Introduction to Open-Channel Solid State Drives and What s Next!

Size: px
Start display at page:

Download "Introduction to Open-Channel Solid State Drives and What s Next!"

Transcription

1 Introduction to Open-Channel Solid State Drives and What s Next! Matias Bjørling Director, Solid-State System Software September 25rd, 2018 Storage Developer Conference 2018, Santa Clara, CA

2 Forward-Looking Statements Safe Harbor Disclaimers This presentation contains forward-looking statements that involve risks and uncertainties, including, but not limited to, statements regarding our solid-state technologies, product development efforts, software development and potential contributions, growth opportunities, and demand and market trends. Forward-looking statements should not be read as a guarantee of future performance or results, and will not necessarily be accurate indications of the times at, or by, which such performance or results will be achieved, if at all. Forward-looking statements are subject to risks and uncertainties that could cause actual performance or results to differ materially from those expressed in or suggested by the forwardlooking statements. Key risks and uncertainties include volatility in global economic conditions, business conditions and growth in the storage ecosystem, impact of competitive products and pricing, market acceptance and cost of commodity materials and specialized product components, actions by competitors, unexpected advances in competing technologies, difficulties or delays in manufacturing, and other risks and uncertainties listed in the company s filings with the Securities and Exchange Commission (the SEC ) and available on the SEC s website at including our most recently filed periodic report, to which your attention is directed. We do not undertake any obligation to publicly update or revise any forwardlooking statement, whether as a result of new information, future developments or otherwise, except as required by law. 2

3 Agenda 1 Motivation 2 Interface 3 Eco-system 4 What s Next? Standardization 3

4 4K Random Read Latency 0% Writes - Read Latency 4K Random Read / 4K Random Write I/O Percentiles 4

5 4K Random Read Latency 20% Writes - Read Latency 4K Random Read / 4K Random Write 4ms! Signficant outliers! Worst-case 30X I/O Percentiles 5

6 NAND Chip Density Continues to Grow While Cost/GB decreases 120 3D NAND Layers SLC MLC TLC QLC Workload #2 Workload # Workload #1 Workload #

7 Ubiquitous Workloads Efficiency of the Cloud requires many different workloads of a single SSD Databases Sensors Analytics Virtualization Video SSD 7

8 Solid State Drive Internals Read/Write Host Interface (NVMe) NAND Read/Program/Erase Highly Parallel Architecture Tens of Dies NAND Access Latencies Translation Layer Logical to Physical Translation Layer Wear-leveling Garbage Collection Bad block management Media error handling Etc. Read/Write/Erase -> Read/Write Solid State Drive Logical to Physical Translation Map Bad Block Management Die0 Die1 Die2 Die3 Die0 Die1 Die2 Die3 Wear-Leveling Media Error Handling Media Interface Controller Read/Program/Erase Die0 Die1 Die2 Die3 Garbage Collection Highly Parallel Architecture Die0 Die1 Die2 Die3 Read (50-100us) Write (1-10ms) Erase (3-15ms) 8

9 Single-User Workloads Indirection and Indirect Writes causes outliers Host: Log-on-Log Device: Indirect Writes User Space Log-structured Database (e.g., RocksDB) Metadata Mgmt. Address Mapping Garbage Collection 1 Writes Reads pread/pwrite Log- Structured ii Kernel Space VFS Log-structured File-system Metadata Mgmt. Address Mapping Garbage Collection 2 Solid-State Drive Pipeline Write Buffer die 0 die 1 NAND Controller die 2 die 3 Block Layer HW Read/Write/Trim Solid-State Drive Metadata Mgmt. Address Mapping Garbage Collection 3 Indirect Writes Drive maps logical data to the physical location using Best Effort Unable to align data logically = Write amplification increase + extra GC Host is oblivious to data placement due to the indirection 9

