DiffServ over Network Processors: Implementation and Evaluation

Size: px
Start display at page:

Download "DiffServ over Network Processors: Implementation and Evaluation"

Transcription

1 DiffServ over Network Processors: Implementation and Evaluation Authors:Ying-Dar Lin, Yi-Neng, Shun-Chin Yang, and Yu-Shen Lin Speaker: Yi-Neng Lin Department of Computer and Information Science National Chiao Tung University Hsinchu, Taiwan Outline Y Motivation Y Introduction Y Hardware architecture of IXP12 Y Design and implementation of DiffServ over IXP12 Y External benchmark Y Internal benchmark Y Conclusions and future works 1

2 Motivation Y Scalable data-plane processing in Firewall, DiffServ, and WebSwitch Y Solutions Y General processor Y General processor + ASIC Y General processor + co-processors (NP) Y Offload the data-plane processing to co-processors Introduction(1/2) Y Why Network Processor? Y Scalability and programmability Y Hardware-based threads in co-processors, zero context swap overhead Y Specifically designed instruction set for networking purpose Instructions of Instructiondescription Instructionsof x86processor IXP12 ALU PerformALUwithshift inoneinstruction ALU(ADDor SUB) +shift IMMED Load an immediate value with shift Load + shift FIND_BSET LOAD_BSET 1 Determinethepositionof thefirst set bit ina16-bit fieldof aregister At least 5instructionstotest one single bit 2 Shift optionprovided BR_BSET Branchif thespecifiedbit inaregister isset Shift +bit test +JUMP HASH1_64 Performone64-bit hashoperation Manyinstructions needed 2

3 Introduction(2/2) Y Related work--ip forwarding over IXP12 [Spalink, SOSP 18] Y Identify that SDRAM is the bottleneck in IP forwarding Y May not be generalized for other complex applications Y Investigated issues Y Map DiffServ modules to IXP12 Y Flow scalability Y Aggregate throughput Y Internal simulations Y Bottlenecks of IXP12 in DiffServ þýüûþýúùøý öõôú ôóýú 3

4 Components of IXP12 Y Y Processors Y Integrated StrongArm Core for control-plane Y Six integrated programmable microengines for data-plane Each has four threads Interfaces and Storage Y 64-bit IX Bus, 42Gbps peak bandwidth Y 32MB, 64-bit SDRAM interface (up to 256MB) Y 2MB, 32-bit SRAM interface (up to 8MB) Y 2K instruction headroom (named control store ) for each microengine IXP12 Block Diagram IXP12 Network Processor 32 PCI Bus Unit StrongARM Core SDRAM (up to 256MB) SRAM (upto8mb) SDRAM Memory Unit SRAM Memory Unit Microengine1 Microengine2 Microengine3 Microengine4 Microengine5 Microengine6 Boot ROM (up ot 8MB) IX Bus InterfaceUnit Ready Bus Sequencer 64 FIFO Bus (IXBus) 66/85MHz 1Mb/1Mb/1Gb Ethernet MAC Another IXP 12 ü 4

5 Design and Implementation of DiffServ over IXP12 Y Packet flow in a DiffServ edge router Y Data-Plane Architecture Y Detail packet flow chart Y Algorithm description Packet Flow in a DiffServ Edge Router DiffServ (Differentiated Services) edge router Service Configuration Traffic MF classifier Policer Marker Queue Mngt Scheduler þ 5

6 Data-Plane Architecture Thread allocation: consider the size of the control store (2K) receiver thread Rx 8 threads for 8 1/1 ports 8 threads for 1 Giga port StrongARM token bucket timer nextpac ipverify classification policing not EOP packet store enqueue lmatch marking scheduling scheduler thread 1 threads for 1/1 ports 1 threads for 1 Giga port Tx transmitter thread Tx_ReadAssignment 3 threads for 1/1 ports 3 threads for 1 Giga port Tx fill DiffServ Packet Flow in IXP12 The basic unit in IXP12 is the 64 bytes MAC Packet (MP) 6

7 Multi-Dimensional Range Matching [Lakshman, 1998] A rule is a pair of IP addresses which specifies a range Use Bit Vector table to record the overlapped rules in an interval FIND_BSET can be applied for finding the first matched fule Source IP dimension Src_ip of the packet #3 #7 #2 #5 #6 #1 Time complexity: O(log n) Space complexity: O(n^2) # BVn bit vector for this interval Intervals B E SRAM BV table 512bit BV1 BVn Deficit Round Robin [Shreedhar, 1996] Step1 Round Robin Pointer Packet Queues Deficit Counter Step2 Round Robin Pointer Deficit Counter # # #2 5 5 # # # # # Quantum Size 5 Quantum Size 5 7

