A SIMPLE DATA COMPRESSION ALGORITHM FOR ANOMALY DETECTION IN WIRELESS SENSOR NETWORKS

Size: px
Start display at page:

Download "A SIMPLE DATA COMPRESSION ALGORITHM FOR ANOMALY DETECTION IN WIRELESS SENSOR NETWORKS"

Transcription

1 Volume 117 No , ISSN: (printed version); ISSN: (on-line version) url: ijpam.eu A SIMPLE DATA COMPRESSION ALGORITHM FOR ANOMALY DETECTION IN WIRELESS SENSOR NETWORKS 1 Uthayakumar J, 2 Vengattaraman T, 3 Dr. J. Amudhavel 1 Research Scholar, Department of Computer Science, Pondicherry University, Puducherry, India 2 Assistant Professor, Department of Computer Science, Pondicherry University, Puducherry, India 3 Associate Professor, Department of CSE, KL University, Andhra Pradesh, India 1* uthayresearchscholar@gmail.com, 2 vengattaramant@gmail.com, 3 info.amudhavel@gmail.com Abstract: Wireless Sensor Networks (WSN) consists of numerous sensor nodes and is deeply embedded into the real world for environmental monitoring. As the sensor nodes are battery powered, energy efficiency is considered as an important design issue in WSN. Since data transmission consumes more energy than sensing and processing of data, many researchers have been carried out to reduce the number of data transmission. Data compression (DC) techniques are commonly used to reduce the amount of data transmission. On the other side, anomaly detection is also a challenging task in WSN to enhance the data integrity. To achieve this data integrity, the sensor nodes append labels to the sensed data to differentiate the actual value and abnormal value. The labeled value can be represented as 0 for actual data and 1 for anomaly data. In this paper, we employ a Lempel Ziv Markov-chain Algorithm (LZMA) to compress the labeled data in WSN. LZMA is a lossless data compression algorithm which is well suited for real time applications. LZMA algorithm compresses the labeled data and transmits to Base Station (BS) via single hop and multi hop communication. Extensive experiments were performed using real world labeled WSN dataset. To ensure the effectiveness of LZMA algorithm, it is compared with 5 well-known compression algorithms namely Deflate, Lempel Ziv Welch (LZW), Burrows Wheeler Transform (BWT), Huffman coding and Arithmetic coding (AC). By comparing the compression performance of LZMA method with existing methods, LZMA achieves significantly better compression with an average compression ratio of at the bit rate of respectively. Keywords: Anomaly detection; Data compression; Lempel Ziv Welch; Multi hop communication; Wireless Sensor Networks 1. Introduction The recent advancement in wireless networks and Micro-Electro-Mechanical-System (MEMS) leads to the development of low cost, compact and smart sensor nodes. WSN is randomly deployed in the sensing field to measure physical parameters such as temperature, humidity, pressure, vibration, etc [1]. WSN is widely used in tracking and data gathering applications include surveillance (indoor and outdoor), healthcare, disaster management, habitat monitoring, etc [2]. A sensor node is built up of four components namely transducer, microcontroller, battery, and transceiver. The sensor nodes are constrained in energy, bandwidth, memory and processing capabilities. As the sensor nodes are battery powered and are usually deployed in the harsh environment, it is not easy to recharge or replace batteries [3]. The lifetime of WSN can be extended in two ways: increasing the battery storage capacity and effectively utilizing the available energy. The way of increasing the battery capacity is not possible in all situations. So, the effective utilization of available energy is considered as an important design issue. Several researchers observed that a large amount of energy is spent for data transmission when compared to sensing and processing operation [4]. This study reveals that the reduction in the amount of data transmission is an effective way to achieve energy efficiency. Data transmission is the most energy consuming task due to the nature of strong temporal correlation in the sensed data. DC is considered as a useful approach to eliminate the redundancy in the sensed data [5] DC technique represents the data in its compact form without negotiating the data quality to a certain extent. It is used to compress text, image, audio, video, etc [6]. The compact form of any data can be achieved by the recognition and utilization of patterns exists in the data. DC is divided into two types based on the reconstructed data quality and the two types are lossless compression and lossy compression [7]. Lossy compression refers to a loss of quality in reconstructed data. It achieves better compression and is useful in situations where the loss of data quality is acceptable. Example: images, audio, videos. In some situations, the loss of information is unacceptable where the reconstructed data should be the 403

2 exact replica of the original data [8]. The basic idea of compressing data involves two steps: eliminating redundant and irrelevant data. The nature of redundancy in the real world data makes data compression possible. The removal of data in compression process which cannot be identified by the human eye is termed as irrelevancy reduction. The reduction in the amount of data enables to store a large amount of information in the same storage space and reduces the transmission time significantly. This nature is highly useful in WSN to compress sensed data [9]. Another important challenge in WSN is to handle the integrity of data sensed by the sensors. This requirement leads to a research problem known as anomaly detection [10]. It plays a major role in the intrusion detection and fault diagnosis. It is needed to detect any misbehavior or anomalies for the reliable and secure functioning of the network. Anomaly detection is useful in WSN to identify the abnormal variations in the sensing field [11]. It is a process of raising an alert when a significant change occurs. For instance, WSN is considered to monitor the environmental conditions like temperature and humidity level of forest fire detection. When the sensor malfunction or fire is caught, the sensed value will drastically vary from the actual values. These abnormal conditions are identified and notified to BS for further investigation. Anomaly Detection operates in two ways while integrating to WSN: centralized approaches and distributed approaches. In centralized approaches, the sensor node senses the environment and transmits the sensed data to BS. BS only identifies the data whether it is actual data or anomaly data. But, this traditional approach makes the sensor node to send all the raw or erroneous measurements to BS. This results in wastage of energy by transmitting large number of raw sensor measurements. In distributed approaches, the sensor nodes sense the field and identify the anomalies using anomaly detection algorithm [12]. The sensor node appends a label to the sensed value to represent anomalies. This label is used to differentiate between the normal data and anomaly data. In this paper, we employ an LZMA lossless compression algorithm to compress labeled data in WSN. 1.1 Contribution of this paper The contribution of the paper is summarized as follows: (i) A lossless LZMA compression algorithm is used to compress labeled WSN data. (ii) Two labeled WSN datasets (temperature and humidity) in both single hop and multi hop communication is used, and (iii) LZMA results are compared with 5 well-known compression algorithms namely Huffman coding, AC, LZW, BWT and Deflate algorithm in terms Compression Ratio (CR), Compression Factor (CF) and Bits per character (BPC). 1.2 Organization of this paper The rest of the paper is organized as follows: Section 2 explains the different types of classical DC techniques and anomaly detection techniques in WSN. Section 3 presents the LZMA compression algorithm for labeled data in WSN. Section 4 explains the performance evaluation in single hop as well as multi hop scenario. Section 5 concludes with the highlighted contributions, future work, and recommendations. 2. Related Work Energy efficiency is the major design issue in WSN. Clustering and routing are the most widely used energy efficient techniques [13]. Numerous clustering and routing techniques have been developed and these techniques are found in the literature [14], [15]. Data compression is an alternative way to achieve energy efficiency. DC compression techniques have been presented in [16]. The popular coding methods are Huffman coding, Arithmetic coding, Lempel Ziv coding, Burrows-wheeler transform, RLE, Scalar and vector quantization. Huffman coding [17] is the most popular coding technique which effectively compresses data in almost all file formats. It is a type of optimal prefix code which is widely employed in lossless data compression. It is based on two observations: (1) In an optimum code, the frequent occurrence of symbols is mapped with shorter code words when compared to symbols that appear less frequently. (2) In an optimum code, the least frequent occurrence of two symbols will have the same length. The basic idea is to allow variable length codes to input characters depending upon the frequency of occurrence. The output is the variable length code table for coding a source symbol. It is uniquely decodable and it consists of two components: Constructing Huffman tree from input sequence and traversing the tree to assign codes to characters. Huffman coding is still popular because of its simpler implementation, faster compression and lack of patent coverage. It is commonly used in text compression. AC [18] is an another important coding technique to generate variable length codes. It is superior to Huffman coding in various aspects. It is highly useful in situations where the source contains small alphabets with skewed probabilities. When a string is encoded using arithmetic 404