10 Open-Channel SSDs I/O Isolation Predictable Latency Data Placement & I/O Scheduling 10

11 Solid State Drive Internals Host Responsibility Logical to Physical Translation Map Garbage Collection Logical Wear-leveling Hint to host to place hot/cold data NVMe Device Driver Integration Block device Host-side FTL that does L2P, GC, Logical Wearleveling Similar overhead to traditional SSDs Applications Databases and File-systems Solid State Drive Logical to Physical Translation Map Bad Block Management Logical Device Wear-Leveling Media Error Handling Garbage Collection Media Interface Controller Read/Program/Erase Die0 Die0 Die0 Die0 Die1 Die1 11

12 Concepts in an Open-Channel SSD Interface Blocks Chunks Sequential write only LBA ranges Align writes to internal block sizes Hierarchical addressing A sparse addressing scheme projected onto the NVMe LBA address space Host-assisted Media Refresh Improve I/O predictability Host-assisted Wear-leveling Improve wear-leveling 12

13 Chunks #1 Enable orders of magnitude reduction of device-side DRAM A chunk is a range of LBAs where writes must be sequential. Reduces DRAM for L2P table by orders of magnitude Hot/Cold data separation Rewrite requires a reset A chunk can be in one of four states (free/open/closed/offline) If a chunk is open, there is a write pointer associated. Same device model as the ZAC/ZBC standards. Similar device model to be standardized in NVMe (I ll come back to this) Namespace Chunk 0 Chunk 1 Chunk X 0... Max LBAs

14 Chunks #2 Drive capacity divided into chunks Chunk types Conventional Random or Sequential Sequential Write Required Chunk must be written sequential only Must be reset entirely before being rewritten Disk LBA range divided in chunks Write pointer position Write commands advance the write pointer Reset commands rewind the write pointer 9/22/

15 Chunk Chunk Chunk Chunk Chunk Chunk Chunk Chunk Hierarchical Addressing Channels and Dies are mapped to Logical Groups and Parallel Units Expose device parallelism through Groups/Parallel Units One or a group of dies are exposed as parallel units to the host Parallel units are a logical representation Physical LBA Address Space Logical Host SSD Group 0 1 Group - 1 LUN PU (Dies) Groups (Channels) LUN PU (Dies) PU Chunk LBA 0 1 PU Chunk LBA - 1 PU PU PU Group(s) NVMe Namespace PU 15

16 OCSSD Host-assisted Media Refresh Enable host to assist SSD data refresh SSDs refreshes its data periodically to maintain reliability. It does this through a data scrubbing process Internal read and writes make the drive I/O latencies unpredictable. Writes dominates I/O outliers 2-step Data Refresh Device to only perform the data scrubbing read part - Data movement is managed by host Increases predictability of the drive. Host manages refresh strategy Should it refresh? Is there a copy elsewhere? die 0 die 1 Step 1 Step 2 NVMe AER (Chunk Notification Entry) Read-only Scrubbing NAND Controller die 0 die 1 die 0 die 1 Refresh Data (If necessary) die 0 die 1 16

17 Host-assisted Wear-Leveling Enable host to separate Hot/Cold data to Chunks depending on wear SSDs typically does not know the temperature of newly written data Placing hot and cold data together increases write amplication Write amplication is often 4-5X for SSDs with no optimizations Chunk characteristics Limited reset cycles (as NAND blocks has limited erase cycles) Place cold data on chunks that are nearer end-of-life and use younger chunks for hot data Approach Introduce per-chunk relative wear-level indicator (WLI) Host knows workload and places data w.r.t. to WLI Reduces garbage collection Increases lifetime, I/O latency, Flash and Memory performance Summit 2018, Santa Clara, CA 1st GC 2nd GC 3rd GC Host Writes Write Seq. Hot SB Warm SB Host Writes Chunk X Chunk Y Chunk Z Superblock (SB) WLI: 0 WLI: 33% WLI: 90% GC SB Cold? SB Cold SB SSD SSD 17

18 Interface Summary The concepts together provide I/O Isolation through the use of Groups & Parallel Units Fine-grained data refresh managed by the host Reduce write amplification by enabling host to place hot/cold data efficiently DRAM & Over-provisioning reduction through append-only Chunks Direct-to-media to avoid expensive internal data movement Specification available at 18