8 Packet in the Queue SRAM_QUEUE_DESCRIPTOR_BASE Per Queue, Per Port SRAM_BUFF_DESCRIPTOR_BASE PACKET_FREELIST SDRAM_PKT_BUFF_BASE Actual Packet Storage Head Addr Tail Addr Packet Count 32 Next buf_handle buf_des_addr* bytes MP 64 bytes MP 32 Next buf_handle buf_des_addr*64 32 Next buf_handle NULL buf_des_addr*64 þýüûúùø öüúõôóùûò YScalability test YAggregate throughput test IXP12 8

9 Scalability Test 5 EF Flows Maximum load that results no packet loss = 58% Flow fairness test (Len=64bytes, input port x1, 5 flows, BW=744/5=148pps) Throughput (pps) Input load 1% 5% Flow index Aggregate Throughput Throughput (Mbps) Aggregate throughput (Len=64bytes, worst case) 1FE on 1ME 2FE on 2 ME 4FE on 1 ME 8FE on 2 ME 1Gigaon 2ME 8FE + 1Giga Number of policy rules Wire speed (18Gbps) in IP forwarding while 29Mbps in DiffServ? -- The complex computation and the delay of SRAM access ü 9

10 úýüûúùø öüúõôóùûò Host PC StrongARM App HAL Transactor IXP12 Transactor IO 1 Input Port: -6 2 Wire-speed input traffic virtual devices SRAM SDRAM MEs IX bus Simulation Results Algorithm for classifier SRAM Util ME Util SDRAM Util Bottleneck Linear Search 55% 8% 9% SRAM Range Matching 353% 1% 13% ME YSRAM bottleneck YA bottleneck unit needs not to be 1% utilized YBursty SRAM access YMay also cause an idle microengine YME bottleneck YComplex data calculations in Range Matching þ 1

11 Performance Statistics History(RM) Performance statistics History(LN) 11

12 Possible Solutions for Bottlenecks (1/2) Y SRAM bottleneck Y Divide one large SRAM into smaller banks YEach has an interface for accessing a portion of the address space YAn arbitrator decides which bank to go Y Redundant memory modules Y Another memory architecture YQDR SRAM (16Gbps, 2~3 times faster than ordinary SRAM) Y Additional cache memory for exploiting locality Possible Solutions for Bottlenecks (2/2) Y ME bottleneck Y Fair, dynamic workload assignment Y Hardware upgrade Y Programming optimization 12

13 Conclusion and Future Works (1/2) Y ó øüóüúý ùú üúõôóùûò üû üû úüý ûò û õü û Y ó ýùý ú ùú ýýøüúüõò úüý ûò û õü û Y óùøø õ úýû ø ý ûü ó øü ù ø õùý ú úø Y Y ö ýýøüúüõò ý ø ùý ú Y þýýüûúûùø öõôóýö ý ûü ûò Y úùó õ ù úóüúý ûòø ù ý Y õôü ø ú ùó ú ý ü ýôûüù ú ù Conclusions and Future Works (2/2) Application specific bottleneck: bottleneck may shift! 13

14 References [1] IXP12 Data Sheet, Intel document number , May 2 [2] T Spalink, S Karlin, L Peterson, and Y Gottlieb, Building a Robust Software-Based Router Using Network Processors, Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP) [3]SBlake,DBlack,MCarlson,EDavies,ZWang,andWWeiss, AnArchitecturefor Differentiated Services, RFC 2475, Dec 1998 [4] P Gupta, and N McKeown, Packet Classification on Multiple Fields, ACM SIGCOMM 99 [5]VSrinivasan,GVarghese,SSuri,andMWaldvogel, FastandScalableLayerFour Switching, ACM SIGCOMM 98 [6] A Demers, S Keshav, and S Shenker, Analysis and Simulation of a Fair Queuing Algorithm, ACM SIGCOMM 89 [7] TV Lakshman, and D Stiliadis, High-Speed Policy-based Packet Forwarding Using Efficient Multi-dimensional Range Matching, ACM SIGCOMM 98 [8] M Shreedhar, and G Varghese, Efficient Fair Queuing Using Deficit Round-Robin, IEEE/ACM Transactions on Networking, June 1996, vol 4, no 3, pp [9] LV Nguyen, T Eyers, and JF Chicharo, Differentiated Service Performance Analysis, Fifth IEEE Symposium on Computers and Communications, 2, pp [1] JK Muppala, T Bancherdvanich, and A Tyagi, VoIP Performance on Differentiated Services Enabled Network, IEEE International Conference on Network, 2, pp [11] J Harju, and P Kivimaki, Co-operation and Comparison of Diffserv and Intserv: performance measurements, 25th Annual IEEE Conference on Local Computer Networks, 2, pp [12] Z Di, and HT Mouftah, Performance Evaluation of Per-Hop Forwarding Behaviors in the DiffServ Internet, Fifth IEEE Symposium on Computers and Communications, 2, pp