3 coding, frequent occurring symbols are coded with lesser bits than rarely occurring symbols. It converts the input data into a floating point number in the range of 0 and 1. The algorithm is implemented by separating 0 to 1 into segments and the length of each segment is based on the probability of each symbol. Then the output data is identified in the respective segments based on the symbol. It is not easier to implement when compared to other methods. There are two versions of arithmetic coding namely Adaptive Arithmetic Coding and Binary Arithmetic Coding. A benefit of arithmetic coding than Huffman coding is the capability to segregate the modeling and coding features of the compression approach. It is used in image, audio and video compression. Dictionary based coding approaches find useful in situations where the original data to be compressed involves repeated patterns. It maintains a dictionary of frequently occurring patterns. When the pattern comes in the input sequence, they are coded with an index to the dictionary. When the pattern is not available in the dictionary, it is coded with any less efficient approaches. The Lempel-Ziv algorithm (LZ) is a dictionary-based coding algorithm commonly used in lossless file compression. This is widely used because of its adaptability to various file formats. It looks for frequently occurring patterns and replaces them by a single symbol. It maintains a dictionary of these patterns and the length of the dictionary is set to a particular value. This method is much effective for larger files and less effective for smaller files. For smaller files, the length of the dictionary will be larger than the original file. The two main versions of LZ were developed by Ziv and Lempel in two individual papers in 1977 and 1978, and they are named as LZ77 [19] and LZ78 [20]. These algorithms vary significantly in means of searching and finding matches. The LZ77 algorithm basically uses sliding window concept and searches for matches in a window within a predetermined distance back from the present position. Gzip, ZIP, and V.42bits use LZ77. The LZ78 algorithm follows a more conservative approach of appending strings to the dictionary. LZW is an enhanced version of LZ77 and LZ78 which is developed by Terry Welch in 1984 [21]. The encoder constructs an adaptive dictionary to characterize the variable-length strings with no prior knowledge of the input. The decoder also constructs the similar dictionary as encoder based on the received code dynamically. The frequent occurrence of some symbols will be high in text data. The encoder saves these symbols and maps it to one code. Typically, an LZW code is 12-bits length (4096 codes). The starting 256 (0-255) entries represent ASCII codes, to indicate individual character. The remaining 3840 ( ) codes are defined by an encoder to indicate variable-length strings. UNIX compress, GIF images, PNG images and others file formats use LZW coding. BWT [22] is also known as block sorting compression which rearranges the character string into runs of identical characters. It uses two techniques to compress data: move-to-front transform and RLE. It compresses data easily to compress in situations where the string consists of runs of repeated characters. The most important feature of BWT is the reversibility which is fully reversible and it does not require any extra bits. BWT is a "free" method to improve the efficiency of text compression algorithms, with some additional computation. It is s used in bzip2. A simpler form of lossless data compression coding technique is RLE [23]. It represents the sequence of symbols as runs and others are termed as non-runs. The run consists of two parts: data value and count instead of original run. It is effective for data with high redundancy. 3. The LZMA Algorithm on Anomaly Labeled Data LMZA is the modified version of Lempel-Ziv algorithm to achieve higher CR [24]. It is a lossless data compression algorithm based on the principle of dictionary based encoding scheme. LZMA utilizes the complex data structure to encode one bit at a time. It uses a variable length dictionary (maximum size of 4 GB) and is mainly used to encode an unknown data stream. It is capable of compressing the data generated at a rate of Mbps in a real-time environment. Though it uses larger size dictionary, it still achieves the same decompression speed like other compression algorithms. LZ77 algorithm encodes the byte sequence from existing contents instead of the original data. When no identical byte sequence is available in the existing contents, the address and sequence length is fixed as '0' and the new symbol will be encoded. LZ77 also employs a dynamic dictionary to compress unknown data by the help of sliding window concept. LZMA extends the LZ77 algorithm by adding a Delta Filter and Range Encoder. The Delta Filter alters the input data stream for effective compression by the sliding window. It stores or transmits data in the form of differences between sequential data instead of complete file. The output of the first-byte delta encoding is the data stream itself. The subsequent bytes are stored as the difference between the current and its 405