19 Flexible IO Tester (fio) Eco-system Large eco-system through Zoned Block Devices and OCSSD Linux Kernel NVMe Device Driver Detection of OCSSDs Support for 1.2 and 2.0 specification Register with LightNVM subsystem Register as a Zoned Block Devices (patches available) LightNVM Subsystem Core functionality Target management Target interface Enumerate, get geometry, I/O interface, etc. pblk host-side FTL Map OCSSD to Block Device User-space libzbc, fio (ZBD support), liblightnvm SPDK User Space Regular File- Systems (xfs) Logical Block Device (pblk) LightNVM Subsystem OCSSD2 Applications File-System with SMR Support (f2fs, btrfs) NVMe Driver Block Layer Applications liblightnvm Linux Kernel 19

20 Open-Source Software Contributions Initial release of subsystem with Linux kernel 4.4 (January 2016). User-space library (liblightnvm) support upstream in Linux kernel 4.11 (April 2017). pblk available in Linux kernel 4.12 (July 2017). Open-Channel SSD 2.0 specification released (January 2018) and support available from Linux kernel 4.17 (May 2018). SPDK Support for OCSSD (June 2018) Fio with Zone support (August 2018) Upcoming OCSSD as a Zoned Block Device (Patches available) RAIL XOR support for lower latency 2.0a revision 9/19/

21 Tools and Libraries LightNVM: The Linux Open-Channel SSD Subsystem LightNVM LightNVM Linux kernel Subsystem liblightnvm QEMU NVMe with Open-Channel SSD Support 21

22 Western Digital and the Western Digital logo are registered trademarks or trademarks of Western Digital Corporation or its affiliates Storage Developer Conference 2018, Santa Clara, CA in the US and/or other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. The NVMe word mark is a trademark of NVM Express, Inc. All other marks are the property of their respective owners. 22

Introduction to Open-Channel Solid State Drives

Introduction to Open-Channel Solid State Drives Introduction to Open-Channel Solid State Drives Matias Bjørling Director, Solid-State System Software August 7th, 28 Forward-Looking Statements Safe Harbor Disclaimers This presentation contains forward-looking

More information

LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU)

LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU) ½ LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU) 0% Writes - Read Latency 4K Random Read Latency 4K Random Read Percentile

More information

Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, Copyright 2017 CNEX Labs

Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, Copyright 2017 CNEX Labs Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, 2017 What is an Open-Channel SSD? Then Now - Physical Page Addressing v1.2 - LightNVM Subsystem - Developing for an Open-Channel SSD

More information

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs 1 Public and Private Cloud Providers 2 Workloads and Applications Multi-Tenancy Databases Instance

More information

pblk the OCSSD FTL Linux FAST Summit 18 Javier González Copyright 2018 CNEX Labs

pblk the OCSSD FTL Linux FAST Summit 18 Javier González Copyright 2018 CNEX Labs pblk the OCSSD FTL Linux FAST Summit 18 Javier González Read Latency Read Latency with 0% Writes Random Read 4K Percentiles 2 Read Latency Read Latency with 20% Writes Random Read 4K + Random Write 4K

More information

Optimizing SSDs for Multiple Tenancy Use

Optimizing SSDs for Multiple Tenancy Use Optimizing SSDs for Multiple Tenancy Use Liam Parker Senior Technologist, SSD Systems Engineering August 7, 2018 2018 Western Digital Corporation or its affiliates. All rights reserved. 8/7/2018 1 Forward-Looking

More information

Linux Kernel Extensions for Open-Channel SSDs

Linux Kernel Extensions for Open-Channel SSDs Linux Kernel Extensions for Open-Channel SSDs Matias Bjørling Member of Technical Staff Santa Clara, CA 1 The Future of device FTLs? Dealing with flash chip constrains is a necessity No way around the

More information

Linux Kernel Abstractions for Open-Channel SSDs

Linux Kernel Abstractions for Open-Channel SSDs Linux Kernel Abstractions for Open-Channel SSDs Matias Bjørling Javier González, Jesper Madsen, and Philippe Bonnet 2015/03/01 1 Market Specific FTLs SSDs on the market with embedded FTLs targeted at specific

