policies Lecture 14: Large Cache Design II Topics: Cache partitioning and replacement policies 1 Page Coloring CACHE VIEW Bank number with Page-to-Bank Tag Set Index Bank number with Set-interleaving Block offset

More information

Virtual Memory Demand Paging. Virtual Memory Working Set Model

Virtual Memory Demand Paging. Virtual Memory Working Set Model Virtual Memory Demand Paging When a reference is made to an address on a page not present in main memory, it is called a page fault. The operating system must read in the required page from the disk, enter

More information

Memory. Objectives. Introduction. 6.2 Types of Memory

Memory. Objectives. Introduction. 6.2 Types of Memory Memory Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured. Master the concepts

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Virtual Memory 11282011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Review Cache Virtual Memory Projects 3 Memory

More information

Page 1. Multilevel Memories (Improving performance using a little cash )

Page 1. Multilevel Memories (Improving performance using a little cash ) Page 1 Multilevel Memories (Improving performance using a little cash ) 1 Page 2 CPU-Memory Bottleneck CPU Memory Performance of high-speed computers is usually limited by memory bandwidth & latency Latency

More information

Comparison and Analysis of Various Buffer Cache Management Strategies for Database Management System

Comparison and Analysis of Various Buffer Cache Management Strategies for Database Management System Comparison and Analysis of Various Buffer Cache Management Strategies for Database Management System Priti M Tailor 1, Prof. Rustom D. Morena 2 1 Assistant Professor, Sutex Bank College of Computer App.

More information

CMPSC 311- Introduction to Systems Programming Module: Caching

CMPSC 311- Introduction to Systems Programming Module: Caching CMPSC 311- Introduction to Systems Programming Module: Caching Professor Patrick McDaniel Fall 2014 Lecture notes Get caching information form other lecture http://hssl.cs.jhu.edu/~randal/419/lectures/l8.5.caching.pdf

More information

Cache Controller with Enhanced Features using Verilog HDL

Cache Controller with Enhanced Features using Verilog HDL Cache Controller with Enhanced Features using Verilog HDL Prof. V. B. Baru 1, Sweety Pinjani 2 Assistant Professor, Dept. of ECE, Sinhgad College of Engineering, Vadgaon (BK), Pune, India 1 PG Student

More information

Physical characteristics (such as packaging, volatility, and erasability Organization.

Physical characteristics (such as packaging, volatility, and erasability Organization. CS 320 Ch 4 Cache Memory 1. The author list 8 classifications for memory systems; Location Capacity Unit of transfer Access method (there are four:sequential, Direct, Random, and Associative) Performance

More information

Cache memory. Lecture 4. Principles, structure, mapping

Cache memory. Lecture 4. Principles, structure, mapping Cache memory Lecture 4 Principles, structure, mapping Computer memory overview Computer memory overview By analyzing memory hierarchy from top to bottom, the following conclusions can be done: a. Cost

More information

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs Optimal Algorithm Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs page 1 Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3,

More information

Lecture 15: Large Cache Design III. Topics: Replacement policies, prefetch, dead blocks, associativity, cache networks

Lecture 15: Large Cache Design III. Topics: Replacement policies, prefetch, dead blocks, associativity, cache networks Lecture 15: Large Cache Design III Topics: Replacement policies, prefetch, dead blocks, associativity, cache networks 1 LIN Qureshi et al., ISCA 06 Memory level parallelism (MLP): number of misses that

More information

1 Introduction The gap between processor and disk speed is becoming wider as VLSI technologies keep advancing at an enormous rate. Though the density

1 Introduction The gap between processor and disk speed is becoming wider as VLSI technologies keep advancing at an enormous rate. Though the density LRFU (Least Recently/Frequently Used) Replacement Policy: A Spectrum of Block Replacement Policies yz Donghee Lee Jongmoo Choi Jong-Hun Kim Sam H. Noh Sang Lyul Min Yookun Cho Chong Sang Kim March 1 1996

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture were based on those Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and

More information

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction Chapter 6 Objectives Chapter 6 Memory Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

Virtual Memory - II. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - XVI. University at Buffalo.