Design and Evaluation of Diffserv Functionalities in the MPLS Edge Router Architecture

Design and Evaluation of Diffserv Functionalities in the MPLS Edge Router Architecture Design and Evaluation of Diffserv Functionalities in the MPLS Edge Router Architecture Wei-Chu Lai, Kuo-Ching Wu, and Ting-Chao Hou* Center for Telecommunication Research and Department of Electrical Engineering

More information

Hierarchically Aggregated Fair Queueing (HAFQ) for Per-flow Fair Bandwidth Allocation in High Speed Networks

Hierarchically Aggregated Fair Queueing (HAFQ) for Per-flow Fair Bandwidth Allocation in High Speed Networks Hierarchically Aggregated Fair Queueing () for Per-flow Fair Bandwidth Allocation in High Speed Networks Ichinoshin Maki, Hideyuki Shimonishi, Tutomu Murase, Masayuki Murata, Hideo Miyahara Graduate School

More information

Towards Effective Packet Classification. J. Li, Y. Qi, and B. Xu Network Security Lab RIIT, Tsinghua University Dec, 2005

Towards Effective Packet Classification. J. Li, Y. Qi, and B. Xu Network Security Lab RIIT, Tsinghua University Dec, 2005 Towards Effective Packet Classification J. Li, Y. Qi, and B. Xu Network Security Lab RIIT, Tsinghua University Dec, 2005 Outline Algorithm Study Understanding Packet Classification Worst-case Complexity

More information

VPN Gateways over Network Processors: Implementation and Evaluation

VPN Gateways over Network Processors: Implementation and Evaluation VPN Gateways over Network Processors: Implementation and Evaluation 1 VPN Gateways over Network Processors: Implementation and Evaluation Yi-Neng Lin 1, Ying-Dar Lin 1, Yuan-Cheng Lai 2, Chuan-Hung Lin

More information

MUD: Send me your top 1 3 questions on this lecture

MUD: Send me your top 1 3 questions on this lecture Administrivia Review 1 due tomorrow Email your reviews to me Office hours on Thursdays 10 12 MUD: Send me your top 1 3 questions on this lecture Guest lectures next week by Prof. Richard Martin Class slides

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

Network Support for Multimedia

Network Support for Multimedia Network Support for Multimedia Daniel Zappala CS 460 Computer Networking Brigham Young University Network Support for Multimedia 2/33 make the best of best effort use application-level techniques use CDNs

More information

QoS Services with Dynamic Packet State

QoS Services with Dynamic Packet State QoS Services with Dynamic Packet State Ion Stoica Carnegie Mellon University (joint work with Hui Zhang and Scott Shenker) Today s Internet Service: best-effort datagram delivery Architecture: stateless

More information

Stateless Proportional Bandwidth Allocation

Stateless Proportional Bandwidth Allocation Stateless Proportional Bandwidth Allocation Prasanna K. Jagannathan *a, Arjan Durresi *a, Raj Jain **b a Computer and Information Science Department, The Ohio State University b Nayna Networks, Inc. ABSTRACT

More information

Improving QOS in IP Networks. Principles for QOS Guarantees

Improving QOS in IP Networks. Principles for QOS Guarantees Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential

More information

of-service Support on the Internet

of-service Support on the Internet Quality-of of-service Support on the Internet Dept. of Computer Science, University of Rochester 2008-11-24 CSC 257/457 - Fall 2008 1 Quality of Service Support Some Internet applications (i.e. multimedia)

More information

Congestion Control and Resource Allocation

Congestion Control and Resource Allocation Problem: allocating resources Congestion control Quality of service Congestion Control and Resource Allocation Hongwei Zhang http://www.cs.wayne.edu/~hzhang The hand that hath made you fair hath made you

More information

Workload Characterization and Performance for a Network Processor

Workload Characterization and Performance for a Network Processor Workload Characterization and Performance for a Network Processor Mitsuhiro Miyazaki Princeton Architecture Laboratory for Multimedia and Security (PALMS) May. 16. 2002 Objectives To evaluate a NP from

More information

CSE 461 Quality of Service. David Wetherall

CSE 461 Quality of Service. David Wetherall CSE 461 Quality of Service David Wetherall djw@cs.washington.edu QOS Focus: How to provide better than best effort Fair queueing Application Application needs Transport Traffic shaping Guarantees IntServ

More information

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach Topic 4b: QoS Principles Chapter 9 Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 9-1 Providing multiple classes of service thus far: making

More information

Network Model for Delay-Sensitive Traffic

Network Model for Delay-Sensitive Traffic Traffic Scheduling Network Model for Delay-Sensitive Traffic Source Switch Switch Destination Flow Shaper Policer (optional) Scheduler + optional shaper Policer (optional) Scheduler + optional shaper cfla.