4 previous byte. For a continuously varying real time data, delta encoding makes the sliding dictionary more efficient [18, 19]. For example, consider a sample input sequence as 2,3,4,6,7,9,8,7,5,3,4 7. The input sequence is encoded with LZMA technique and the encoded output sequence is 2, 1, 1, 2, 1, 2,-1,-1,-2,-2, 1. So, the number of symbols in the input sequence is 8 and the number of symbols in output sequence is 4. Static and adaptive dictionary are the commonly used dictionaries. The static dictionary uses the fixed entries and constants based on the application of the text. Adaptive dictionaries take the entries from the text and generate on run time. A search buffer is employed as a dictionary and the buffer size is chosen based on the implementation parameters. Patterns in the text are assumed to occur within range of the search buffer. The offset and length are individually encoded, and a bit-mask is also separately encoded. Usage of an appropriate data structure for the buffer decreases the search time for longest matches. Sliding Dictionary encoding is comparatively tedious than decoding as it requires to identify the longest match. Range encoder encodes all the symbols of the message into a single number to attain better CR. It efficiently deals with probabilities which are not the exact powers of two. The steps involved in range encoder are listed below. Given a large-enough range of integers, and probability estimation for the symbols. Divide the primary range into sub-ranges where the sizes are proportional to the probability of the symbol they represent. Every symbol of the message is encoded by decreasing the present range down to just that sub-range which corresponds to the successive symbol to be encoded. The decoder should have same probability estimation as encoder used, which can either be sent in advance, derived from already transferred data [20]. The overall operation is shown in Fig. 1. LZMA compression is used to compress real time data generated rapidly. Initially, the sensor nodes sense the physical environment. The sensed value is tested for anomalies and the label value is appended. A label value is appended by the sensors to every individual sensed data. The labeled value '1' is appended to the sensed data when the sensed data differs from actual data, i.e. the abnormal value is found. Likewise, the labeled value '0' is appended to the sensed data when the sensed data has no deviation from actual data, i.e. normal value is found. The sensor node appends the label value to sensed data and then performs compression. Sensor node runs LZMA algorithm and the compression algorithm efficiently compress the labeled data irrespective of the label value. LZMA algorithm uses the dictionary, sliding window concept and range encoder to efficiently compress labeled data. Then the compressed data will be transmitted to the BS. The BS receives the compressed data and performs decompression process. As the LZMA is the lossless compression technique, the reconstruction data is the exact replica of original data with no loss of information. 4. Performance Evaluation To ensure the effectiveness of the LZMA algorithm while compressing labeled data, its lossless compression performance is compared with 5 different, well-known compression algorithms namely Huffman coding, AC, LZW, BWT coding and Deflate algorithm. Fig.1.Workflow of LZWA on Anomaly labeled data in WSN 4.1 Metrics In the section, various metrics used to analyze the compression performance are discussed. The performance metrics are listed below: CR, CF, and BPC. Compression Ratio (CR): CR is defined as the ratio of the number of bits in the compressed data to the number of bits in the uncompressed data and is given in Eq. (1). A value of CR 0.62 indicates that the data consumes 62% of its 406

5 original size after compression. The value of CR greater than 1 result to negative compression, i.e. compressed data size is higher than the original data size. No. of bits in compressed data No. of bits in original data 1 Compression Factor (CF): CF is a performance metric which is the inverse of compression ratio. A higher value of CF indicates effective compression and lower value of CF indicates expansion. No. of bits in original data No. of bits in compressed data 2 Bits per character (BPC): BPC is used to calculate the total number of bits required, on average, to compress one character in the input data. It is defined as the ratio of the number of bits in the output sequence to the total number of character in the input sequence. No. of bits in compressed data No. character in the original data 4.2 Dataset Description 3 For experimentation, two publicly available labeled WSN datasets are used. The labeled WSN dataset consists of temperature, humidity and labeled values gathered from single-hop and multi-hop scenarios using TelosB motes [25]. The data is collected for 6 hours at a time interval of 5 seconds. The dataset contains the labeled data in which value 0 indicates the actual value and 1 indicates the abnormal value. The data were collected in both indoor and outdoor environment. The description of labeled WSN dataset is tabulated in Table 1. Table 1 Dataset Description 5. Results And Discussion To highlight the good characteristics of LZMA based labeled data compression, it is compared with 5 states of art approaches. A direct comparison is made with the results of existing methods using the same set of 2 datasets. Table 2 summarizes the experiment results of compression algorithms based on three compression metrics such as CR, CF and BPC. As evident from Table 2, the overall compression performance of LZMA algorithm is significantly better than other algorithms on both two dataset. It is observed that LZMA algorithm achieves almost equal compression on both single and multi-hop scenarios. It is also noted that Huffman coding produces poor results than other algorithms. The compression performance on 8 different dataset files reveals some interesting facts that the compression algorithms perform extremely different based on the nature of applied dataset. The existing methods especially Deflate and BWT achieves almost similar compression performance. Likewise, Huffman and Arithmetic coding also produce appropriately equal compression performance. This is due to the fact that the efficiency of an Arithmetic code is always better or at least identical to a Huffman code. Similar to Huffman coding, Arithmetic coding also tries to calculate the probability of occurrence of particular certain symbols and to optimize the length of the necessary code. It achieves an optimum which exactly corresponds to the theoretical specifications of the information theory. A minor degradation result from inaccuracies, because of correction operations for the interval division. On the other side, Huffman coding generates rounding errors because of its code length is limited to multiples of a bit. The variation from the theoretical value is more than the inaccuracy of arithmetic coding. Though LZW achieves better compression than Huffman and arithmetic coding, it fails to achieve better than Deflate and BWT. 407

6 Table 2 Comparison results of LZMA with existing methods LZW works well in situations where the levels of redundancies are high. When the dictionary size is increased, the number of bits required for the indexing also increases. This limitation of LZW makes the results to lag behind Deflate, BWT, and LZMA. In overall, LZMA results in effective compression than existing methods. Generally, dictionary based coding approaches find useful in situations where the original data to be compressed involves repeated patterns. As LZW is a dictionary based method, it produces better results for labeled WSN dataset because of the possibility of repeated occurrence of temperature and humidity values. LZMA extends LZW with range encoding technique enables to produce significantly higher compression than LZW. Interestingly, LZMA requires the minimum bit rate of BPC for single hop indoor data and maximum bit rate of BPC for single hop outdoor 2 data. It is also noted that Huffman coding and Arithmetic coding achieves poor performance with the average bit rate of 3.84 BPC and BPC respectively. It is observed that LZMA achieves the average CR of at a bit rate of BPC. 6. Conclusion This paper employs a Lempel Ziv Markov chain Algorithm (LZMA) lossless compression technique to compress WSN labeled data. The sensor node uses LZMA algorithm to compress the labeled data and transmits to BS via single-hop or multi-hop communication. This proposed method enhances the network lifetime by reducing the amount of data transmission. At the same time, anomaly data can also be easily identified. The performance of LZMA method is compared with state of art approaches such as Arithmetic coding, Huffman coding, BWT, LZW and Deflate algorithm. By comparing the compression performance of LZMA method with existing methods, LZMA achieves significantly better compression with an average CR of at the bit rate of respectively. In future, it can be extended to compress real time data of several applications. References [1] D. Estrin, J. Heidemann, S. Kumar, and M. Rey, Next Century Challenges: Scalable Coordination in Sensor Networks, in Proceedings of the 5th annual ACM, 1999, pp [2] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks [3] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a survey, Comput. Networks, vol. 38, no. 4, pp , [4] C. S. Raghavendra, K. M. Sivalingam, and T. Znati, Wireless Sensor Networks, 1st ed. US: Springer US, [5] C. A. Smith, A Survey of Various Data Compression Techniques, Int. J. pf Recent Technol. Eng., vol. 2, no. 1, pp. 1 20, [6] D. Salomon, Data Compression The Complete Reference, 4th ed. Springer, [7] K. Sayood, Introduction to Data Compression

