IPv6 Implications on the Management Plane. Huawei, Shenzhen,

Size: px
Start display at page:

Download "IPv6 Implications on the Management Plane. Huawei, Shenzhen,"

Transcription

1 IPv6 Implications on the Management Plane Jürgen Schönwälder Huawei, Shenzhen, / 30

2 Introduction 1 Introduction 2 Plain IPv6 Management is Simple? 3 Scenario: IPv4-to-IPv6 Transition Mechanisms 4 Scenario: Machine-to-Machine in Constrained Networks 5 Conclusions 2 / 30

3 Simplicity vs. Complexity RFC 1925 It is always possible to aglutenate multiple separate problems into a single complex interdependent solution. In most cases this is a bad idea. RFC 3439 Simplicity Principle: complexity must be controlled if one hopes to efficiently scale a complex object. John C. Doyle The evolution of protocols can lead to a robustness / complexity / fragility spiral where complexity added for robustness also adds new fragilities, which in turn leads to new and thus spiraling complexities. 3 / 30

4 Some general remarks about network management... Observations The less (explicit) management is needed, the more cost effective it is to run a network. Generally, the simpler the network structure is, the less (explicit) management is needed. When rolling out new technologies, think early about the information and tools needed to debug problems. Robust automation to support workflows reduces (explicit) management and increases consistency and efficiency. Challenge When evolving the network, think whether it is possible to simplify the network at the same time new features are rolled out try to establish incentives for customers to help you in simplifying the netwok. 4 / 30

5 Plain IPv6 Management is Simple? 1 Introduction 2 Plain IPv6 Management is Simple? 3 Scenario: IPv4-to-IPv6 Transition Mechanisms 4 Scenario: Machine-to-Machine in Constrained Networks 5 Conclusions 5 / 30

6 Cost of running IPv4 and IPv6... Assumption Running a plain IPv6 network is not more complicated or costly than running an IPv4 network. C(IPv4) C(IPv6) When is the assumption justified? If the IPv6 support in devices is as robust and efficient as the IPv4 support. If the IPv6 management and debugging tools are as good and robust as the IPv4 management and debugging tools. If the automation-level is the same for both IPv4 networks and IPv6 networks. If the humans involved understand IPv6 as good as they understand IPv4. 6 / 30

7 Cost of running IPv4 and IPv6... What about running both IPv4 and IPv6? But, running an IPv4 and an IPv6 network concurrently is more expensive than just running an IPv4 network: Influencing C(IPv4 + IPv6) C(IPv4) + C(IPv6) C(IPv4 + IPv6) = C(IPv4) + C(IPv4 + IPv6) C(IPv4) C(IPv6) Consistency ( simplicity) in both the IPv4 and IPv6 world. Additional automation to help maintain consistency. Ultimately, C(IPv4 + IPv6) must be a transient state. Control the time spent in the state C(IPv4 + IPv6). 7 / 30

8 Scenario: IPv4-to-IPv6 Transition Mechanisms 1 Introduction 2 Plain IPv6 Management is Simple? 3 Scenario: IPv4-to-IPv6 Transition Mechanisms 4 Scenario: Machine-to-Machine in Constrained Networks 5 Conclusions 8 / 30

9 Simplicity vs. Complexity Evolution of access networks RTR NAT B4 global prefix global address NAT B4 GW NAT NAT global address Internet 9 / 30

10 Management Implications Examples... NAT traversal issues application protocols got extended discovery protocols (STUN) got invented MTU discovery issues NATs tweaking MSS in TCP SYN exchanges? really? New possible attacks (e.g., address pool exhaustion) some form of throttling mechanism needed more management and monitoring needed Irritations for diagnostic tools (e.g., traceroute) sudden interactions with firewalls additional header options may be needed (all depending on tunnel technologies used) 10 / 30

11 Proactive IPv6 Transition Failure Detection Just an outline of a still rough idea... Smart management software might be able to detect application failures caused by IPv6 transition mechanisms. Once detected, take an active approach to inform the user/customer and provide hints how to transition best (e.g., which software to upgrade). Must be an optional service to turn on/off (do not annoy a customer if he has good reasons to live with the problem) Might be scalable to implement if transition related application protocol failures leave sharp signatures in aggregated flow records 11 / 30

12 Scenario: Machine-to-Machine in Constrained Networks 1 Introduction 2 Plain IPv6 Management is Simple? 3 Scenario: IPv4-to-IPv6 Transition Mechanisms 4 Scenario: Machine-to-Machine in Constrained Networks 5 Conclusions 12 / 30

13 Managing the Internet of Things AVR Raven Hardware ATmega1284PV microcontroller: runs at 20 MHz 16K of RAM 128K of ROM (Flash) Contiki-SNMP Contiki is an operating system for embedded devices SNMP engine (written in C) for constrained devices built on top of the Contiki uipv6 stack (6LoWPAN) 13 / 30

14 IPv6 over Low-Power Wireless Personal Area Networks IEEE Small frame size (max frame size = 127 bytes) Low power devices (some battery operated) Limited memory and processing power Low bandwidth (max data rate = 250 kbps) Large scale and dense deployments Devices and channels tend to be unreliable Devices may use sleep schedules to conserve energy IETF 6LoWPAN IPv6 over IEEE (see RFC 4944) General motivation and overview (see RFC 4919) RPL (routing), COAP (web transfer protocol), / 30

15 Management of 6LoWPAN Networks Typical management questions How many nodes disappeared during the last night/day? How many nodes joined during the last week? What is the temperature, pressure, energy usage (add your favorite sensor here) distribution within the network? What is wrong with my home automation network? How does the routing topology look like? How does the routing topology change if I change the location of nodes? / 30