More information

Persistent Memory in Mission-Critical Architecture (How and Why) Adam Roberts Engineering Fellow, Western Digital Corporation

Persistent Memory in Mission-Critical Architecture (How and Why) Adam Roberts Engineering Fellow, Western Digital Corporation Persistent Memory in Mission-Critical Architecture (How and Why) Adam Roberts Engineering Fellow, Western Digital Corporation Forward-Looking Statements Safe Harbor Disclaimers This presentation contains

More information

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager 1 T HE D E N A L I N E X T - G E N E R A T I O N H I G H - D E N S I T Y S T O R A G E I N T E R F A C E Laura Caulfield Senior Software Engineer Arie van der Hoeven Principal Program Manager Outline Technology

More information

Toward a Memory-centric Architecture

Toward a Memory-centric Architecture Toward a Memory-centric Architecture Martin Fink EVP & Chief Technology Officer Western Digital Corporation August 8, 2017 1 SAFE HARBOR DISCLAIMERS Forward-Looking Statements This presentation contains

More information

Radian MEMORY SYSTEMS

Radian MEMORY SYSTEMS Based upon s award winning Symphonic CFM technology, Symphonic Cooperative Flash Zones provides a simple interface for highly efficient and deterministic Flash management in an All Firmware SSD implementation.

More information

Denali Open-Channel SSDs

Denali Open-Channel SSDs Denali Open-Channel SSDs Flash Memory Summit 2018 Architecture Track Javier González Open-Channel SSDs Definition: A class of Solid State Drives that expose (some of) their geometry to the host and allow

More information

Open-Channel Solid State Drives Specification

Open-Channel Solid State Drives Specification Open-Channel Solid State Drives Specification Revision 2.0 January 29, 2018 Please send comments to mb@lightnvm.io License By making a suggestion, providing feedback or any other contribution to the Open-Channel

More information

Open Channel Solid State Drives NVMe Specification

Open Channel Solid State Drives NVMe Specification Open Channel Solid State Drives NVMe Specification Revision 1.2 April 2016 Please write to Matias at mb@lightnvm.io for collaboration Table of Contents 1. Introduction 1.1 Definitions 1.1.1 physical media

More information

Replacing the FTL with Cooperative Flash Management

Replacing the FTL with Cooperative Flash Management Replacing the FTL with Cooperative Flash Management Mike Jadon Radian Memory Systems www.radianmemory.com Flash Memory Summit 2015 Santa Clara, CA 1 Data Center Primary Storage WORM General Purpose RDBMS

More information

LightNVM: The Linux Open-Channel SSD Subsystem

LightNVM: The Linux Open-Channel SSD Subsystem LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling Javier González Philippe Bonnet CNEX Labs, Inc. IT University of Copenhagen Abstract As Solid-State Drives (SSDs) become commonplace in data-centers

More information

QLC Challenges. QLC SSD s Require Deep FTL Tuning Karl Schuh Micron. Flash Memory Summit 2018 Santa Clara, CA 1

QLC Challenges. QLC SSD s Require Deep FTL Tuning Karl Schuh Micron. Flash Memory Summit 2018 Santa Clara, CA 1 QLC Challenges QLC SSD s Require Deep FTL Tuning Karl Schuh Micron Santa Clara, CA 1 The Wonders of QLC TLC QLC Cost Capacity Performance Error Rate depends upon compensation for transaction history Endurance

More information

Enabling NVMe I/O Scale

Enabling NVMe I/O Scale Enabling NVMe I/O Determinism @ Scale Chris Petersen, Hardware System Technologist Wei Zhang, Software Engineer Alexei Naberezhnov, Software Engineer Facebook Facebook @ Scale 800 Million 1.3 Billion 2.2

More information

CPU Project in Western Digital: From Embedded Cores for Flash Controllers to Vision of Datacenter Processors with Open Interfaces