7 [8] S. W. Drost and N.. Bourbakis, A Hybrid system for real-time lossless image compression, Microprocess. Microsyst., vol. 25, no. 1, pp , [9] N. Kimura and S. Latifi, A Survey on Data Compression in Wireless Sensor Networks, Proc. Int. Conf. Inf. Technol. coding Comput., pp , [10] J. W. Branch, B. K. Szymanski, C. Giannella, R. Wolff, and Kargupta, In-network outlier detection in wireless sensor networks, in Proc. of ICDCS, [11] S. Rajasegarar, J. C. Bezdek, C. Leckie, and M. Palaniswami, Elliptical anomalies in wireless sensor networks, ACM Trans. Sens. Networks, vol. 6, no. 1, [12] M. Moshtaghi, S. Rajasegarar, C. Leckie, and S. Karunasekera, Anomaly detection by clustering ellipsoids in wireless sensor networks, in Proc. of the ISSNIP, [13] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, Proc. 33rd Annu. Hawaii Int. Conf. Syst. Sci., vol. 0, no. c, pp , [14] Sariga and P. Sujatha, A survey on unequal clustering protocols in Wireless Sensor Networks, J. King Saud Univ. - Comput. Inf. Sci., [15] M. M. Afsar and N. M. H. Tayarani, Clustering in sensor networks: a literature survey, J. Netw. Comput. Appl., vol. 46, pp , [16] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and K. Araki, Practical data compression in wireless sensor networks: A survey, J. Netw. Comput. Appl., vol. 35, no. 1, pp , [17] D. A. Huffman, A Method for the Construction of Minimum-Redundancu Codes, A Method Constr. Minimum-Redundancu Codes, pp , [18] W. I. H., N. R. M., and C. J. G., Arithmetic coding for data compression, Commun. ACM, vol. 30, no. 6, pp , [19] J.Ziv and A.Lempel, A Universal Algorithm for Data Compression, IEEE Trans. Inf. Theory, vol. 23, no. 3, pp , [20] J.Ziv and A.Lempel, lz78.pdf. IEEE, pp , [21] T. A. Welch, A technique for high-performance Data Compression, IEEE, pp. 8 19, [22] M. Burrows and D. Wheeler, A block-sorting lossless data compression algorithm, Algorithm, Data Compression, no. 124, p. 18, [23] J. Capon, A probabilistic model for run-length coding of pictures, IRE Trans. Inf. Theory, vol. 100, pp , [24] Z. Tu and S. Zhang, A Novel Implementation of JPEG 2000 Lossless Coding Based on LZMA, in Proceedings of the Sixth IEEE International Conference Computer and Information Technology, [25] S. Suthaharan, M. Alzahrani, S. Rajasegarar, C. Leckie, and M. Palaniswami, Labelled Data Collection for Anomaly Detection in Wireless Sensor Networks, pp ,

8 410

A SIMPLE LOSSLESS COMPRESSION ALGORITHM IN WIRELESS SENSOR NETWORKS: AN APPLICATION OF SEISMIC DATA

A SIMPLE LOSSLESS COMPRESSION ALGORITHM IN WIRELESS SENSOR NETWORKS: AN APPLICATION OF SEISMIC DATA ISSN: 0976-3104 ARTICLE A SIMPLE LOSSLESS COMPRESSION ALGORITHM IN WIRELESS SENSOR NETWORKS: AN APPLICATION OF SEISMIC DATA J. Uthayakumar 1*, T. Vengattaraman 1, J. Amudhavel 2 1 Department of Computer

More information

So, what is data compression, and why do we need it?

So, what is data compression, and why do we need it? In the last decade we have been witnessing a revolution in the way we communicate 2 The major contributors in this revolution are: Internet; The explosive development of mobile communications; and The

More information

A Novel Image Compression Technique using Simple Arithmetic Addition

A Novel Image Compression Technique using Simple Arithmetic Addition Proc. of Int. Conf. on Recent Trends in Information, Telecommunication and Computing, ITC A Novel Image Compression Technique using Simple Arithmetic Addition Nadeem Akhtar, Gufran Siddiqui and Salman

More information

WIRE/WIRELESS SENSOR NETWORKS USING K-RLE ALGORITHM FOR A LOW POWER DATA COMPRESSION

WIRE/WIRELESS SENSOR NETWORKS USING K-RLE ALGORITHM FOR A LOW POWER DATA COMPRESSION WIRE/WIRELESS SENSOR NETWORKS USING K-RLE ALGORITHM FOR A LOW POWER DATA COMPRESSION V.KRISHNAN1, MR. R.TRINADH 2 1 M. Tech Student, 2 M. Tech., Assistant Professor, Dept. Of E.C.E, SIR C.R. Reddy college

More information

Optimized Compression and Decompression Software

Optimized Compression and Decompression Software 2015 IJSRSET Volume 1 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Optimized Compression and Decompression Software Mohd Shafaat Hussain, Manoj Yadav

More information

An Advanced Text Encryption & Compression System Based on ASCII Values & Arithmetic Encoding to Improve Data Security

An Advanced Text Encryption & Compression System Based on ASCII Values & Arithmetic Encoding to Improve Data Security Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Analysis of Parallelization Effects on Textual Data Compression

Analysis of Parallelization Effects on Textual Data Compression Analysis of Parallelization Effects on Textual Data GORAN MARTINOVIC, CASLAV LIVADA, DRAGO ZAGAR Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Kneza Trpimira 2b, 31000

More information

Improving the Performance of Spatial Reusability Aware Routing in Multi-Hop Wireless Networks

Improving the Performance of Spatial Reusability Aware Routing in Multi-Hop Wireless Networks IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 6 (June. 2018), V (III) PP 48-53 www.iosrjen.org Improving the Performance of Spatial Reusability Aware Routing

More information

HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM

HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM Parekar P. M. 1, Thakare S. S. 2 1,2 Department of Electronics and Telecommunication Engineering, Amravati University Government College

More information

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression An overview of Compression Multimedia Systems and Applications Data Compression Compression becomes necessary in multimedia because it requires large amounts of storage space and bandwidth Types of Compression

More information

A Research Paper on Lossless Data Compression Techniques

A Research Paper on Lossless Data Compression Techniques IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 1 June 2017 ISSN (online): 2349-6010 A Research Paper on Lossless Data Compression Techniques Prof. Dipti Mathpal

More information

Data Compression. Media Signal Processing, Presentation 2. Presented By: Jahanzeb Farooq Michael Osadebey

Data Compression. Media Signal Processing, Presentation 2. Presented By: Jahanzeb Farooq Michael Osadebey Data Compression Media Signal Processing, Presentation 2 Presented By: Jahanzeb Farooq Michael Osadebey What is Data Compression? Definition -Reducing the amount of data required to represent a source

More information

IMAGE COMPRESSION TECHNIQUES

IMAGE COMPRESSION TECHNIQUES IMAGE COMPRESSION TECHNIQUES A.VASANTHAKUMARI, M.Sc., M.Phil., ASSISTANT PROFESSOR OF COMPUTER SCIENCE, JOSEPH ARTS AND SCIENCE COLLEGE, TIRUNAVALUR, VILLUPURAM (DT), TAMIL NADU, INDIA ABSTRACT A picture

More information

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code Entropy Coding } different probabilities for the appearing of single symbols are used - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic

More information

Keywords Data compression, Lossless data compression technique, Huffman Coding, Arithmetic coding etc.