16 SNMP and 6LoWPAN: End-to-End SNMPv3 end-to-end SNMP Manager SNMPv3 SNMP Agent Internet 6LowPAN Network + Straightforward direct access to individual 6LoWPAN nodes + Reuse of existing deployed SNMP-based tools o End-to-end security, end-to-end key management - Message size and potential fragmentation issues - 6LoWPAN nodes must run an SNMP engine - Trap-directed polling nature of SNMP has high (energy) costs 16 / 30

17 SNMP and 6LoWPAN: Proxies SNMPv3 proxies SNMP Manager SNMPv3 SNMP Proxy (6LowPAN Gateway) SNMPv3 SNMP Agent Internet 6LowPAN Network + Indirect access to individual 6LoWPAN nodes + Alternate transport encoding can reduce message sizes o Reuse of existing SNMP-based tools supporting proxies o Two security domains, different key management schemes - 6LoWPAN nodes must run an SNMP engine - Trap-directed polling nature of SNMP has high (energy) costs 17 / 30

18 SNMP and 6LoWPAN: Subagents SNMPv3 subagents SNMP Manager SNMPv3 SNMP Agent (6LowPAN Gateway) Subagent Protocol SNMP Subagent Internet 6LowPan Network + Indirect access to individual 6LoWPAN nodes + Alternate transport encoding can reduce message sizes o Reuse of existing SNMP-based tools supporting contexts o Two security domains, different key management schemes o 6LoWPAN nodes must run an SNMP subagent - Trap-directed polling nature of SNMP has high (energy) costs 18 / 30

19 SNMP and 6LoWPAN: Data Fusion Protocols SNMPv3 interfacing to data fusion protocols SNMP Manager SNMPv3 SNMP Agent (6LowPAN Gateway) data fusion protocol WSN Peer Internet 6LowPan Network + Indirect access to individual 6LoWPAN nodes + Leveraging data fusion protocols (in-network aggregation) + SNMP agent acting as a cache, no expensive polling o Reuse of existing SNMP-based tools supporting contexts o Two security domains, different key management schemes? No direct advantage of 6LoWPAN technology oops 19 / 30

20 Contiki-SNMP Overview General features / limitations SNMP messages up to 484-byte length Get, GetNext and Set operations SNMPv1 and SNMPv3 message processing models USM security model, no VACM access control model API to define and implement managed objects USM security algorithms HMAC-MD5-96 authentication protocol (RFC 3414) CFB128-AES-128 symmetric encryption protocol (RFC 3826) 20 / 30

21 Implemented MIB Modules and Static Memory Usage MIB modules SNMPv2-MIB SNMP entity information IF-MIB network interface information (no iftype) ENTITY-SENSOR-MIB temperature sensor readings SNMPv1 and SNMPv3 enabled bytes of ROM (around 24% of the available ROM) 235 bytes of statically allocated RAM SNMPv1 enabled 8860 bytes of ROM (around 7% of the available ROM) 43 bytes of statically allocated RAM 21 / 30

22 Flash ROM and Static Memory Usage Memory usage by software module (bytes) Module Flash ROM RAM (static) snmpd.c dispatch.c msg-proc-v1.c msg-proc-v3.c cmd-responder.c mib.c ber.c usm.c aes cfb.c md5.c utils.c / 30

23 Stack and Heap Usage Maximum observed stack usage Version Security mode Max. stack size SNMPv1 688 bytes SNMPv3 noauthnopriv 708 bytes SNMPv3 authnopriv 1140 bytes SNMPv3 authpriv 1144 bytes Heap usage not more than 910 bytes for storing an SNMPv1 message approximately 16 bytes for every managed object in the MIB if a managed object is of a string-based type, then additional heap memory is used to store its value 23 / 30

24 SNMP Request/Response Latency (varying security) Time (ms) SNMPv1 SNMPv3 noauthnopriv SNMPv3 AuthNoPriv transfer processing SNMPv3 AuthPriv 24 / 30

25 SNMPv1 Request/Response Latency (varying # varbinds) request-response delay round-trip time processing time 120 Time (ms) Number of variable bindings in a request 25 / 30

26 Bigger Picture (resource requirements of various protocols) &'3%)*%+,-% 3'(%)*%+0-% D5E8% /'2%)*%+,-% 3'&%)*%+0-% 8E-"%.% E9>:FGH% J'3%)*%+,-% 3'7%)*%+0-% KAA"%.% IF0"% 6%)*%+,-%.%&'7%)*%+0-% L% 45"% &'6%)*%+,-%.%3'7%)*%+0-%!"#$% &&'(%)*%+,-%.%&'/%)*%+0-% AI"% J%)*%+,-%.%3'7%)*%+0-% +"1% 2'(%)*%+,-%.% 3'3&%)*%+0-% 26 / 30

27 Directly Related Work at Jacobs University SNMP applicability to constrained devices Guidelines how to fit SNMP into constrained devices Tricks like making VACM a simple read-only/read-write switch <draft-hamid-6lowpan-snmp-optimizations-02.txt> RPL MIB module specification and implementation Definition of a MIB module for the RPL routing protocol Implementation and evaluation on Econotags <draft-sehgal-roll-rpl-mib-01.txt> DTLS for constrained devices Contiki-SNMP over DTLS (RFC 5590, RFC 5591, RFC 5953) 27 / 30

28 Other Related Work at Jacobs University NETCONF Lite implementation and specification Profile (subset) of NETCONF 1.1 (RFC 6241) Single session, hence trivial locking No <edit-config>, no <get> / <get-config> filtering No optional capabilities No security (yet)... First prototype shown at the Prague IETF (on AVR Ravens) <draft-schoenw-netconf-light-00.txt> Multicast DNS for network management service discovery Managers use mdns to discover manageable devices Devices discover management services via mdns Contiki-mDNS implementation already running <draft-schoenw-opsawg-nm-srv-02.txt> 28 / 30