More information

Problem Statement. Algorithm MinDPQ (contd.) Algorithm MinDPQ. Summary of Algorithm MinDPQ. Algorithm MinDPQ: Experimental Results.

Problem Statement. Algorithm MinDPQ (contd.) Algorithm MinDPQ. Summary of Algorithm MinDPQ. Algorithm MinDPQ: Experimental Results. Algorithms for Routing Lookups and Packet Classification October 3, 2000 High Level Outline Part I. Routing Lookups - Two lookup algorithms Part II. Packet Classification - One classification algorithm

More information

An Evaluation of Deficit Round Robin Fair Queuing Applied in Router Congestion Control

An Evaluation of Deficit Round Robin Fair Queuing Applied in Router Congestion Control JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 333-339 (2002) Short aper An Evaluation of Deficit Round Robin Fair ueuing Applied in Router Congestion Control Department of Electrical Engineering National

More information

Topic & Scope. Content: The course gives

Topic & Scope. Content: The course gives Topic & Scope Content: The course gives an overview of network processor cards (architectures and use) an introduction of how to program Intel IXP network processors some ideas of how to use network processors

More information

Towards High-performance Flow-level level Packet Processing on Multi-core Network Processors

Towards High-performance Flow-level level Packet Processing on Multi-core Network Processors Towards High-performance Flow-level level Packet Processing on Multi-core Network Processors Yaxuan Qi (presenter), Bo Xu, Fei He, Baohua Yang, Jianming Yu and Jun Li ANCS 2007, Orlando, USA Outline Introduction

More information

EFFICIENT AND FAIR HIERARCHICAL PACKET SCHEDULING USING DYNAMIC DEFICIT ROUND ROBIN

EFFICIENT AND FAIR HIERARCHICAL PACKET SCHEDULING USING DYNAMIC DEFICIT ROUND ROBIN EFFICIENT AND FAIR HIERARCHICAL PACKET SCHEDULING USING DYNAMIC DEFICIT ROUND ROBIN Chin-Chi Wu 1, Chiou Moh Hsien-Ming Wu 1,3 Ding-Jyh Tsaur 1, Woei Lin 1 1 Institute of Computer Science National Chung

More information

Implementation of Start-Time Fair Queuing Algorithm in OPNET

Implementation of Start-Time Fair Queuing Algorithm in OPNET Implementation of Start-Time Fair Queuing Algorithm in OPNET CMPT885/ENSC835 Final Project by Daryn Mitchell daryn@cs.sfu.ca Jack Man Shun Yeung yeung@cs.sfu.ca April 4, 2002. Road map Background and Introduction

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

A 400Gbps Multi-Core Network Processor

A 400Gbps Multi-Core Network Processor A 400Gbps Multi-Core Network Processor James Markevitch, Srinivasa Malladi Cisco Systems August 22, 2017 Legal THE INFORMATION HEREIN IS PROVIDED ON AN AS IS BASIS, WITHOUT ANY WARRANTIES OR REPRESENTATIONS,

More information

Router Architectures

Router Architectures Router Architectures Venkat Padmanabhan Microsoft Research 13 April 2001 Venkat Padmanabhan 1 Outline Router architecture overview 50 Gbps multi-gigabit router (Partridge et al.) Technology trends Venkat

More information

Multicast and Quality of Service. Internet Technologies and Applications

Multicast and Quality of Service. Internet Technologies and Applications Multicast and Quality of Service Internet Technologies and Applications Aims and Contents Aims Introduce the multicast and the benefits it offers Explain quality of service and basic techniques for delivering

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Bandwidth-Adaptive Scheduling for Quality of Service Enhancement of Real-Time Multimedia Applications in Network Processor Based Router

Bandwidth-Adaptive Scheduling for Quality of Service Enhancement of Real-Time Multimedia Applications in Network Processor Based Router Journal of Computer Science 5 (12): 1068-1074, 2009 ISSN 1549-3636 2009 Science Publications Bandwidth-Adaptive Scheduling for Quality of Service Enhancement of Real-Time Multimedia Applications in Network

More information

Lecture 24: Scheduling and QoS

Lecture 24: Scheduling and QoS Lecture 24: Scheduling and QoS CSE 123: Computer Networks Alex C. Snoeren HW 4 due Wednesday Lecture 24 Overview Scheduling (Weighted) Fair Queuing Quality of Service basics Integrated Services Differentiated