Keywords Data compression, Lossless data compression technique, Huffman Coding, Arithmetic coding etc. Volume 6, Issue 2, February 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Comparative

More information

Image Compression Algorithm and JPEG Standard

Image Compression Algorithm and JPEG Standard International Journal of Scientific and Research Publications, Volume 7, Issue 12, December 2017 150 Image Compression Algorithm and JPEG Standard Suman Kunwar sumn2u@gmail.com Summary. The interest in

More information

Image Compression for Mobile Devices using Prediction and Direct Coding Approach

Image Compression for Mobile Devices using Prediction and Direct Coding Approach Image Compression for Mobile Devices using Prediction and Direct Coding Approach Joshua Rajah Devadason M.E. scholar, CIT Coimbatore, India Mr. T. Ramraj Assistant Professor, CIT Coimbatore, India Abstract

More information

Research Article Does an Arithmetic Coding Followed by Run-length Coding Enhance the Compression Ratio?

Research Article Does an Arithmetic Coding Followed by Run-length Coding Enhance the Compression Ratio? Research Journal of Applied Sciences, Engineering and Technology 10(7): 736-741, 2015 DOI:10.19026/rjaset.10.2425 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted:

More information

An Energy-Efficient Hierarchical Routing for Wireless Sensor Networks

An Energy-Efficient Hierarchical Routing for Wireless Sensor Networks Volume 2 Issue 9, 213, ISSN-2319-756 (Online) An Energy-Efficient Hierarchical Routing for Wireless Sensor Networks Nishi Sharma Rajasthan Technical University Kota, India Abstract: The popularity of Wireless

More information

Induced Redundancy based Lossy Data Compression Algorithm

Induced Redundancy based Lossy Data Compression Algorithm Induced Redundancy based Lossy Data Compression Algorithm Kayiram Kavitha Lecturer, Dhruv Sharma Student, Rahul Surana Student, R. Gururaj, PhD. Assistant Professor, ABSTRACT A Wireless Sensor Network

More information

Simple variant of coding with a variable number of symbols and fixlength codewords.

Simple variant of coding with a variable number of symbols and fixlength codewords. Dictionary coding Simple variant of coding with a variable number of symbols and fixlength codewords. Create a dictionary containing 2 b different symbol sequences and code them with codewords of length

More information

Impact of Black Hole and Sink Hole Attacks on Routing Protocols for WSN

Impact of Black Hole and Sink Hole Attacks on Routing Protocols for WSN Impact of Black Hole and Sink Hole Attacks on Routing Protocols for WSN Padmalaya Nayak V. Bhavani B. Lavanya ABSTRACT With the drastic growth of Internet and VLSI design, applications of WSNs are increasing

More information

Data Compression Scheme of Dynamic Huffman Code for Different Languages

Data Compression Scheme of Dynamic Huffman Code for Different Languages 2011 International Conference on Information and Network Technology IPCSIT vol.4 (2011) (2011) IACSIT Press, Singapore Data Compression Scheme of Dynamic Huffman Code for Different Languages Shivani Pathak

More information

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION 15 Data Compression Data compression implies sending or storing a smaller number of bits. Although many methods are used for this purpose, in general these methods can be divided into two broad categories:

More information

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression IMAGE COMPRESSION Image Compression Why? Reducing transportation times Reducing file size A two way event - compression and decompression 1 Compression categories Compression = Image coding Still-image

More information

Technical lossless / near lossless data compression

Technical lossless / near lossless data compression Technical lossless / near lossless data compression Nigel Atkinson (Met Office, UK) ECMWF/EUMETSAT NWP SAF Workshop 5-7 Nov 2013 Contents Survey of file compression tools Studies for AVIRIS imager Study

More information

ISSN (ONLINE): , VOLUME-3, ISSUE-1,

ISSN (ONLINE): , VOLUME-3, ISSUE-1, PERFORMANCE ANALYSIS OF LOSSLESS COMPRESSION TECHNIQUES TO INVESTIGATE THE OPTIMUM IMAGE COMPRESSION TECHNIQUE Dr. S. Swapna Rani Associate Professor, ECE Department M.V.S.R Engineering College, Nadergul,

More information

Information Technology Department, PCCOE-Pimpri Chinchwad, College of Engineering, Pune, Maharashtra, India 2

Information Technology Department, PCCOE-Pimpri Chinchwad, College of Engineering, Pune, Maharashtra, India 2 Volume 5, Issue 5, May 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Adaptive Huffman

More information

EE-575 INFORMATION THEORY - SEM 092

EE-575 INFORMATION THEORY - SEM 092 EE-575 INFORMATION THEORY - SEM 092 Project Report on Lempel Ziv compression technique. Department of Electrical Engineering Prepared By: Mohammed Akber Ali Student ID # g200806120. ------------------------------------------------------------------------------------------------------------------------------------------

More information

THE RELATIVE EFFICIENCY OF DATA COMPRESSION BY LZW AND LZSS

THE RELATIVE EFFICIENCY OF DATA COMPRESSION BY LZW AND LZSS THE RELATIVE EFFICIENCY OF DATA COMPRESSION BY LZW AND LZSS Yair Wiseman 1* * 1 Computer Science Department, Bar-Ilan University, Ramat-Gan 52900, Israel Email: wiseman@cs.huji.ac.il, http://www.cs.biu.ac.il/~wiseman

More information

Department of electronics and telecommunication, J.D.I.E.T.Yavatmal, India 2

Department of electronics and telecommunication, J.D.I.E.T.Yavatmal, India 2 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LOSSLESS METHOD OF IMAGE COMPRESSION USING HUFFMAN CODING TECHNIQUES Trupti S Bobade *, Anushri S. sastikar 1 Department of electronics

More information

STUDY OF VARIOUS DATA COMPRESSION TOOLS

STUDY OF VARIOUS DATA COMPRESSION TOOLS STUDY OF VARIOUS DATA COMPRESSION TOOLS Divya Singh [1], Vimal Bibhu [2], Abhishek Anand [3], Kamalesh Maity [4],Bhaskar Joshi [5] Senior Lecturer, Department of Computer Science and Engineering, AMITY