29 Conclusions 1 Introduction 2 Plain IPv6 Management is Simple? 3 Scenario: IPv4-to-IPv6 Transition Mechanisms 4 Scenario: Machine-to-Machine in Constrained Networks 5 Conclusions 29 / 30

30 Conclusions Operational considerations Operational IP network management costs can be controlled Key is controlling complexity Long-term evolution towards simpler networks needed (this may require to set the right incentives) IPv4-to-IPv6 transition should be transient not permanent Vendor considerations Management support can be a distinguishing factor Transition technologies will lead to new failures modes and hence require additional network management support Constrained M2M networks do require management but it is not clear yet how to do this best 30 / 30

Implementation of SNMP Protocol with ContikiOS [Kur10] for WSN430 targets

Implementation of SNMP Protocol with ContikiOS [Kur10] for WSN430 targets Implementation of Protocol with ContikiOS [Kur10] for WSN430 targets Équipe MADYNES, INRIA 31/03/2011 Mgmt of 6LowPAN Networks [JS10] Why 6LoWPAN Management? Do autonomiclow-poweredconstrained devices

More information

Protocol Profiles for Constrained Devices

Protocol Profiles for Constrained Devices Protocol Profiles for Constrained Devices Jürgen Schönwälder (Jacobs University, Germany) Tina Tsou (Huawei Technologies, USA) Behcet Sarikaya (Huawei Technologies, USA) February 11, 2011 1 Introduction

More information

JacobsSNMP. Siarhei Kuryla. May 10, Networks and Distributed Systems seminar

JacobsSNMP. Siarhei Kuryla. May 10, Networks and Distributed Systems seminar JacobsSNMP Siarhei Kuryla Networks and Distributed Systems seminar May 10, 2010 Simple Network Management Protocol protocol for exchange of management information; exposes management data in the form of

More information

Internet of Things: Standards for IPv6 Enabled Sensor Networks

Internet of Things: Standards for IPv6 Enabled Sensor Networks Internet of Things: Standards for IPv6 Enabled Sensor Networks Jürgen Schönwälder 2012-04-03 http://cnds.eecs.jacobs-university.de/ 1 / 65 IEEE 802.15.4 1 IEEE 802.15.4 Radio Characteristics and Topologies

More information

Configure SNMP. Understand SNMP. This chapter explains Simple Network Management Protocol (SNMP) as implemented by Cisco NCS 4000 series.

Configure SNMP. Understand SNMP. This chapter explains Simple Network Management Protocol (SNMP) as implemented by Cisco NCS 4000 series. This chapter explains Simple Network Management Protocol (SNMP) as implemented by Cisco NCS 4000 series. Understand SNMP, page 1 Basic SNMP Components, page 2 SNMPv3 Support, page 3 SNMP Traps, page 4

More information

CIP over 6LoWPAN. Technical Track. Prepared by Dayin Xu, Paul Brooks, Yi Yu, David Brandt Presented by Paul Brooks.

CIP over 6LoWPAN. Technical Track. Prepared by Dayin Xu, Paul Brooks, Yi Yu, David Brandt Presented by Paul Brooks. CIP over 6LoWPAN Prepared by Dayin Xu, Paul Brooks, Yi Yu, David Brandt Presented by Paul Brooks www.odva.org Technical Track Content Motivation Industrial IP Network Architecture Common Network Stack

More information

Network Address Translators (NATs) and NAT Traversal

Network Address Translators (NATs) and NAT Traversal Network Address Translators (NATs) and NAT Traversal Ari Keränen ari.keranen@ericsson.com Ericsson Research Finland, NomadicLab Outline Introduction to NATs NAT Behavior UDP TCP NAT Traversal STUN TURN

More information

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN Politecnico di Milano Advanced Network Technologies Laboratory 6LowPAN ACKs o Slide/Figures Sources n IPSO Alliance Webinar 6LowPAN for IP Smart Objects n 6LoWPAN: The Wireless Embedded Internet, Shelby

More information

Outlook on IEEE ZigBee Implications IP Requirements IPv6 over Low Power WPAN (IEEE ) Conclusions. KRnet /21

Outlook on IEEE ZigBee Implications IP Requirements IPv6 over Low Power WPAN (IEEE ) Conclusions. KRnet /21 IPv6 over WPAN Soohong Daniel Park soohong.park@samsung.com Mobile Convergence Laboratory, Digital Media R&D Center, SAMSUNG Electronics. Contents Outlook on IEEE 802.15.4 ZigBee Implications IP Requirements

More information

6LoWPAN (IPv6 based Low Power WPAN)

6LoWPAN (IPv6 based Low Power WPAN) 6LoWPAN (IPv6 based Low Power WPAN) Kyung Hee University Nov. 19. 2007 Choong Seon Hong, cshong@khu.ac.kr Outline 2 Overview of 6LoWPAN Transmission of IPv6 Packets over IEEE 802.15.4 WPAN Networks 6LoWPAN

More information

Proposed Node and Network Models for M2M Internet

Proposed Node and Network Models for M2M Internet 2009-2012 NTT CORPORATION. All Rights Reserved. Proposed Node and Network Models for M2M Internet Yuminobu Igarashi NTT Information Sharing Platform Laboratories 2012 NTT Information Sharing Platform Laboratories

More information

CSE 123A Computer Netwrking

CSE 123A Computer Netwrking CSE 123A Computer Netwrking Winter 2005 Mobile Networking Alex Snoeren presenting in lieu of Stefan Savage Today s s issues What are implications of hosts that move? Remember routing? It doesn t work anymore

More information

Internet of Things: Latest Technology Development and Applications

Internet of Things: Latest Technology Development and Applications Internet of Things: Latest Technology Development and Applications Mr UY Tat-Kong Assistant Vice President Network Evolution Planning & Development 22 August 2014 Agenda Communication Technologies Development