Virtual Memory - II. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - XVI. University at Buffalo. CSE 421/521 - Operating Systems Fall 2012 Lecture - XVI Virtual Memory - II Tevfik Koşar University at Buffalo October 25 th, 2012 1 Roadmap Virtual Memory Page Replacement Algorithms Optimal Algorithm

More information

A Review on Cache Memory with Multiprocessor System

A Review on Cache Memory with Multiprocessor System A Review on Cache Memory with Multiprocessor System Chirag R. Patel 1, Rajesh H. Davda 2 1,2 Computer Engineering Department, C. U. Shah College of Engineering & Technology, Wadhwan (Gujarat) Abstract

More information

Virtual Memory. Chapter 8

Virtual Memory. Chapter 8 Virtual Memory 1 Chapter 8 Characteristics of Paging and Segmentation Memory references are dynamically translated into physical addresses at run time E.g., process may be swapped in and out of main memory

More information

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Lecture 17 Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Page Replacement Algorithms Last Lecture: FIFO Optimal Page Replacement LRU LRU Approximation Additional-Reference-Bits

More information

Chapter 6 Objectives

Chapter 6 Objectives Chapter 6 Memory Chapter 6 Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

The Memory System. Components of the Memory System. Problems with the Memory System. A Solution

The Memory System. Components of the Memory System. Problems with the Memory System. A Solution Datorarkitektur Fö 2-1 Datorarkitektur Fö 2-2 Components of the Memory System The Memory System 1. Components of the Memory System Main : fast, random access, expensive, located close (but not inside)

More information

Architecture Tuning Study: the SimpleScalar Experience

Architecture Tuning Study: the SimpleScalar Experience Architecture Tuning Study: the SimpleScalar Experience Jianfeng Yang Yiqun Cao December 5, 2005 Abstract SimpleScalar is software toolset designed for modeling and simulation of processor performance.

More information

Course Outline. Processes CPU Scheduling Synchronization & Deadlock Memory Management File Systems & I/O Distributed Systems

Course Outline. Processes CPU Scheduling Synchronization & Deadlock Memory Management File Systems & I/O Distributed Systems Course Outline Processes CPU Scheduling Synchronization & Deadlock Memory Management File Systems & I/O Distributed Systems 1 Today: Memory Management Terminology Uniprogramming Multiprogramming Contiguous

More information

Memory Organization MEMORY ORGANIZATION. Memory Hierarchy. Main Memory. Auxiliary Memory. Associative Memory. Cache Memory.

Memory Organization MEMORY ORGANIZATION. Memory Hierarchy. Main Memory. Auxiliary Memory. Associative Memory. Cache Memory. MEMORY ORGANIZATION Memory Hierarchy Main Memory Auxiliary Memory Associative Memory Cache Memory Virtual Memory MEMORY HIERARCHY Memory Hierarchy Memory Hierarchy is to obtain the highest possible access

More information

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles Page Replacement page 1 Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number

More information

Computer Architecture and Organization

Computer Architecture and Organization 7-1 Chapter 7 - Memory Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 7 Memory 7-2 Chapter 7 - Memory Chapter Contents 7.1 The Memory Hierarchy 7.2 Random-Access Memory

More information

Page Replacement Algorithms

Page Replacement Algorithms Page Replacement Algorithms MIN, OPT (optimal) RANDOM evict random page FIFO (first-in, first-out) give every page equal residency LRU (least-recently used) MRU (most-recently used) 1 9.1 Silberschatz,

More information

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced?

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced? Chapter 10: Virtual Memory Questions? CSCI [4 6] 730 Operating Systems Virtual Memory!! What is virtual memory and when is it useful?!! What is demand paging?!! When should pages in memory be replaced?!!

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 33 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How does the virtual

More information

PAGE REPLACEMENT. Operating Systems 2015 Spring by Euiseong Seo

PAGE REPLACEMENT. Operating Systems 2015 Spring by Euiseong Seo PAGE REPLACEMENT Operating Systems 2015 Spring by Euiseong Seo Today s Topics What if the physical memory becomes full? Page replacement algorithms How to manage memory among competing processes? Advanced

More information

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg Computer Architecture and System Software Lecture 09: Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Midterm returned + solutions in class today SSD

More information

Principles of Computer Architecture. Chapter 7: Memory

Principles of Computer Architecture. Chapter 7: Memory 7-1 Chapter 7 - Memory Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 7: Memory 7-2 Chapter 7 - Memory Chapter Contents 7.1 The Memory Hierarchy 7.2 Random Access Memory

More information

Virtual Memory III. Jo, Heeseung

Virtual Memory III. Jo, Heeseung Virtual Memory III Jo, Heeseung Today's Topics What if the physical memory becomes full? Page replacement algorithms How to manage memory among competing processes? Advanced virtual memory techniques Shared

More information

Lecture 14 Page Replacement Policies

Lecture 14 Page Replacement Policies CS 423 Operating Systems Design Lecture 14 Page Replacement Policies Klara Nahrstedt Fall 2011 Based on slides by YY Zhou and Andrew S. Tanenbaum Overview Administrative Issues Page Replacement Policies