CPU Project in Western Digital: From Embedded Cores for Flash Controllers to Vision of Datacenter Processors with Open Interfaces CPU Project in Western Digital: From Embedded Cores for Flash Controllers to Vision of Datacenter Processors with Open Interfaces Zvonimir Z. Bandic, Sr. Director Robert Golla, Sr. Fellow Dejan Vucinic,

More information

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory Dhananjoy Das, Sr. Systems Architect SanDisk Corp. 1 Agenda: Applications are KING! Storage landscape (Flash / NVM)

More information

SFS: Random Write Considered Harmful in Solid State Drives

SFS: Random Write Considered Harmful in Solid State Drives SFS: Random Write Considered Harmful in Solid State Drives Changwoo Min 1, 2, Kangnyeon Kim 1, Hyunjin Cho 2, Sang-Won Lee 1, Young Ik Eom 1 1 Sungkyunkwan University, Korea 2 Samsung Electronics, Korea

More information

The impact of 3D storage solutions on the next generation of memory systems

The impact of 3D storage solutions on the next generation of memory systems The impact of 3D storage solutions on the next generation of memory systems DevelopEX 2017 Airport City Israel Avi Klein Engineering Fellow, Memory Technology Group Western Digital Corp October 31, 2017

More information

Experimental Results of Implementing NV Me-based Open Channel SSDs

Experimental Results of Implementing NV Me-based Open Channel SSDs Experimental Results of Implementing NV Me-based Open Channel SSDs Sangjin Lee, Yong Ho Song Hanyang University, Seoul, Korea Santa Clara, CA 1 OpenSSD Project Open source SSD for search and education

More information

Shingled Magnetic Recording (SMR) Panel: Data Management Techniques Examined Tom Coughlin Coughlin Associates

Shingled Magnetic Recording (SMR) Panel: Data Management Techniques Examined Tom Coughlin Coughlin Associates Shingled Magnetic Recording (SMR) Panel: Data Management Techniques Examined Tom Coughlin Coughlin Associates 2016 Data Storage Innovation Conference. Insert Your Company Name. All Rights Reserved. Introduction

More information

Raising QLC Reliability in All-Flash Arrays

Raising QLC Reliability in All-Flash Arrays Raising QLC Reliability in All-Flash Arrays Jeff Yang Principal Engineer Storage Research Dept. Silicon Motion, Inc. Santa Clara, CA 1 QLC Characteristics (Estimation) QLC Endurance: 1~3K P/E.(limited

More information

Virtual Storage Tier and Beyond

Virtual Storage Tier and Beyond Virtual Storage Tier and Beyond Manish Agarwal Sr. Product Manager, NetApp Santa Clara, CA 1 Agenda Trends Other Storage Trends and Flash 5 Min Rule Issues for Flash Dedupe and Flash Caching Architectural

More information

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Chao Sun 1, Asuka Arakawa 1, Ayumi Soga 1, Chihiro Matsui 1 and Ken Takeuchi 1 1 Chuo University Santa Clara,

More information

Designing Enterprise Controllers with QLC 3D NAND

Designing Enterprise Controllers with QLC 3D NAND Designing Enterprise Controllers with QLC 3D NAND Roman Pletka, Radu Stoica, Nikolas Ioannou, Sasa Tomic, Nikolaos Papandreou, Haralampos Pozidis IBM Research Zurich Research Laboratory Santa Clara, CA

More information

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Storage Systems : Disks and SSDs Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology,

More information

Maximizing Data Center and Enterprise Storage Efficiency

Maximizing Data Center and Enterprise Storage Efficiency Maximizing Data Center and Enterprise Storage Efficiency Enterprise and data center customers can leverage AutoStream to achieve higher application throughput and reduced latency, with negligible organizational

More information

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Devices Jiacheng Zhang, Jiwu Shu, Youyou Lu Tsinghua University 1 Outline Background and Motivation ParaFS Design Evaluation

More information

Realizing the Next Generation of Exabyte-scale Persistent Memory-Centric Architectures and Memory Fabrics