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2004 Lecture 9: Mobile Networking Stefan Savage Quick announcements Typo in problem #1 of HW #2 (fixed as of 1pm yesterday) Please consider chapter 4.3-4.3.3 to

More information

Quick announcements. CSE 123b Communications Software. Today s issues. Last class. The Mobility Problem. Problems. Spring 2004

Quick announcements. CSE 123b Communications Software. Today s issues. Last class. The Mobility Problem. Problems. Spring 2004 CSE 123b Communications Software Spring 2004 Lecture 9: Mobile Networking Quick announcements Typo in problem #1 of HW #2 (fixed as of 1pm yesterday) Please consider chapter 4.3-4.3.3 to be part of the

More information

A small introduction to SNMPv3 and how it works with Network Node Manager -i

A small introduction to SNMPv3 and how it works with Network Node Manager -i P a g e 1 Technical white paper SNMPv3 and NNMi A small introduction to SNMPv3 and how it works with Network Node Manager -i May 2015 P a g e 2 Contents Contents... 2 SNMPv3 Introduction... 4 SNMPv3 Enhancements...

More information

Integrating Custom Hardware into Sensor Web. Maria Porcius Carolina Fortuna Gorazd Kandus Mihael Mohorcic

Integrating Custom Hardware into Sensor Web. Maria Porcius Carolina Fortuna Gorazd Kandus Mihael Mohorcic Integrating Custom Hardware into Sensor Web Maria Porcius Carolina Fortuna Gorazd Kandus Mihael Mohorcic OUTLINE 1. Introduction 2. State of the art 3. System architecture - main components 3.1 Hardware

More information

Communications Software. CSE 123b. CSE 123b. Spring Lecture 10: Mobile Networking. Stefan Savage

Communications Software. CSE 123b. CSE 123b. Spring Lecture 10: Mobile Networking. Stefan Savage CSE 123b CSE 123b Communications Software Spring 2003 Lecture 10: Mobile Networking Stefan Savage Quick announcement My office hours tomorrow are moved to 12pm May 6, 2003 CSE 123b -- Lecture 10 Mobile

More information

Quick announcement. CSE 123b Communications Software. Last class. Today s issues. The Mobility Problem. Problems. Spring 2003

Quick announcement. CSE 123b Communications Software. Last class. Today s issues. The Mobility Problem. Problems. Spring 2003 CSE 123b Communications Software Quick announcement My office hours tomorrow are moved to 12pm Spring 2003 Lecture 10: Mobile Networking Stefan Savage May 6, 2003 CSE 123b -- Lecture 10 Mobile IP 2 Last

More information

For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Configuration Fundamentals Command Reference

For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Configuration Fundamentals Command Reference CHAPTER 51 This chapter describes how to configure the Simple Network Management Protocol (SNMP) on the Catalyst 4500 series switch. Note For complete syntax and usage information for the commands used

More information

Mobile Communications

Mobile Communications Mobile Communications Wireless Personal Area Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 IEEE Standards 2 IEEE 802.15.4 Wireless PAN (Sensor Networks) 3 Information Current

More information

Lithe: Lightweight Secure CoAP for the Internet of Things

Lithe: Lightweight Secure CoAP for the Internet of Things Lithe: Lightweight Secure CoAP for the Internet of Things S. Raza, H. Shafagh, etc. IEEE Sensors 2013, Volume 13 1 Mahmoud Kalash 28 March 2016 2 Summary: IEEE Sensors journal 2013. Security problem in

More information

SNMP. Simple Network Management Protocol Philippines Network Operators Group, March Jonathan Brewer Telco2 Limited New Zealand

SNMP. Simple Network Management Protocol Philippines Network Operators Group, March Jonathan Brewer Telco2 Limited New Zealand SNMP Simple Network Management Protocol Philippines Network Operators Group, March 2018 Jonathan Brewer Telco2 Limited New Zealand Objectives Participants will understand the basics of: SNMP Architecture

More information

Network Address Translation (NAT) Contents. Firewalls. NATs and Firewalls. NATs. What is NAT. Port Ranges. NAT Example

Network Address Translation (NAT) Contents. Firewalls. NATs and Firewalls. NATs. What is NAT. Port Ranges. NAT Example Contents Network Address Translation (NAT) 13.10.2008 Prof. Sasu Tarkoma Overview Background Basic Network Address Translation Solutions STUN TURN ICE Summary What is NAT Expand IP address space by deploying

More information

Introduction to IEEE and IPv6 over (6LowPAN)

Introduction to IEEE and IPv6 over (6LowPAN) Introduction to IEEE 802.15.4 and IPv6 over 802.15.4 (6LowPAN) Jürgen Schönwälder AIMS 2009, Enschede, 2009-07-02 This tutorial was supported in part by the EC IST-EMANICS Network of Excellence (26854).

More information

Configuring SNMP. Understanding SNMP CHAPTER

Configuring SNMP. Understanding SNMP CHAPTER CHAPTER 28 This chapter describes how to configure the Simple Network Management Protocol (SNMP) on the Catalyst 2960 switch. For complete syntax and usage information for the commands used in this chapter,

More information

Cloud Based IoT Application Provisioning (The Case of Wireless Sensor Applications)

Cloud Based IoT Application Provisioning (The Case of Wireless Sensor Applications) Cloud Based IoT Application Provisioning (The Case of Wireless Sensor Applications) (ENCS 691K Chapter 7) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/

More information

Foreword xxiii Preface xxvii IPv6 Rationale and Features

Foreword xxiii Preface xxvii IPv6 Rationale and Features Contents Foreword Preface xxiii xxvii 1 IPv6 Rationale and Features 1 1.1 Internet Growth 1 1.1.1 IPv4 Addressing 1 1.1.2 IPv4 Address Space Utilization 3 1.1.3 Network Address Translation 5 1.1.4 HTTP

More information

Technical White Paper for NAT Traversal

Technical White Paper for NAT Traversal V300R002 Technical White Paper for NAT Traversal Issue 01 Date 2016-01-15 HUAWEI TECHNOLOGIES CO., LTD. 2016. All rights reserved. No part of this document may be reproduced or transmitted in any form

More information

IPV6 SIMPLE SECURITY CAPABILITIES.