More information

Novel Cluster Based Routing Protocol in Wireless Sensor Networks

Novel Cluster Based Routing Protocol in Wireless Sensor Networks ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 32 Novel Cluster Based Routing Protocol in Wireless Sensor Networks Bager Zarei 1, Mohammad Zeynali 2 and Vahid Majid Nezhad 3 1 Department of Computer

More information

Design and Implementation of detecting the failure of sensor node based on RTT time and RTPs in WSNs

Design and Implementation of detecting the failure of sensor node based on RTT time and RTPs in WSNs Design and Implementation of detecting the failure of sensor node based on RTT time and RTPs in WSNs Girish K 1 and Mrs. Shruthi G 2 1 Department of CSE, PG Student Karnataka, India 2 Department of CSE,

More information

Journal of Computer Engineering and Technology (IJCET), ISSN (Print), International Journal of Computer Engineering

Journal of Computer Engineering and Technology (IJCET), ISSN (Print), International Journal of Computer Engineering Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume

More information

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University ECE 499/599 Data Compression & Information Theory Thinh Nguyen Oregon State University Adminstrivia Office Hours TTh: 2-3 PM Kelley Engineering Center 3115 Class homepage http://www.eecs.orst.edu/~thinhq/teaching/ece499/spring06/spring06.html

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol., Issue, ISSN (online): - Modified Golomb Code for Integer Representation Nelson Raja Joseph Jaganathan P Domnic Sandanam Department

More information

Lossless Audio Coding based on Burrows Wheeler Transform and Run Length Encoding Algorithm

Lossless Audio Coding based on Burrows Wheeler Transform and Run Length Encoding Algorithm Lossless Audio Coding based on Burrows Wheeler Transform and Run Length Encoding Algorithm Pratibha Warkade 1, Agya Mishra 2 M.E. Scholar, Dept. of Electronics and Telecommunication Engineering, Jabalpur

More information

DEFLATE COMPRESSION ALGORITHM

DEFLATE COMPRESSION ALGORITHM DEFLATE COMPRESSION ALGORITHM Savan Oswal 1, Anjali Singh 2, Kirthi Kumari 3 B.E Student, Department of Information Technology, KJ'S Trinity College Of Engineering and Research, Pune, India 1,2.3 Abstract

More information

Data Compression Techniques for Big Data

Data Compression Techniques for Big Data Data Compression Techniques for Big Data 1 Ms.Poonam Bonde, 2 Mr. Sachin Barahate 1 P.G Student, 2 Assistent Professor in I.T. Department 1 Student of YTGOIFOE, Mumbai, India 2 Padmabhushan Vasantdada

More information

Digital Image Processing

Digital Image Processing Lecture 9+10 Image Compression Lecturer: Ha Dai Duong Faculty of Information Technology 1. Introduction Image compression To Solve the problem of reduncing the amount of data required to represent a digital

More information

Lossless compression II

Lossless compression II Lossless II D 44 R 52 B 81 C 84 D 86 R 82 A 85 A 87 A 83 R 88 A 8A B 89 A 8B Symbol Probability Range a 0.2 [0.0, 0.2) e 0.3 [0.2, 0.5) i 0.1 [0.5, 0.6) o 0.2 [0.6, 0.8) u 0.1 [0.8, 0.9)! 0.1 [0.9, 1.0)

More information

FPGA based Data Compression using Dictionary based LZW Algorithm

FPGA based Data Compression using Dictionary based LZW Algorithm FPGA based Data Compression using Dictionary based LZW Algorithm Samish Kamble PG Student, E & TC Department, D.Y. Patil College of Engineering, Kolhapur, India Prof. S B Patil Asso.Professor, E & TC Department,

More information

Using Arithmetic Coding for Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs

Using Arithmetic Coding for Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs Using Arithmetic Coding for Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs Ana Balevic, Lars Rockstroh, Marek Wroblewski, and Sven Simon Institute for Parallel and Distributed

More information

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 15 ISSN 91-2730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

More information

7: Image Compression

7: Image Compression 7: Image Compression Mark Handley Image Compression GIF (Graphics Interchange Format) PNG (Portable Network Graphics) MNG (Multiple-image Network Graphics) JPEG (Join Picture Expert Group) 1 GIF (Graphics

More information

Presenting A Distributed Algorithm For The Energy Consumption Reduction in Underwater.

Presenting A Distributed Algorithm For The Energy Consumption Reduction in Underwater. IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 5, Ver. II (Sept - Oct. 2016), PP 95-102 www.iosrjournals.org Presenting A Distributed Algorithm For

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY Rashmi Gadbail,, 2013; Volume 1(8): 783-791 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EFFECTIVE XML DATABASE COMPRESSION

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Enhanced LZW (Lempel-Ziv-Welch) Algorithm by Binary Search with

More information

A Comprehensive Review of Data Compression Techniques

A Comprehensive Review of Data Compression Techniques Volume-6, Issue-2, March-April 2016 International Journal of Engineering and Management Research Page Number: 684-688 A Comprehensive Review of Data Compression Techniques Palwinder Singh 1, Amarbir Singh

More information

Volume 2, Issue 9, September 2014 ISSN

Volume 2, Issue 9, September 2014 ISSN Fingerprint Verification of the Digital Images by Using the Discrete Cosine Transformation, Run length Encoding, Fourier transformation and Correlation. Palvee Sharma 1, Dr. Rajeev Mahajan 2 1M.Tech Student

More information

Image coding and compression

Image coding and compression Image coding and compression Robin Strand Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Today Information and Data Redundancy Image Quality Compression Coding

More information

VIDEO SIGNALS. Lossless coding

VIDEO SIGNALS. Lossless coding VIDEO SIGNALS Lossless coding LOSSLESS CODING The goal of lossless image compression is to represent an image signal with the smallest possible number of bits without loss of any information, thereby speeding

More information

Low Energy Adaptive Clustering Hierarchy based routing Protocols Comparison for Wireless Sensor Networks

Low Energy Adaptive Clustering Hierarchy based routing Protocols Comparison for Wireless Sensor Networks IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 6, Ver. II (Nov Dec. 2014), PP 56-61 Low Energy Adaptive Clustering Hierarchy based routing Protocols

More information

Lossless Compression Algorithms

Lossless Compression Algorithms Multimedia Data Compression Part I Chapter 7 Lossless Compression Algorithms 1 Chapter 7 Lossless Compression Algorithms 1. Introduction 2. Basics of Information Theory 3. Lossless Compression Algorithms

More information

Repetition 1st lecture

Repetition 1st lecture Repetition 1st lecture Human Senses in Relation to Technical Parameters Multimedia - what is it? Human senses (overview) Historical remarks Color models RGB Y, Cr, Cb Data rates Text, Graphic Picture,

More information

A Novel Protocol for Better Energy-Efficiency, Latency and Fault Tolerance in Wireless Sensor Network

A Novel Protocol for Better Energy-Efficiency, Latency and Fault Tolerance in Wireless Sensor Network A Novel Protocol for Better Energy-Efficiency, Latency and Fault Tolerance in Wireless Sensor Er.Rakesh Kumar Gupta Department of Computer Science & Engineering K.C.Institute of Engineering & Technology

More information

An Effective Approach to Improve Storage Efficiency Using Variable bit Representation

An Effective Approach to Improve Storage Efficiency Using Variable bit Representation Volume 114 No. 12 2017, 145-154 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu An Effective Approach to Improve Storage Efficiency Using Variable

More information

EE67I Multimedia Communication Systems Lecture 4

EE67I Multimedia Communication Systems Lecture 4 EE67I Multimedia Communication Systems Lecture 4 Lossless Compression Basics of Information Theory Compression is either lossless, in which no information is lost, or lossy in which information is lost.