Realizing the Next Generation of Exabyte-scale Persistent Memory-Centric Architectures and Memory Fabrics Realizing the Next Generation of Exabyte-scale Persistent Memory-Centric Architectures and Memory Fabrics Zvonimir Z. Bandic, Sr. Director, Next Generation Platform Technologies Western Digital Corporation

More information

Optimizing Software-Defined Storage for Flash Memory

Optimizing Software-Defined Storage for Flash Memory Optimizing Software-Defined Storage for Flash Memory Avraham Meir Chief Scientist, Elastifile Santa Clara, CA 1 Agenda What is SDS? SDS Media Selection Flash-Native SDS Non-Flash SDS File system benefits

More information

OSSD: A Case for Object-based Solid State Drives

OSSD: A Case for Object-based Solid State Drives MSST 2013 2013/5/10 OSSD: A Case for Object-based Solid State Drives Young-Sik Lee Sang-Hoon Kim, Seungryoul Maeng, KAIST Jaesoo Lee, Chanik Park, Samsung Jin-Soo Kim, Sungkyunkwan Univ. SSD Desktop Laptop

More information

Data-Centric Innovation Summit ALPER ILKBAHAR VICE PRESIDENT & GENERAL MANAGER MEMORY & STORAGE SOLUTIONS, DATA CENTER GROUP

Data-Centric Innovation Summit ALPER ILKBAHAR VICE PRESIDENT & GENERAL MANAGER MEMORY & STORAGE SOLUTIONS, DATA CENTER GROUP Data-Centric Innovation Summit ALPER ILKBAHAR VICE PRESIDENT & GENERAL MANAGER MEMORY & STORAGE SOLUTIONS, DATA CENTER GROUP tapping data value, real time MOUNTAINS OF UNDERUTILIZED DATA Challenge Shifting

More information

Flash Trends: Challenges and Future

Flash Trends: Challenges and Future Flash Trends: Challenges and Future John D. Davis work done at Microsoft Researcher- Silicon Valley in collaboration with Laura Caulfield*, Steve Swanson*, UCSD* 1 My Research Areas of Interest Flash characteristics

More information

Fusion Engine Next generation storage engine for Flash- SSD and 3D XPoint storage system

Fusion Engine Next generation storage engine for Flash- SSD and 3D XPoint storage system Fusion Engine Next generation storage engine for Flash- SSD and 3D XPoint storage system Fei Liu, Sheng Qiu, Jianjian Huo, Shu Li Alibaba Group Santa Clara, CA 1 Software overhead become critical Legacy

More information

Storage Systems : Disks and SSDs. Manu Awasthi CASS 2018

Storage Systems : Disks and SSDs. Manu Awasthi CASS 2018 Storage Systems : Disks and SSDs Manu Awasthi CASS 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology, Qureshi et al, ISCA 2009 Trends Total amount

More information

Standards for improving SSD performance and endurance

Standards for improving SSD performance and endurance Standards for improving SSD performance and endurance Bill Martin Samsung Semiconductor, Inc. Flash Memory Summit 2016 1 Legal Disclaimer This presentation is intended to provide information concerning

More information

Presented by: Nafiseh Mahmoudi Spring 2017

Presented by: Nafiseh Mahmoudi Spring 2017 Presented by: Nafiseh Mahmoudi Spring 2017 Authors: Publication: Type: ACM Transactions on Storage (TOS), 2016 Research Paper 2 High speed data processing demands high storage I/O performance. Flash memory

More information

FFS: The Fast File System -and- The Magical World of SSDs

FFS: The Fast File System -and- The Magical World of SSDs FFS: The Fast File System -and- The Magical World of SSDs The Original, Not-Fast Unix Filesystem Disk Superblock Inodes Data Directory Name i-number Inode Metadata Direct ptr......... Indirect ptr 2-indirect

More information

Defining The Software-Defined Technology Market Mario Blandini

Defining The Software-Defined Technology Market Mario Blandini Defining The Software-Defined Technology Market Mario Blandini HGST mario.blandini@hgst.com @SwiftMario Forward Looking Statement This presentation contains forward-looking statements that involve risks