More information

A New Fair Weighted Fair Queuing Scheduling Algorithm in Differentiated Services Network

A New Fair Weighted Fair Queuing Scheduling Algorithm in Differentiated Services Network IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 26 267 A New Fair Weighted Fair Queuing Scheduling Algorithm in Differentiated Services Network M. A. Elshaikh,

More information

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,

More information

High-Speed Network Processors. EZchip Presentation - 1

High-Speed Network Processors. EZchip Presentation - 1 High-Speed Network Processors EZchip Presentation - 1 NP-1c Interfaces Switch Fabric 10GE / N x1ge or Switch Fabric or Lookup Tables Counters SDRAM/FCRAM 64 x166/175mhz SRAM DDR NBT CSIX c XGMII HiGig

More information

QoS Architecture and Its Implementation. Sueng- Yong Park, Ph.D. Yonsei University

QoS Architecture and Its Implementation. Sueng- Yong Park, Ph.D. Yonsei University Architecture and Its Implementation Sueng- Yong Park, Ph.D. Yonsei University 2007.11.07 1 Scheduler Deficit Round Robin (DRR) Implementation of DRR Calculation of BW 2 Deficit Round Robin Each queue,

More information

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

Internet Services & Protocols. Quality of Service Architecture

Internet Services & Protocols. Quality of Service Architecture Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Quality of Service Architecture Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

QoS for Real Time Applications over Next Generation Data Networks

QoS for Real Time Applications over Next Generation Data Networks QoS for Real Time Applications over Next Generation Data Networks Final Project Presentation December 8, 2000 http://www.engr.udayton.edu/faculty/matiquzz/pres/qos-final.pdf University of Dayton Mohammed

More information

Part1: Lecture 4 QoS

Part1: Lecture 4 QoS Part1: Lecture 4 QoS Last time Multi stream TCP: SCTP Multi path TCP RTP and RTCP SIP H.323 VoIP Router architectures Overview two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP)

More information

Network Processors. Douglas Comer. Computer Science Department Purdue University 250 N. University Street West Lafayette, IN

Network Processors. Douglas Comer. Computer Science Department Purdue University 250 N. University Street West Lafayette, IN Network Processors Douglas Comer Computer Science Department Purdue University 250 N. University Street West Lafayette, IN 47907-2066 http://www.cs.purdue.edu/people/comer Copyright 2003. All rights reserved.

More information

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

PERFORMANCE ANALYSIS OF AF IN CONSIDERING LINK UTILISATION BY SIMULATION WITH DROP-TAIL

PERFORMANCE ANALYSIS OF AF IN CONSIDERING LINK UTILISATION BY SIMULATION WITH DROP-TAIL I.J.E.M.S., VOL.2 (4) 2011: 221-228 ISSN 2229-600X PERFORMANCE ANALYSIS OF AF IN CONSIDERING LINK UTILISATION BY SIMULATION WITH DROP-TAIL Jai Kumar, Jaiswal Umesh Chandra Department of Computer Science

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 2 Baochun Li Department of Electrical and Computer Engineering University of Toronto Keshav Chapter 9.1, 9.2, 9.3, 9.4, 9.5.1, 13.3.4 ECE 1771: Quality

More information

048866: Packet Switch Architectures

048866: Packet Switch Architectures 048866: Packet Switch Architectures Output-Queued Switches Deterministic Queueing Analysis Fairness and Delay Guarantees Dr. Isaac Keslassy Electrical Engineering, Technion isaac@ee.technion.ac.il http://comnet.technion.ac.il/~isaac/

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 3 Baochun Li Department of Electrical and Computer Engineering University of Toronto Outline What is scheduling? Why do we need it? Requirements of a scheduling

More information

A Deficit Round Robin with Fragmentation Scheduler for Mobile WiMAX

A Deficit Round Robin with Fragmentation Scheduler for Mobile WiMAX A Deficit Round Robin with Fragmentation Scheduler for Mobile WiMAX Chakchai So-In, Raj Jain and Abdel-Karim Al Tammi Washington University in Saint Louis Saint Louis, MO 63130 jain@cse.wustl.edu Presentation

More information

Hardware Assisted Recursive Packet Classification Module for IPv6 etworks ABSTRACT

Hardware Assisted Recursive Packet Classification Module for IPv6 etworks ABSTRACT Hardware Assisted Recursive Packet Classification Module for IPv6 etworks Shivvasangari Subramani [shivva1@umbc.edu] Department of Computer Science and Electrical Engineering University of Maryland Baltimore