More information

OPTIMIZATION OF LZW (LEMPEL-ZIV-WELCH) ALGORITHM TO REDUCE TIME COMPLEXITY FOR DICTIONARY CREATION IN ENCODING AND DECODING

OPTIMIZATION OF LZW (LEMPEL-ZIV-WELCH) ALGORITHM TO REDUCE TIME COMPLEXITY FOR DICTIONARY CREATION IN ENCODING AND DECODING Asian Journal Of Computer Science And Information Technology 2: 5 (2012) 114 118. Contents lists available at www.innovativejournal.in Asian Journal of Computer Science and Information Technology Journal

More information

A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK

A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK Md. Nadeem Enam 1, Ozair Ahmad 2 1 Department of ECE, Maulana Azad College of Engineering & Technology, Patna, (India)

More information

A Mobile-Sink Based Distributed Energy-Efficient Clustering Algorithm for WSNs

A Mobile-Sink Based Distributed Energy-Efficient Clustering Algorithm for WSNs A Mobile-Sink Based Distributed Energy-Efficient Clustering Algorithm for WSNs Sarita Naruka 1, Dr. Amit Sharma 2 1 M.Tech. Scholar, 2 Professor, Computer Science & Engineering, Vedant College of Engineering

More information

Regression Based Cluster Formation for Enhancement of Lifetime of WSN

Regression Based Cluster Formation for Enhancement of Lifetime of WSN Regression Based Cluster Formation for Enhancement of Lifetime of WSN K. Lakshmi Joshitha Assistant Professor Sri Sai Ram Engineering College Chennai, India lakshmijoshitha@yahoo.com A. Gangasri PG Scholar

More information

Textual Data Compression Speedup by Parallelization

Textual Data Compression Speedup by Parallelization Textual Data Compression Speedup by Parallelization GORAN MARTINOVIC, CASLAV LIVADA, DRAGO ZAGAR Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Kneza Trpimira 2b, 31000

More information

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Image compression Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Data and information The representation of images in a raw

More information

PACKET LEVEL DATA COMPRESSION TECHNIQUES FOR WIRELESS SENSOR NETWORKS

PACKET LEVEL DATA COMPRESSION TECHNIQUES FOR WIRELESS SENSOR NETWORKS PACKET LEVEL DATA COMPRESSION TECHNIQUES FOR WIRELESS SENSOR NETWORKS 1 S.JANCY, 2 DR. C. JAYA KUMAR 1 Research Scholar, Department of MCA, Sathyabama University, Chennai, India. 2 Professor, Department

More information

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network V. Shunmuga Sundari 1, N. Mymoon Zuviria 2 1 Student, 2 Asisstant Professor, Computer Science and Engineering, National College

More information

Lecture 5: Compression I. This Week s Schedule

Lecture 5: Compression I. This Week s Schedule Lecture 5: Compression I Reading: book chapter 6, section 3 &5 chapter 7, section 1, 2, 3, 4, 8 Today: This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT

More information

Ch. 2: Compression Basics Multimedia Systems

Ch. 2: Compression Basics Multimedia Systems Ch. 2: Compression Basics Multimedia Systems Prof. Ben Lee School of Electrical Engineering and Computer Science Oregon State University Outline Why compression? Classification Entropy and Information

More information

Compression; Error detection & correction

Compression; Error detection & correction Compression; Error detection & correction compression: squeeze out redundancy to use less memory or use less network bandwidth encode the same information in fewer bits some bits carry no information some

More information

A New Compression Method Strictly for English Textual Data

A New Compression Method Strictly for English Textual Data A New Compression Method Strictly for English Textual Data Sabina Priyadarshini Department of Computer Science and Engineering Birla Institute of Technology Abstract - Data compression is a requirement

More information

Student, Dept of ECE, IFET College of Engineering, Villupuram 2. Associate Professor, Dept of ECE, IFET College of Engineering, Villupuram

Student, Dept of ECE, IFET College of Engineering, Villupuram 2. Associate Professor, Dept of ECE, IFET College of Engineering, Villupuram Enhancing the lifetime of WSN using distributed algorithm and balancing the cluster size. S.Divyadharshini. 1 and R.Murugan 2 1 Student, Dept of ECE, IFET College of Engineering, Villupuram 2 Associate

More information

Optimization of Bit Rate in Medical Image Compression

Optimization of Bit Rate in Medical Image Compression Optimization of Bit Rate in Medical Image Compression Dr.J.Subash Chandra Bose 1, Mrs.Yamini.J 2, P.Pushparaj 3, P.Naveenkumar 4, Arunkumar.M 5, J.Vinothkumar 6 Professor and Head, Department of CSE, Professional

More information

Image Compression - An Overview Jagroop Singh 1

Image Compression - An Overview Jagroop Singh 1 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issues 8 Aug 2016, Page No. 17535-17539 Image Compression - An Overview Jagroop Singh 1 1 Faculty DAV Institute

More information

Robust Data Compression for Irregular Wireless Sensor Networks Using Logical Mapping

Robust Data Compression for Irregular Wireless Sensor Networks Using Logical Mapping 1 Robust Data Compression for Irregular Wireless Sensor Networks Using Logical Mapping Thanh Dang, Nirupama Bulusu, and Wu-chi Feng Abstract We propose and evaluate RIDA, a novel robust information-driven

More information

Data Compression Algorithm for Wireless Sensor Network

Data Compression Algorithm for Wireless Sensor Network Data Compression Algorithm for Wireless Sensor Network Reshma B. Bhosale 1, Rupali R. Jagtap 2 1,2 Department of Electronics & Telecommunication Engineering, Annasaheb Dange College of Engineering & Technology,

More information

CS/COE 1501

CS/COE 1501 CS/COE 1501 www.cs.pitt.edu/~lipschultz/cs1501/ Compression What is compression? Represent the same data using less storage space Can get more use out a disk of a given size Can get more use out of memory