More information

Performance metrics for caches

Performance metrics for caches Performance metrics for caches Basic performance metric: hit ratio h h = Number of memory references that hit in the cache / total number of memory references Typically h = 0.90 to 0.97 Equivalent metric:

More information

Week 2: Tiina Niklander

Week 2: Tiina Niklander Virtual memory Operations and policies Chapters 3.4. 3.6 Week 2: 17.9.2009 Tiina Niklander 1 Policies and methods Fetch policy (Noutopolitiikka) When to load page to memory? Placement policy (Sijoituspolitiikka

More information

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory Virtual Memory Virtual Memory CSCI Operating Systems Design Department of Computer Science Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013 CSE325 Principles of Operating Systems Virtual Memory David P. Duggan dduggan@sandia.gov March 7, 2013 Reading Assignment 9 Chapters 10 & 11 File Systems, due 3/21 3/7/13 CSE325 - Virtual Memory 2 Outline

More information

Operating Systems Virtual Memory. Lecture 11 Michael O Boyle

Operating Systems Virtual Memory. Lecture 11 Michael O Boyle Operating Systems Virtual Memory Lecture 11 Michael O Boyle 1 Paged virtual memory Allows a larger logical address space than physical memory All pages of address space do not need to be in memory the

More information

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed 5.3 By convention, a cache is named according to the amount of data it contains (i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to store metadata such as tags and valid

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 23 Virtual memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Is a page replaces when

More information

Operating Systems, Fall

Operating Systems, Fall Policies and methods Virtual memory Operations and policies Chapters 3.4. 3.6 Week 2: 17.9.2009 Tiina Niklander 1 Fetch policy (Noutopolitiikka) When to load page to memory? Placement policy (Sijoituspolitiikka

More information

William Stallings Copyright 2009

William Stallings Copyright 2009 A PPENDIX D V ICTIM C ACHE S TRATEGIES William Stallings Copyright 2009 D.1 VICTIM CACHE...2! D.2 SELECTIVE VICTIM CACHE...4! Incoming Blocks from Memory...4! Swap Between Direct-Mapped Cache and Victim

More information

Fig 7.30 The Cache Mapping Function. Memory Fields and Address Translation

Fig 7.30 The Cache Mapping Function. Memory Fields and Address Translation 7-47 Chapter 7 Memory System Design Fig 7. The Mapping Function Example: KB MB CPU Word Block Main Address Mapping function The cache mapping function is responsible for all cache operations: Placement

More information

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has Swapping Active processes use more physical memory than system has Operating Systems I Address Binding can be fixed or relocatable at runtime Swap out P P Virtual Memory OS Backing Store (Swap Space) Main

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Chapter 9: Virtual Memory Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Demand Paging. Valid-Invalid Bit. Steps in Handling a Page Fault. Page Fault. Transfer of a Paged Memory to Contiguous Disk Space

Demand Paging. Valid-Invalid Bit. Steps in Handling a Page Fault. Page Fault. Transfer of a Paged Memory to Contiguous Disk Space Demand Paging Transfer of a Paged Memory to Contiguous Disk Space Bring a page into memory only when it is needed. Less I/O needed Less memory needed Faster response More users Page is needed reference

More information

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( )

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( ) Anti-Caching: A New Approach to Database Management System Architecture Guide: Helly Patel (2655077) Dr. Sunnie Chung Kush Patel (2641883) Abstract Earlier DBMS blocks stored on disk, with a main memory

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Memory Management 1 Hardware background The role of primary memory Program

More information

Caching and Demand-Paged Virtual Memory

Caching and Demand-Paged Virtual Memory Caching and Demand-Paged Virtual Memory Definitions Cache Copy of data that is faster to access than the original Hit: if cache has copy Miss: if cache does not have copy Cache block Unit of cache storage

More information

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example Locality CS429: Computer Organization and Architecture Dr Bill Young Department of Computer Sciences University of Texas at Austin Principle of Locality: Programs tend to reuse data and instructions near

More information

Victim buffer impact on CPU performance

Victim buffer impact on CPU performance Victim buffer impact on CPU performance 1 Introduction --- Computer Architecture Technical Report Phase Two Danhua Guo George Chatzimilioudis Department of Computer Science and Engineering University of

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 18 Lecture 18/19: Page Replacement Memory Management Memory management systems Physical and virtual addressing; address translation Techniques: Partitioning,