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Modern Computer Network

Modern Computer Network Modern Computer Network An Open Source Approach Chapter 6. Internet QoS Content 6.1 Issues: Requirements for the QoS Network Signal Protocol QoS Routing Admission Control Packet Classification Policing

More information

Scheduling Data Flows using DRR

Scheduling Data Flows using DRR CS/CoE 535 Acceleration of Networking Algorithms in Reconfigurable Hardware Prof. Lockwood : Fall 2001 http://www.arl.wustl.edu/~lockwood/class/cs535/ Scheduling Data Flows using DRR http://www.ccrc.wustl.edu/~praveen

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

Advanced Lab in Computer Communications Meeting 6 QoS. Instructor: Tom Mahler

Advanced Lab in Computer Communications Meeting 6 QoS. Instructor: Tom Mahler Advanced Lab in Computer Communications Meeting 6 QoS Instructor: Tom Mahler Motivation Internet provides only single class of best-effort service. Some applications can be elastic. Tolerate delays and

More information

Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control

Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control weafon 2001/9/27 Concept of IntServ Network A flow is the basic management unit Supporting accurate quality control.

More information

Integrated and Differentiated Services. Christos Papadopoulos. CSU CS557, Fall 2017

Integrated and Differentiated Services. Christos Papadopoulos. CSU CS557, Fall 2017 Integrated and Differentiated Services Christos Papadopoulos (Remixed by Lorenzo De Carli) CSU CS557, Fall 2017 1 Preliminary concepts: token buffer 2 Characterizing Traffic: Token Bucket Filter Parsimonious

More information

EE 122: Differentiated Services

EE 122: Differentiated Services What is the Problem? EE 122: Differentiated Services Ion Stoica Nov 18, 2002 Goal: provide support for wide variety of applications: - Interactive TV, IP telephony, on-line gamming (distributed simulations),

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 34 This chapter describes how to use different methods to configure quality of service (QoS) on the Catalyst 3750 Metro switch. With QoS, you can provide preferential treatment to certain types

More information

Last time! Overview! 14/04/15. Part1: Lecture 4! QoS! Router architectures! How to improve TCP? SYN attacks SCTP. SIP and H.

Last time! Overview! 14/04/15. Part1: Lecture 4! QoS! Router architectures! How to improve TCP? SYN attacks SCTP. SIP and H. Last time Part1: Lecture 4 QoS How to improve TCP? SYN attacks SCTP SIP and H.323 RTP and RTCP Router architectures Overview two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding

More information

Configuring QoS. Understanding QoS CHAPTER

Configuring QoS. Understanding QoS CHAPTER 29 CHAPTER This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-qos) commands or by using standard QoS commands on the Catalyst 3750 switch. With QoS, you can provide

More information

Implementation of Boundary Cutting Algorithm Using Packet Classification

Implementation of Boundary Cutting Algorithm Using Packet Classification Implementation of Boundary Cutting Algorithm Using Packet Classification Dasari Mallesh M.Tech Student Department of CSE Vignana Bharathi Institute of Technology, Hyderabad. ABSTRACT: Decision-tree-based

More information

A Scalable, Cache-Based Queue Management Subsystem for Network Processors

A Scalable, Cache-Based Queue Management Subsystem for Network Processors A Scalable, Cache-Based Queue Management Subsystem for Network Processors Sailesh Kumar and Patrick Crowley Applied Research Laboratory Department of Computer Science and Engineering Washington University

More information

INF5060: Multimedia data communication using network processors Memory

INF5060: Multimedia data communication using network processors Memory INF5060: Multimedia data communication using network processors Memory 10/9-2004 Overview!Memory on the IXP cards!kinds of memory!its features!its accessibility!microengine assembler!memory management

More information

Adaptive-Weighted Packet Scheduling for Premium Service

Adaptive-Weighted Packet Scheduling for Premium Service -Weighted Packet Scheduling for Premium Service Haining Wang Chia Shen Kang G. Shin The University of Michigan Mitsubishi Electric Research Laboratory Ann Arbor, MI 489 Cambridge, MA 239 hxw,kgshin @eecs.umich.edu

More information

CS 268: Route Lookup and Packet Classification

CS 268: Route Lookup and Packet Classification Overview CS 268: Route Lookup and Packet Classification Packet Lookup Packet Classification Ion Stoica March 3, 24 istoica@cs.berkeley.edu 2 Lookup Problem Identify the output interface to forward an incoming

More information

Simulation-Based Performance Comparison of Queueing Disciplines for Differentiated Services Using OPNET

Simulation-Based Performance Comparison of Queueing Disciplines for Differentiated Services Using OPNET Simulation-Based Performance Comparison of Queueing Disciplines for Differentiated Services Using OPNET Hafiz M. Asif and El-Sayed M. El-Alfy College of Computer Science and Engineering King Fahd University