IPV6 SIMPLE SECURITY CAPABILITIES. IPV6 SIMPLE SECURITY CAPABILITIES. 50 issues from RFC 6092 edited by J. Woodyatt, Apple Presentation by Olle E. Johansson, Edvina AB. ABSTRACT The RFC which this presentation is based upon is focused on

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

Configure Site Network Settings

Configure Site Network Settings About Global Network Settings, page 1 About Device Credentials, page 2 Configure Global Device Credentials, page 4 Configure IP Address Pools, page 9 Configure Global Network Servers, page 9 Configure

More information

Category: Standards Track June Mobile IPv6 Support for Dual Stack Hosts and Routers

Category: Standards Track June Mobile IPv6 Support for Dual Stack Hosts and Routers Network Working Group H. Soliman, Ed. Request for Comments: 5555 Elevate Technologies Category: Standards Track June 2009 Status of This Memo Mobile IPv6 Support for Dual Stack Hosts and Routers This document

More information

Why IPv6? Roque Gagliano LACNIC

Why IPv6? Roque Gagliano LACNIC Why IPv6? Roque Gagliano LACNIC Agenda Initial Concepts. IPv6 History. What is IPv6? Planning IPv6. Agenda Initial Concepts. IPv6 History. What is IPv6? Planning IPv6. Some initial concepts. IPv6 is the

More information

Dual-Stack lite. Alain Durand. May 28th, 2009

Dual-Stack lite. Alain Durand. May 28th, 2009 Dual-Stack lite Alain Durand May 28th, 2009 Part I: Dealing with reality A dual-prong strategy IPv4 reality check: completion of allocation is real Today Uncertainty IPv6 reality check: the IPv4 long tail

More information

TinyOS meets IP -- finally

TinyOS meets IP -- finally TinyOS meets IP -- finally David E. Culler THE Question If Wireless Sensor Networks represent a future of billions of information devices embedded in the physical world, why don t they run THE standard

More information

Internet based IoT connectivity Technologies

Internet based IoT connectivity Technologies Internet based IoT connectivity Technologies ETRI Protocol Engineering Center Yong-Geun Hong(yghong@etri.re.kr) August 20, 2015 Contents Overview IoT Technologies IoT in the viewpoint of Internet IoT connectivity

More information

SNMPv3 Community MIB Support

SNMPv3 Community MIB Support The SNMP Version 3 Community MIB Support feature provides support for the Simple Network Management Protocol Version 3 (SNMPv3) Community MIB (SNMP-COMMUNITY-MIB) module defined in RFC 2576, Coexistence

More information

Interoperability. Luca Mottola slides partly by Simon Duquennoy. Politecnico di Milano, Italy and Swedish Institute of Computer Science

Interoperability. Luca Mottola slides partly by Simon Duquennoy. Politecnico di Milano, Italy and Swedish Institute of Computer Science Interoperability Luca Mottola slides partly by Simon Duquennoy Politecnico di Milano, Italy and Swedish Institute of Computer Science 2 Not just stand-alone systems 3 NES in business processes! Motivation

More information

Embedded Web Services

Embedded Web Services Nov 1 st, 2011 Embedded Web Services Zach Shelby, Chief Nerd 1 Course Overview Powering M2M with the Internet of Things Industry examples What are Web Services? CoRE - Constrained RESTful Environments

More information

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE )

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE ) Reference: 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann What is 6LoWPAN? 6LoWPAN makes this possible - Low-power RF + IPv6 = The Wireless Embedded Internet IPv6 over Low-Power wireless Area

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Configuring SNMP. Information About SNMP. SNMP Functional Overview. This chapter contains the following sections:

Configuring SNMP. Information About SNMP. SNMP Functional Overview. This chapter contains the following sections: This chapter contains the following sections: Information About SNMP, page 1 Licensing Requirements for SNMP, page 5 Guidelines and Limitations for SNMP, page 5 Default SNMP Settings, page 6, page 6 Disabling

More information

CASAN: A New Communication Architecture for Sensors Based on CoAP

CASAN: A New Communication Architecture for Sensors Based on CoAP CASAN: A New Communication Architecture for Sensors Based on Pierre David pda@unistra.fr Philippe Pittoli p.pittoli@unistra.fr Thomas Noël noel@unistra.fr Laboratoire ICube Université de Strasbourg France

More information

System Architecture Challenges in the Home M2M Network

System Architecture Challenges in the Home M2M Network System Architecture Challenges in the Home M2M Network Michael Starsinic InterDigital Communications M2M Background M2M Communications Machine-to-Machine or Machine-to-Man The Machine usually includes

More information

Slide 1. Slide 2. Slide 3. Technological Advantages of Mobile IPv6. Outline of Presentation. Earth with 2 Billion Mobile devices

Slide 1. Slide 2. Slide 3. Technological Advantages of Mobile IPv6. Outline of Presentation. Earth with 2 Billion Mobile devices Slide 1 Technological Advantages of Mobile IPv6 Nokia Research Center Mountain View, CA USA Charles E. Perkins http://people.nokia.net/charliep charliep@iprg.nokia.com 1 NOKIA NERD2000.PPT/ 11/20/00 /