More information

Comparative Study of Dictionary based Compression Algorithms on Text Data

Comparative Study of Dictionary based Compression Algorithms on Text Data 88 Comparative Study of Dictionary based Compression Algorithms on Text Data Amit Jain Kamaljit I. Lakhtaria Sir Padampat Singhania University, Udaipur (Raj.) 323601 India Abstract: With increasing amount

More information

MRT based Fixed Block size Transform Coding

MRT based Fixed Block size Transform Coding 3 MRT based Fixed Block size Transform Coding Contents 3.1 Transform Coding..64 3.1.1 Transform Selection...65 3.1.2 Sub-image size selection... 66 3.1.3 Bit Allocation.....67 3.2 Transform coding using

More information

A Compression Technique Based On Optimality Of LZW Code (OLZW)

A Compression Technique Based On Optimality Of LZW Code (OLZW) 2012 Third International Conference on Computer and Communication Technology A Compression Technique Based On Optimality Of LZW (OLZW) Utpal Nandi Dept. of Comp. Sc. & Engg. Academy Of Technology Hooghly-712121,West

More information

Compressing Data. Konstantin Tretyakov

Compressing Data. Konstantin Tretyakov Compressing Data Konstantin Tretyakov (kt@ut.ee) MTAT.03.238 Advanced April 26, 2012 Claude Elwood Shannon (1916-2001) C. E. Shannon. A mathematical theory of communication. 1948 C. E. Shannon. The mathematical

More information

Comparative analysis of centralized and distributed clustering algorithm for energy- efficient wireless sensor network

Comparative analysis of centralized and distributed clustering algorithm for energy- efficient wireless sensor network Research Journal of Computer and Information Technology Sciences ISSN 2320 6527 Comparative analysis of centralized and distributed clustering algorithm for energy- efficient wireless sensor network Abstract

More information

Hierarchical Routing Algorithm to Improve the Performance of Wireless Sensor Network

Hierarchical Routing Algorithm to Improve the Performance of Wireless Sensor Network Hierarchical Routing Algorithm to Improve the Performance of Wireless Sensor Network Deepthi G B 1 Mrs. Netravati U M 2 P G Scholar (Digital Electronics), Assistant Professor Department of ECE Department

More information

Compression of Stereo Images using a Huffman-Zip Scheme

Compression of Stereo Images using a Huffman-Zip Scheme Compression of Stereo Images using a Huffman-Zip Scheme John Hamann, Vickey Yeh Department of Electrical Engineering, Stanford University Stanford, CA 94304 jhamann@stanford.edu, vickey@stanford.edu Abstract

More information

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - ABSTRACT: REVIEW M.JEYAPRATHA 1, B.POORNA VENNILA 2 Department of Computer Application, Nadar Saraswathi College of Arts and Science, Theni, Tamil

More information

A Comparative Study of Lossless Compression Algorithm on Text Data

A Comparative Study of Lossless Compression Algorithm on Text Data Proc. of Int. Conf. on Advances in Computer Science, AETACS A Comparative Study of Lossless Compression Algorithm on Text Data Amit Jain a * Kamaljit I. Lakhtaria b, Prateek Srivastava c a, b, c Department

More information

COMPARATIVE PERFORMANCE ANALYSIS OF TEEN SEP LEACH ERP EAMMH AND PEGASIS ROUTING PROTOCOLS

COMPARATIVE PERFORMANCE ANALYSIS OF TEEN SEP LEACH ERP EAMMH AND PEGASIS ROUTING PROTOCOLS COMPARATIVE PERFORMANCE ANALYSIS OF TEEN SEP LEACH ERP EAMMH AND PEGASIS ROUTING PROTOCOLS Neha Jain 1, Manasvi Mannan 2 1 Research Scholar, Electronics and Communication Engineering, Punjab College Of

More information

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression P. RATNA TEJASWI 1 P. DEEPTHI 2 V.PALLAVI 3 D. GOLDIE VAL DIVYA 4 Abstract: Data compression is the art of reducing

More information

ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing

ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing Jaekwang Kim Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon,

More information

Code Compression for RISC Processors with Variable Length Instruction Encoding

Code Compression for RISC Processors with Variable Length Instruction Encoding Code Compression for RISC Processors with Variable Length Instruction Encoding S. S. Gupta, D. Das, S.K. Panda, R. Kumar and P. P. Chakrabarty Department of Computer Science & Engineering Indian Institute

More information

Dictionary techniques

Dictionary techniques Dictionary techniques The final concept that we will mention in this chapter is about dictionary techniques. Many modern compression algorithms rely on the modified versions of various dictionary techniques.

More information

Chapter 1. Digital Data Representation and Communication. Part 2

Chapter 1. Digital Data Representation and Communication. Part 2 Chapter 1. Digital Data Representation and Communication Part 2 Compression Digital media files are usually very large, and they need to be made smaller compressed Without compression Won t have storage

More information

Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator

Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator Ashika R. Naik Department of Electronics & Tele-communication, Goa College of Engineering (India) ABSTRACT Wireless

More information

Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks

Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks Guangyan Huang 1, Xiaowei Li 1, and Jing He 1 Advanced Test Technology Lab., Institute of Computing Technology, Chinese

More information

CS/COE 1501

CS/COE 1501 CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ Compression What is compression? Represent the same data using less storage space Can get more use out a disk of a given size Can get more use out of memory E.g.,

More information

IMAGE COMPRESSION USING HYBRID TRANSFORM TECHNIQUE

IMAGE COMPRESSION USING HYBRID TRANSFORM TECHNIQUE Volume 4, No. 1, January 2013 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at www.jgrcs.info IMAGE COMPRESSION USING HYBRID TRANSFORM TECHNIQUE Nikita Bansal *1, Sanjay

More information

Lecture 8 Wireless Sensor Networks: Overview

Lecture 8 Wireless Sensor Networks: Overview Lecture 8 Wireless Sensor Networks: Overview Reading: Wireless Sensor Networks, in Ad Hoc Wireless Networks: Architectures and Protocols, Chapter 12, sections 12.1-12.2. I. Akyildiz, W. Su, Y. Sankarasubramaniam

More information

Interactive Progressive Encoding System For Transmission of Complex Images

Interactive Progressive Encoding System For Transmission of Complex Images Interactive Progressive Encoding System For Transmission of Complex Images Borko Furht 1, Yingli Wang 1, and Joe Celli 2 1 NSF Multimedia Laboratory Florida Atlantic University, Boca Raton, Florida 33431

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on B. Lee s lecture notes. 1 Outline Compression basics Entropy and information theory basics

More information

Noise Reduction in Data Communication Using Compression Technique

Noise Reduction in Data Communication Using Compression Technique Digital Technologies, 2016, Vol. 2, No. 1, 9-13 Available online at http://pubs.sciepub.com/dt/2/1/2 Science and Education Publishing DOI:10.12691/dt-2-1-2 Noise Reduction in Data Communication Using Compression

More information