More information

Intel IXP1200 Network Processor Family

Intel IXP1200 Network Processor Family Intel IXP1200 Network Processor Family Hardware Reference Manual December 2001 Part Number: 278303-009 Revision History Revision Date Revision Description 8/30/99 001 Beta 1 release. 10/29/99 002 Beta

More information

Scheduling. Scheduling algorithms. Scheduling. Output buffered architecture. QoS scheduling algorithms. QoS-capable router

Scheduling. Scheduling algorithms. Scheduling. Output buffered architecture. QoS scheduling algorithms. QoS-capable router Scheduling algorithms Scheduling Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Scheduling: choose a packet to transmit over a link among all

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Introduction to Routers and LAN Switches

Introduction to Routers and LAN Switches Introduction to Routers and LAN Switches Session 3048_05_2001_c1 2001, Cisco Systems, Inc. All rights reserved. 3 Prerequisites OSI Model Networking Fundamentals 3048_05_2001_c1 2001, Cisco Systems, Inc.

More information

IP QOS Theory and Practice. eng. Nikolay Milovanov CCIE SP# 20094

IP QOS Theory and Practice. eng. Nikolay Milovanov CCIE SP# 20094 IP QOS Theory and Practice eng. Nikolay Milovanov CCIE SP# 20094 QoS Architectures QoS Architecture Models Best Effort Service Integrated Service Differentiated Service 3 Best Effort Service What exactly

More information

Research Letter A Simple Mechanism for Throttling High-Bandwidth Flows

Research Letter A Simple Mechanism for Throttling High-Bandwidth Flows Hindawi Publishing Corporation Research Letters in Communications Volume 28, Article ID 74878, 5 pages doi:11155/28/74878 Research Letter A Simple Mechanism for Throttling High-Bandwidth Flows Chia-Wei

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

Cisco ASR 1000 Series Routers Embedded Services Processors

Cisco ASR 1000 Series Routers Embedded Services Processors Cisco ASR 1000 Series Routers Embedded Services Processors The Cisco ASR 1000 Series embedded services processors are based on the Cisco QuantumFlow Processor (QFP) for next-generation forwarding and queuing.

More information

Lesson 14: QoS in IP Networks: IntServ and DiffServ

Lesson 14: QoS in IP Networks: IntServ and DiffServ Slide supporting material Lesson 14: QoS in IP Networks: IntServ and DiffServ Giovanni Giambene Queuing Theory and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved

More information

Converged Networks. Objectives. References

Converged Networks. Objectives. References Converged Networks Professor Richard Harris Objectives You will be able to: Discuss what is meant by convergence in the context of current telecommunications terminology Provide a network architecture

More information

Multiplexing. Common network/protocol functions. Multiplexing: Sharing resource(s) among users of the resource.

Multiplexing. Common network/protocol functions. Multiplexing: Sharing resource(s) among users of the resource. Common network/protocol functions Goals: Identify, study common architectural components, protocol mechanisms Synthesis: big picture Depth: Important topics not covered in introductory courses Overview:

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Differentiated Service Queuing Disciplines in NS-3

Differentiated Service Queuing Disciplines in NS-3 Differentiated Service Queuing Disciplines in NS-3 Robert Chang, Mahdi Rahimi, and Vahab Pournaghshband Advanced Network and Security Research Laboratory California State University, Northridge Northridge,

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 36 This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-qos) commands or by using standard QoS commands on the Catalyst 3750 switch. With QoS, you can provide

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

"Charting the Course... Implementing Cisco Quality of Service (QOS) Course Summary

Charting the Course... Implementing Cisco Quality of Service (QOS) Course Summary Course Summary Description v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as best effort, IntServ, and DiffServ, and the implementation of QoS on Cisco platforms.

More information

Quality of Service (QoS) Computer network and QoS ATM. QoS parameters. QoS ATM QoS implementations Integrated Services Differentiated Services

Quality of Service (QoS) Computer network and QoS ATM. QoS parameters. QoS ATM QoS implementations Integrated Services Differentiated Services 1 Computer network and QoS QoS ATM QoS implementations Integrated Services Differentiated Services Quality of Service (QoS) The data transfer requirements are defined with different QoS parameters + e.g.,

More information

Overview. Lecture 22 Queue Management and Quality of Service (QoS) Queuing Disciplines. Typical Internet Queuing. FIFO + Drop tail Problems

Overview. Lecture 22 Queue Management and Quality of Service (QoS) Queuing Disciplines. Typical Internet Queuing. FIFO + Drop tail Problems Lecture 22 Queue Management and Quality of Service (QoS) Overview Queue management & RED Fair queuing Khaled Harras School of Computer Science niversity 15 441 Computer Networks Based on slides from previous