More information

SilverCreek Compare Versions

SilverCreek Compare Versions Platform Support: Windows Linux Includes all the platfoms listed above T T T x x x x x x Test Coverage: Tests for SNMPv1, v2c, all private and standard MIBs Tests for SNMPv1, v2c, v3, all private and standard

More information

Problem space matrix based on the guideline* Crossing IPv4 Island

Problem space matrix based on the guideline* Crossing IPv4 Island Problem space matrix based on the guideline* Crossing IPv4 Island IPv6-Only Core Network Stateful RFC5571 (L2TP) DS-Lite (draft) Stateless RFC5969 (6rd) Our target 4rd (to be STD) (draft-despres-intarea-4rd)

More information

W3C Workshop on the Web of Things

W3C Workshop on the Web of Things W3C Workshop on the Web of Things Enablers and services for an open Web of Devices 25 26 June 2014, Berlin, Germany Position Paper by Kheira Bekara, and Chakib Bekara - Centre de de Dveloppement des Technologies

More information

Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings

Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings By Lars Schor, Philipp Sommer, Roger Wattenhofer Computer Engineering and Networks Laboratory ETH Zurich, Switzerland

More information

IoT on Fedora Using Fedora as a base for the IoT Revolution

IoT on Fedora Using Fedora as a base for the IoT Revolution IoT on Fedora Using Fedora as a base for the IoT Revolution Presented by Peter Robinson Fedora contriibutor, Red Hatter CC-BY-SA Overview Am I just going to talk ARM? HELL NO!! IoT is a LOT bigger than

More information

This chapter will describe the architecture that the

This chapter will describe the architecture that the C H A P T E R 4 SNMPv3 Framework This chapter will describe the architecture that the SNMPv3 Framework is defined under. It will also show new textual conventions that have been defined for SNMPv3, along

More information

Integration of Wireless Sensor Network Services into other Home and Industrial networks

Integration of Wireless Sensor Network Services into other Home and Industrial networks Integration of Wireless Sensor Network Services into other Home and Industrial networks using Device Profile for Web Services (DPWS) Ayman Sleman Automation and Process Control Engineering, University

More information

IPv6 Transitioning. An overview of what s around. Marco Hogewoning Trainer, RIPE NCC

IPv6 Transitioning. An overview of what s around. Marco Hogewoning Trainer, RIPE NCC IPv6 Transitioning An overview of what s around Marco Hogewoning Trainer, RIPE NCC There Was a Plan The original idea was to have IPv6 deployed before we were out of IPv4 addresses By now the whole of

More information

IPv6: Are we really ready to turn off IPv4? Geoff Huston APNIC

IPv6: Are we really ready to turn off IPv4? Geoff Huston APNIC IPv6: Are we really ready to turn off IPv4? Geoff Huston APNIC The IPv6 Timeline 1990 2000 2010 2020 The IPv6 Timeline Yes, we ve been working on this for close to 30 years! 1990 2000 2010 2020 In-situ

More information

ARM IoT Tutorial. CoAP: The Web of Things Protocol Zach Shelby. April 30 th, 2014

ARM IoT Tutorial. CoAP: The Web of Things Protocol Zach Shelby. April 30 th, 2014 ARM IoT Tutorial CoAP: The Web of Things Protocol Zach Shelby April 30 th, 2014 1 2 Introduction Evolution from M2M to IoT M2M Big Data Internet of Things Services Web The Web Little Data Things 3 3 CoAP:

More information

CS November 2018

CS November 2018 Distributed Systems 21. Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2018 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance

More information

Distributed Systems. 21. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2018

Distributed Systems. 21. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2018 Distributed Systems 21. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2018 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance

More information

Network Address Translation. All you want to know about

Network Address Translation. All you want to know about Network Address Translation All you want to know about (C) Herbert Haas 2005/03/11 Reasons for NAT Mitigate Internet address depletion Save global addresses (and money) Conserve internal address plan TCP

More information

Network Address Translation (NAT) Background Material for Overlay Networks Course. Jan, 2013

Network Address Translation (NAT) Background Material for Overlay Networks Course. Jan, 2013 Network Address Translation (NAT) Background Material for Overlay Networks Course Jan, 2013 Prof. Sasu Tarkoma University of Helsinki, Department of Computer Science Contents Overview Background Basic

More information

Configuring SNMP. About SNMP. SNMP Functional Overview

Configuring SNMP. About SNMP. SNMP Functional Overview This chapter describes how to configure the SNMP feature on Cisco NX-OS devices. This chapter contains the following sections: About SNMP, page 1 Licensing Requirements for SNMP, page 7 Guidelines and

More information

Techological Advantages of Mobile IPv6

Techological Advantages of Mobile IPv6 Techological Advantages of Mobile IPv6 Nokia Research Center Mountain View, CA USA Charles E. Perkins http://people.nokia.net/charliep charliep@iprg.nokia.com 1 NOKIA NERD2000.PPT/ 11/20/00 / HFl Outline

More information

This chapter describes how to configure Simple Network Management Protocol (SNMP) to monitor the Cisco ASA.