More information

Virtual Memory COMPSCI 386

Virtual Memory COMPSCI 386 Virtual Memory COMPSCI 386 Motivation An instruction to be executed must be in physical memory, but there may not be enough space for all ready processes. Typically the entire program is not needed. Exception

More information

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging Virtual Memory (/) Background Page Replacement Allocation of Frames Thrashing Background Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in memory

More information

Outline. 1 Paging. 2 Eviction policies. 3 Thrashing 1 / 28

Outline. 1 Paging. 2 Eviction policies. 3 Thrashing 1 / 28 Outline 1 Paging 2 Eviction policies 3 Thrashing 1 / 28 Paging Use disk to simulate larger virtual than physical mem 2 / 28 Working set model # of accesses virtual address Disk much, much slower than memory

More information

Perform page replacement. (Fig 8.8 [Stal05])

Perform page replacement. (Fig 8.8 [Stal05]) Virtual memory Operations and policies Chapters 3.4. 3.7 1 Policies and methods Fetch policy (Noutopolitiikka) When to load page to memory? Placement policy (Sijoituspolitiikka ) Where to place the new

More information

a process may be swapped in and out of main memory such that it occupies different regions

a process may be swapped in and out of main memory such that it occupies different regions Virtual Memory Characteristics of Paging and Segmentation A process may be broken up into pieces (pages or segments) that do not need to be located contiguously in main memory Memory references are dynamically

More information

CS420: Operating Systems

CS420: Operating Systems Virtual Memory James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Code needs to be in memory

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

The check bits are in bit numbers 8, 4, 2, and 1.

The check bits are in bit numbers 8, 4, 2, and 1. The University of Western Australia Department of Electrical and Electronic Engineering Computer Architecture 219 (Tutorial 8) 1. [Stallings 2000] Suppose an 8-bit data word is stored in memory is 11000010.

More information

LRC: Dependency-Aware Cache Management for Data Analytics Clusters. Yinghao Yu, Wei Wang, Jun Zhang, and Khaled B. Letaief IEEE INFOCOM 2017

LRC: Dependency-Aware Cache Management for Data Analytics Clusters. Yinghao Yu, Wei Wang, Jun Zhang, and Khaled B. Letaief IEEE INFOCOM 2017 LRC: Dependency-Aware Cache Management for Data Analytics Clusters Yinghao Yu, Wei Wang, Jun Zhang, and Khaled B. Letaief IEEE INFOCOM 2017 Outline Cache Management for Data Analytics Clusters Inefficiency

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

Lecture-16 (Cache Replacement Policies) CS422-Spring

Lecture-16 (Cache Replacement Policies) CS422-Spring Lecture-16 (Cache Replacement Policies) CS422-Spring 2018 Biswa@CSE-IITK 1 2 4 8 16 32 64 128 From SPEC92 Miss rate: Still Applicable Today 0.14 0.12 0.1 0.08 0.06 0.04 1-way 2-way 4-way 8-way Capacity

More information

Unit 2 Buffer Pool Management

Unit 2 Buffer Pool Management Unit 2 Buffer Pool Management Based on: Sections 9.4, 9.4.1, 9.4.2 of Ramakrishnan & Gehrke (text); Silberschatz, et. al. ( Operating System Concepts ); Other sources Original slides by Ed Knorr; Updates

More information

An Integration Approach of Data Mining with Web Cache Pre-Fetching

An Integration Approach of Data Mining with Web Cache Pre-Fetching An Integration Approach of Data Mining with Web Cache Pre-Fetching Yingjie Fu 1, Haohuan Fu 2, and Puion Au 2 1 Department of Computer Science City University of Hong Kong, Hong Kong SAR fuyingjie@tsinghua.org.cn

More information

Operating System - Virtual Memory

Operating System - Virtual Memory Operating System - Virtual Memory Virtual memory is a technique that allows the execution of processes which are not completely available in memory. The main visible advantage of this scheme is that programs

More information

Locality of Reference

Locality of Reference Locality of Reference 1 In view of the previous discussion of secondary storage, it makes sense to design programs so that data is read from and written to disk in relatively large chunks but there is

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 18: Page Replacement Terminology in Paging A virtual page corresponds to physical page/frame Segment should not be used anywhere Page out = Page eviction

More information

CS 550 Operating Systems Spring Memory Management: Page Replacement

CS 550 Operating Systems Spring Memory Management: Page Replacement CS 550 Operating Systems Spring 2018 Memory Management: Page Replacement 1 OS Involvement with Page Table Management Four times when OS deals with page-tables 1. Process creation create page table 2. Upon

More information

Question Points Score Total 100

Question Points Score Total 100 Midterm #2 CMSC 412 Operating Systems Fall 2005 November 22, 2004 Guidelines This exam has 7 pages (including this one); make sure you have them all. Put your name on each page before starting the exam.