More information

The Open Network Lab (Part 1)

The Open Network Lab (Part 1) The Open Network Lab (Part 1) Ken Wong Applied Research Laboratory Computer Science and Engineering Department http://www.arl.wustl.edu/~kenw kenw@arl.wustl.edu http://www.onl.wustl.edu (ONL) National

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control 1 DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control Sundeep.B.Singh, Girish.P.Saraph, Chetan.P.Bhadricha and Girish.K.Dadhich Indian Institute of Technology Bombay,

More information

Titan: Fair Packet Scheduling for Commodity Multiqueue NICs. Brent Stephens, Arjun Singhvi, Aditya Akella, and Mike Swift July 13 th, 2017

Titan: Fair Packet Scheduling for Commodity Multiqueue NICs. Brent Stephens, Arjun Singhvi, Aditya Akella, and Mike Swift July 13 th, 2017 Titan: Fair Packet Scheduling for Commodity Multiqueue NICs Brent Stephens, Arjun Singhvi, Aditya Akella, and Mike Swift July 13 th, 2017 Ethernet line-rates are increasing! 2 Servers need: To drive increasing

More information

Design and Evaluation of a Partial state router

Design and Evaluation of a Partial state router Design and Evaluation of a Partial state router Phani Gopal V Achanta and A.L. Narasimha Reddy Texas A&M University, College Station, Texas 77843-3128 Email: phani@cs.tamu.edu, reddy@ee.tamu.edu Abstract

More information

IMPLEMENTATION OF CONGESTION CONTROL MECHANISMS USING OPNET

IMPLEMENTATION OF CONGESTION CONTROL MECHANISMS USING OPNET Nazy Alborz IMPLEMENTATION OF CONGESTION CONTROL MECHANISMS USING OPNET TM Communication Networks Laboratory School of Engineering Science Simon Fraser University Road map Introduction to congestion control

More information

Road Map. Road Map. Motivation (Cont.) Motivation. Intel IXA 2400 NP Architecture. Performance of Embedded System Application on Network Processor

Road Map. Road Map. Motivation (Cont.) Motivation. Intel IXA 2400 NP Architecture. Performance of Embedded System Application on Network Processor Performance of Embedded System Application on Network Processor 2006 Spring Directed Study Project Danhua Guo University of California, Riverside dguo@cs.ucr.edu 06-07 07-2006 Motivation NP Overview Programmability

More information

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control 1 DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control Sundeep.B.Singh and Girish.P.Saraph Indian Institute of Technology Bombay, Powai, Mumbai-400076, India Abstract

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

Integrated EPON-LTE Network DBA Algorithm s Real Time Performance Analysis Using Network Processors

Integrated EPON-LTE Network DBA Algorithm s Real Time Performance Analysis Using Network Processors Integrated EPON-LTE Network DBA Algorithm s Real Time Performance Analysis Using Network Processors S. Ramya Dr. N. Nagarajan Dr. B. Kaarthick Mettler-Toledo Turing Software, Coimbatore, INDIA Department

More information

Queue Management in Network Processors

Queue Management in Network Processors Queue Management in Network Processors I. Papaefstathiou, T. Orphanoudakis, G. Kornaros, C. Kachris, I. Mavroidis, A. Nikologiannis To cite this version: I. Papaefstathiou, T. Orphanoudakis, G. Kornaros,

More information

Service-to-Service Mapping of Differentiated Services to the ABR Service of ATM in Edge/Core Networks

Service-to-Service Mapping of Differentiated Services to the ABR Service of ATM in Edge/Core Networks Service-to-Service Mapping of Differentiated Services to the ABR Service of ATM in Edge/Core Networks Deepak Sreenivasamurthy Masters Thesis M.S. Computer Engineering University of Kansas October 22, 1999

More information

Performance Evaluation of Myrinet-based Network Router

Performance Evaluation of Myrinet-based Network Router Performance Evaluation of Myrinet-based Network Router Information and Communications University 2001. 1. 16 Chansu Yu, Younghee Lee, Ben Lee Contents Suez : Cluster-based Router Suez Implementation Implementation

More information

Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks

Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks Communication Networks Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks Michael Menth and Nikolas Zeitler http://kn.inf.uni-tuebingen.de Outline The problem Definition

More information

Design of a Multi-Dimensional Packet Classifier for Network Processors

Design of a Multi-Dimensional Packet Classifier for Network Processors Design of a Multi-Dimensional Packet Classifier for Network Processors Stefano Giordano, Gregorio Procissi, Federico Rossi, Fabio Vitucci Dept. of Information Engineering, University of Pisa, ITALY E-mail:

More information