More information

Holistic Flash Management for Next Generation All-Flash Arrays

Holistic Flash Management for Next Generation All-Flash Arrays Holistic Flash Management for Next Generation All-Flash Arrays Roman Pletka, Nikolas Ioannou, Ioannis Koltsidas, Nikolaos Papandreou, Thomas Parnell, Haris Pozidis, Sasa Tomic IBM Research Zurich Aaron

More information

Re-Architecting Cloud Storage with Intel 3D XPoint Technology and Intel 3D NAND SSDs

Re-Architecting Cloud Storage with Intel 3D XPoint Technology and Intel 3D NAND SSDs Re-Architecting Cloud Storage with Intel 3D XPoint Technology and Intel 3D NAND SSDs Jack Zhang yuan.zhang@intel.com, Cloud & Enterprise Storage Architect Santa Clara, CA 1 Agenda Memory Storage Hierarchy

More information

FlashTier: A Lightweight, Consistent and Durable Storage Cache

FlashTier: A Lightweight, Consistent and Durable Storage Cache FlashTier: A Lightweight, Consistent and Durable Storage Cache Mohit Saxena PhD Candidate University of Wisconsin-Madison msaxena@cs.wisc.edu Flash Memory Summit 2012 Santa Clara, CA Flash is a Good Cache

More information

Solid State Drives (SSDs) Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Solid State Drives (SSDs) Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Solid State Drives (SSDs) Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Memory Types FLASH High-density Low-cost High-speed Low-power High reliability

More information

Computational Storage: Acceleration Through Intelligence & Agility

Computational Storage: Acceleration Through Intelligence & Agility Flash Memory Summit Computational Storage: Acceleration Through Intelligence & Agility Dr. Hao Zhong CEO & Co-Founder, ScaleFlux Flash Memory Summit 2018 Santa Clara, CA What s the Big Deal? High Cost

More information

A New Key-value Data Store For Heterogeneous Storage Architecture Intel APAC R&D Ltd.

A New Key-value Data Store For Heterogeneous Storage Architecture Intel APAC R&D Ltd. A New Key-value Data Store For Heterogeneous Storage Architecture Intel APAC R&D Ltd. 1 Agenda Introduction Background and Motivation Hybrid Key-Value Data Store Architecture Overview Design details Performance

More information

RocksDB on Open-Channel SSDs. Javier González RocksDB Annual Meetup'15 - Facebook

RocksDB on Open-Channel SSDs. Javier González RocksDB Annual Meetup'15 - Facebook RocksDB on Open-Channel SSDs Javier González RocksDB Annual Meetup'15 - Facebook 1 Solid State Drives (SSDs) High throughput + Low latency Parallelism + Controller 2 Embedded Flash

More information

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

Design Considerations for Using Flash Memory for Caching

Design Considerations for Using Flash Memory for Caching Design Considerations for Using Flash Memory for Caching Edi Shmueli, IBM XIV Storage Systems edi@il.ibm.com Santa Clara, CA August 2010 1 Solid-State Storage In a few decades solid-state storage will

More information

Flash memory talk Felton Linux Group 27 August 2016 Jim Warner

Flash memory talk Felton Linux Group 27 August 2016 Jim Warner Flash memory talk Felton Linux Group 27 August 2016 Jim Warner Flash Memory Summit Annual trade show at Santa Clara Convention Center Where there is money, trade shows follow. August 8 11, 2016 Borrowing

More information

VSSIM: Virtual Machine based SSD Simulator

VSSIM: Virtual Machine based SSD Simulator 29 th IEEE Conference on Mass Storage Systems and Technologies (MSST) Long Beach, California, USA, May 6~10, 2013 VSSIM: Virtual Machine based SSD Simulator Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong

More information

Data Organization and Processing

Data Organization and Processing Data Organization and Processing Indexing Techniques for Solid State Drives (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza Outline SSD technology overview Motivation for standard algorithms