This chapter describes how to configure Simple Network Management Protocol (SNMP) to monitor the Cisco ASA. This chapter describes how to configure Simple Network Management Protocol () to monitor the Cisco ASA. About, page 1 Guidelines for, page 4 Configure, page 6 Monitoring, page 10 History for, page 11 About

More information

Unit 5 - IPv4/ IPv6 Transition Mechanism(8hr) BCT IV/ II Elective - Networking with IPv6

Unit 5 - IPv4/ IPv6 Transition Mechanism(8hr) BCT IV/ II Elective - Networking with IPv6 5.1 Tunneling 5.1.1 Automatic Tunneling 5.1.2 Configured Tunneling 5.2 Dual Stack 5.3 Translation 5.4 Migration Strategies for Telcos and ISPs Introduction - Transition - the process or a period of changing

More information

CS Efficient Network Management. Class 5. Danny Raz

CS Efficient Network Management. Class 5. Danny Raz CS236635 Efficient Network Management Class 5 Danny Raz 1 Minhalot Exercise 1 is due TODAY Exercise2 writing a paper review (list will be on the Web by the midterm) Mailing list - exists Mid Term exam:

More information

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12 TCP/IP Networking Training Details Training Time : 9 Hours Capacity : 12 Prerequisites : There are no prerequisites for this course. About Training About Training TCP/IP is the globally accepted group

More information

Cisco 5921 Embedded Services Router

Cisco 5921 Embedded Services Router Data Sheet Cisco 5921 Embedded Services Router The Cisco 5921 Embedded Services Router (ESR) is a Cisco IOS software router application. It is designed to operate on small, low-power, Linux-based platforms

More information

Chapter 12 Network Protocols

Chapter 12 Network Protocols Chapter 12 Network Protocols 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems Interconnection (OSI) Transmission Control Protocol/Internetworking Protocol (TCP/IP)

More information

IPv6 Transition Mechanisms

IPv6 Transition Mechanisms IPv6 Transition Mechanisms Petr Grygárek rek 1 IPv6 and IPv4 Coexistence Expected to co-exist together for many years Some IPv4 devices may exist forever Slow(?) transition of (part of?) networks to IPv6

More information

Configuring Simple Network Management Protocol

Configuring Simple Network Management Protocol Configuring Simple Network Management Protocol Finding Feature Information, page 1 Prerequisites for SNMP, page 1 Restrictions for SNMP, page 3 Information About SNMP, page 4 How to Configure SNMP, page

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information

RF and network basics. Antonio Liñán Colina

RF and network basics. Antonio Liñán Colina RF and network basics Antonio Liñán Colina Architectures: 8-bit, 16-bit, 32-bit Open Source (source code openly available) IPv4/IPv6/Rime networking Devices with < 8KB RAM Typical applications < 50KB Flash

More information

IPv6 in Internet2. Rick Summerhill Associate Director, Backbone Network Infrastructure, Internet2

IPv6 in Internet2. Rick Summerhill Associate Director, Backbone Network Infrastructure, Internet2 IPv6 in Internet2 Rick Summerhill Associate Director, Backbone Network Infrastructure, Internet2 North American IPv6 Global Summit Arlington, VA 8 December 2003 Outline General Internet2 Infrastructure

More information

ZigBee IP update IETF 87 Berlin. Robert Cragie

ZigBee IP update IETF 87 Berlin. Robert Cragie ZigBee IP update IETF 87 Berlin Robert Cragie robert.cragie@gridmerge.com Introduction ZigBee IP is a super specification for an IPv6 stack Umbrella specification for a set of IETF RFCs Aimed at 802.15.4

More information

Configuring SNMP. Understanding SNMP CHAPTER

Configuring SNMP. Understanding SNMP CHAPTER 22 CHAPTER Configuring SNMP This chapter describes how to configure the ML-Series card for operating with Simple Network Management Protocol (SNMP). Note For complete syntax and usage information for the

More information

Using Access Point Communication Protocols

Using Access Point Communication Protocols Information About Access Point Communication Protocols, page 1 Restrictions for Access Point Communication Protocols, page 2 Configuring Data Encryption, page 2 Viewing CAPWAP Maximum Transmission Unit

More information

Manage Your Device Inventory

Manage Your Device Inventory About Device Inventory, page 1 Device Inventory and Cisco ISE Authentication, page 7 Device Inventory Tasks, page 7 Add a Device Manually, page 8 Filter Devices, page 12 Change Devices Layout View, page

More information

IPv6: Are we really ready to turn off IPv4?

IPv6: Are we really ready to turn off IPv4? IPv6: Are we really ready to turn off IPv4? In-situ transition In-situ transition Phase 1 Early Deployment IPv4 Internet Edge Dual-Stack Networks IPv6 networks interconnect by IPv6-over-IPv4 tunnels In-situ

More information

Network Address Translation

Network Address Translation Network Address Translation All you want to know about (C) Herbert Haas 2005/03/11 Reasons for NAT Mitigate Internet address depletion Save global addresses (and money) Conserve internal address plan TCP

More information

Always Keep IT Purely Simple

Always Keep IT Purely Simple Always Keep IT Purely Simple Network Monitoring Software Page 1 CEO Message AKiPS is a scalable, fully featured monitoring tool that collects, reports and alerts on the performance of your network infrastructure.

More information

Appendix C Software Specifications

Appendix C Software Specifications Appendix C Software Specifications This appendix lists the following information: IEEE compliance RFC support ISO/IEC specification support Internet draft support NOTE: For a list of features supported

More information

Outline. Introduction. The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping

Outline. Introduction. The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping Outline Introduction The Internet of Things Applications of 6LoWPAN The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping Link-Layer Commissioning

More information

Fixed Internetworking Protocols and Networks. IP mobility. Rune Hylsberg Jacobsen Aarhus School of Engineering

Fixed Internetworking Protocols and Networks. IP mobility. Rune Hylsberg Jacobsen Aarhus School of Engineering Fixed Internetworking Protocols and Networks IP mobility Rune Hylsberg Jacobsen Aarhus School of Engineering rhj@iha.dk 1 2011 ITIFN Mobile computing Vision Seamless, ubiquitous network access for mobile

More information

Information Network Systems The network layer. Stephan Sigg

Information Network Systems The network layer. Stephan Sigg Information Network Systems The network layer Stephan Sigg Tokyo, November 1, 2012 Error-detection and correction Decoding of Reed-Muller codes Assume a second order (16, 11) code for m = 4. The r-th order