More information

Chapter 4: Memory Management. Part 1: Mechanisms for Managing Memory

Chapter 4: Memory Management. Part 1: Mechanisms for Managing Memory Chapter 4: Memory Management Part 1: Mechanisms for Managing Memory Memory management Basic memory management Swapping Virtual memory Page replacement algorithms Modeling page replacement algorithms Design

More information

TERM PROJECT COEN 283. Enhancing data hit ratio by using adaptive caching Technique. Operating System. Prepared By: Darshita Shah.

TERM PROJECT COEN 283. Enhancing data hit ratio by using adaptive caching Technique. Operating System. Prepared By: Darshita Shah. COEN 283 Operating System TERM PROJECT Enhancing data hit ratio by using adaptive caching Technique Prepared By: Darshita Shah Preethi Yellappa Nidhi Singh Table of Content Topics Page No 1. Introduction

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Cache Memory COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline The Need for Cache Memory The Basics

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Chapter 8: Virtual Memory. Operating System Concepts

Chapter 8: Virtual Memory. Operating System Concepts Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2009 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapters 9 & 10: Memory Management and Virtual Memory

Chapters 9 & 10: Memory Management and Virtual Memory Chapters 9 & 10: Memory Management and Virtual Memory Important concepts (for final, projects, papers) addressing: physical/absolute, logical/relative/virtual overlays swapping and paging memory protection

More information

Virtual Memory Management. Rab Nawaz Jadoon. Assistant Professor DCS. Pakistan. COMSATS, Lahore. Department of Computer Science

Virtual Memory Management. Rab Nawaz Jadoon. Assistant Professor DCS. Pakistan. COMSATS, Lahore. Department of Computer Science Virtual Memory Management DCS COMSTS Institute of Information Technology Rab Nawaz Jadoon ssistant Professor COMSTS, Lahore Pakistan Operating System Concepts VM Management Strategies VM Strategies Fetch

More information

Cache Modeling and Optimization using Miniature Simulations. USENIX Annual Technical Conference (ATC 17) July 13, 2017

Cache Modeling and Optimization using Miniature Simulations. USENIX Annual Technical Conference (ATC 17) July 13, 2017 Cache Modeling and Optimization using Miniature Simulations Carl Waldspurger Trausti Saemundsson Irfan Ahmad Nohhyun Park CachePhysics, Inc. CachePhysics, Inc. CachePhysics, Inc. Datos IO, Inc. USENIX

More information

Q3: Block Replacement. Replacement Algorithms. ECE473 Computer Architecture and Organization. Memory Hierarchy: Set Associative Cache

Q3: Block Replacement. Replacement Algorithms. ECE473 Computer Architecture and Organization. Memory Hierarchy: Set Associative Cache Fundamental Questions Computer Architecture and Organization Hierarchy: Set Associative Q: Where can a block be placed in the upper level? (Block placement) Q: How is a block found if it is in the upper

More information

Evaluating the Impact of Different Document Types on the Performance of Web Cache Replacement Schemes *

Evaluating the Impact of Different Document Types on the Performance of Web Cache Replacement Schemes * Evaluating the Impact of Different Document Types on the Performance of Web Cache Replacement Schemes * Christoph Lindemann and Oliver P. Waldhorst University of Dortmund Department of Computer Science

More information

Chapter 2: Memory Hierarchy Design Part 2

Chapter 2: Memory Hierarchy Design Part 2 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (4 th Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (4 th Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (4 th Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

Chapter 9: Virtual-Memory

Chapter 9: Virtual-Memory Chapter 9: Virtual-Memory Management Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation of Frames Thrashing Other Considerations Silberschatz, Galvin and Gagne 2013

More information

WEEK 7. Chapter 4. Cache Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved.

WEEK 7. Chapter 4. Cache Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved. WEEK 7 + Chapter 4 Cache Memory Location Internal (e.g. processor registers, cache, main memory) External (e.g. optical disks, magnetic disks, tapes) Capacity Number of words Number of bytes Unit of Transfer

More information

Virtual memory. Virtual memory - Swapping. Large virtual memory. Processes

Virtual memory. Virtual memory - Swapping. Large virtual memory. Processes Virtual memory Virtual memory - Swapping Johan Montelius KTH 2017 1: Allowing two or more processes to use main memory, given them an illusion of private memory. 2: Provide the illusion of a much larger

More information