More information

IPv6 Rapid Deployment (6rd) in broadband networks. Allen Huotari Technical Leader June 14, 2010 NANOG49 San Francisco, CA

IPv6 Rapid Deployment (6rd) in broadband networks. Allen Huotari Technical Leader June 14, 2010 NANOG49 San Francisco, CA Rapid Deployment () in broadband networks Allen Huotari Technical Leader ahuotari@cisco.com June 14, 2010 NANOG49 San Francisco, CA 1 Why IP Tunneling? IPv4 Tunnel Tunnel IPv4 IPv4 Retains end-end IP semantics

More information

Configuring SNMP. Understanding SNMP CHAPTER

Configuring SNMP. Understanding SNMP CHAPTER 24 CHAPTER This chapter describes how to configure the the ML1000-2, ML100T-12, ML100X-8, and ML-MR-10 cards for operating with Simple Network Management Protocol (SNMP). Note For complete syntax and usage

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

IPv6 Transition Mechanisms

IPv6 Transition Mechanisms IPv6 Transition Mechanisms Petr Grygárek rek 1 IPv6 and IPv4 Coexistence Expected to co-exist together for many years Some IPv4 devices may exist forever Slow(?) transition of (part of?) networks to IPv6

More information

IETF RFCs Supported by Cisco NX-OS Unicast Features Release 6.x

IETF RFCs Supported by Cisco NX-OS Unicast Features Release 6.x IETF Supported by Cisco NX-OS Unicast Features Release 6.x BGP, page 1 First-Hop Redundancy Protocols, page 2 IP Services, page 3 IPv6, page 3 IS-IS, page 4 OSPF, page 5 RIP, page 5 BGP RFC 1997 BGP Communities

More information

Why do we really want an ID/locator split anyway?

Why do we really want an ID/locator split anyway? Why do we really want an ID/locator split anyway? Dave Thaler dthaler@microsoft.com MobiArch 2008 1 Starting from basics Users deal with names, not addresses (esp. in IPv6) Humans need friendly identifiers

More information

MPLS Label Distribution Protocol (LDP)

MPLS Label Distribution Protocol (LDP) MPLS Label Distribution Protocol (LDP) Feature History Release 12.0(10)ST 12.0(14)ST 12.1(2)T 12.1(8a)E 12.2(2)T 12.2(4)T 12.0(21)ST 12.0(22)S Modification This feature was introduced in Cisco IOS Release

More information

Configuring the Cisco APIC-EM Settings

Configuring the Cisco APIC-EM Settings Logging into the Cisco APIC-EM, page 1 Quick Tour of the APIC-EM Graphical User Interface (GUI), page 2 Configuring the Prime Infrastructure Settings, page 3 Discovery Credentials, page 4 Security, page

More information

Shim6: Network Operator Concerns. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI

Shim6: Network Operator Concerns. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI Shim6: Network Operator Concerns Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI Not Currently Supporting IPv6? Many parties are going forward with IPv6 Japan

More information

An Industry view of IPv6 Advantages

An Industry view of IPv6 Advantages An Industry view of IPv6 Advantages March 2002 Yanick.Pouffary@Compaq.Com Imagine what IPv6 can do for you! 1 Where we are Today IPv4 a victim of its own success IPv4 addresses consumed at an alarming

More information

ETSI M2M Workshop. IPSO Alliance Standard Update. Patrick Wetterwald Cisco Smart Grid and IoT Product Marketing President, IPSO Alliance

ETSI M2M Workshop. IPSO Alliance Standard Update. Patrick Wetterwald Cisco Smart Grid and IoT Product Marketing President, IPSO Alliance ETSI M2M Workshop IPSO Alliance Standard Update Patrick Wetterwald Cisco Smart Grid and IoT Product Marketing President, IPSO Alliance Copyright 2009 Cisco Systems, Inc. All rights reserved. Promoting

More information

Constrained Application Protocol (CoAP) Vilen Looga, M.Sc. Doctoral

Constrained Application Protocol (CoAP) Vilen Looga, M.Sc. Doctoral Constrained Application Protocol (CoAP) Vilen Looga, M.Sc. Doctoral Student @dcs.aalto Outline Introduction CoAP at a glance Messages Observe Hardware Demo MAMMOTH Conclusions References 50 billion connected

More information

Study of RPL DODAG Version Attacks

Study of RPL DODAG Version Attacks Study of RPL DODAG Version Attacks Anthéa Mayzaud anthea.mayzaud@inria.fr Rémi Badonnel Isabelle Chrisment Anuj Sehgal s.anuj@jacobs-university.de Jürgen Schönwälder IFIP AIMS 2014 Brno, Czech Republik

More information

An Implementation of Fog Computing Attributes in an IoT Environment

An Implementation of Fog Computing Attributes in an IoT Environment An Implementation of Fog Computing Attributes in an IoT Environment Ranjit Deshpande CTO K2 Inc. Introduction Ranjit Deshpande CTO K2 Inc. K2 Inc. s end-to-end IoT platform Transforms Sensor Data into

More information

CS November 2017

CS November 2017 Distributed Systems 21. Delivery Networks () Paul Krzyzanowski Rutgers University Fall 2017 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance Flash

More information

Tik Network Application Frameworks. IPv6. Pekka Nikander Professor (acting) / Chief Scientist HUT/TML / Ericsson Research NomadicLab

Tik Network Application Frameworks. IPv6. Pekka Nikander Professor (acting) / Chief Scientist HUT/TML / Ericsson Research NomadicLab Pekka Nikander TKK/TML Tik-110.448 Network Application Frameworks IPv6 Pekka Nikander Professor (acting) / Chief Scientist HUT/TML / Ericsson Research NomadicLab 1 Pekka.Nikander@hut.fi Pekka Nikander

More information