More information

FlashKV: Accelerating KV Performance with Open-Channel SSDs

FlashKV: Accelerating KV Performance with Open-Channel SSDs FlashKV: Accelerating KV Performance with Open-Channel SSDs JIACHENG ZHANG, YOUYOU LU, JIWU SHU, and XIONGJUN QIN, Department of Computer Science and Technology, Tsinghua University As the cost-per-bit

More information

A Caching-Oriented FTL Design for Multi-Chipped Solid-State Disks. Yuan-Hao Chang, Wei-Lun Lu, Po-Chun Huang, Lue-Jane Lee, and Tei-Wei Kuo

A Caching-Oriented FTL Design for Multi-Chipped Solid-State Disks. Yuan-Hao Chang, Wei-Lun Lu, Po-Chun Huang, Lue-Jane Lee, and Tei-Wei Kuo A Caching-Oriented FTL Design for Multi-Chipped Solid-State Disks Yuan-Hao Chang, Wei-Lun Lu, Po-Chun Huang, Lue-Jane Lee, and Tei-Wei Kuo 1 June 4, 2011 2 Outline Introduction System Architecture A Multi-Chipped

More information

Reducing Solid-State Storage Device Write Stress Through Opportunistic In-Place Delta Compression

Reducing Solid-State Storage Device Write Stress Through Opportunistic In-Place Delta Compression Reducing Solid-State Storage Device Write Stress Through Opportunistic In-Place Delta Compression Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao and Tong Zhang xuebinzhang.rpi@gmail.com ECSE Department,

More information

I/O Devices & SSD. Dongkun Shin, SKKU

I/O Devices & SSD. Dongkun Shin, SKKU I/O Devices & SSD 1 System Architecture Hierarchical approach Memory bus CPU and memory Fastest I/O bus e.g., PCI Graphics and higherperformance I/O devices Peripheral bus SCSI, SATA, or USB Connect many

More information

Performance Assessment of an All-RRAM Solid State Drive Through a Cloud-Based Simulation Framework

Performance Assessment of an All-RRAM Solid State Drive Through a Cloud-Based Simulation Framework Performance Assessment of an All-RRAM Solid State Drive Through a Cloud-Based Simulation Framework Lorenzo Zuolo* Michele Cirella, Cristian Zambelli, Rino Micheloni*, and Piero Olivo Lorenzo Zuolo, Michele

More information

Ben Walker Data Center Group Intel Corporation

Ben Walker Data Center Group Intel Corporation Ben Walker Data Center Group Intel Corporation Notices and Disclaimers Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation.

More information

STORAGE LATENCY x. RAMAC 350 (600 ms) NAND SSD (60 us)

STORAGE LATENCY x. RAMAC 350 (600 ms) NAND SSD (60 us) 1 STORAGE LATENCY 2 RAMAC 350 (600 ms) 1956 10 5 x NAND SSD (60 us) 2016 COMPUTE LATENCY 3 RAMAC 305 (100 Hz) 1956 10 8 x 1000x CORE I7 (1 GHZ) 2016 NON-VOLATILE MEMORY 1000x faster than NAND 3D XPOINT

More information

Radian MEMORY SYSTEMS

Radian MEMORY SYSTEMS Capacity: 4TB or 8TB MLC NAND 3TB, 6TB or 12TB TLC NAND : 4GB or 12GB NVMe PCIe x8 Gen3 interface Half-height, half-length form factor On-board Capacitors no cabling to remote power packs required Symphonic

More information

AutoStream: Automatic Stream Management for Multi-stream SSDs in Big Data Era

AutoStream: Automatic Stream Management for Multi-stream SSDs in Big Data Era AutoStream: Automatic Stream Management for Multi-stream SSDs in Big Data Era Changho Choi, PhD Principal Engineer Memory Solutions Lab (San Jose, CA) Samsung Semiconductor, Inc. 1 Disclaimer This presentation

More information

An SMR-aware Append-only File System Chi-Young Ku Stephen P. Morgan Futurewei Technologies, Inc. Huawei R&D USA

An SMR-aware Append-only File System Chi-Young Ku Stephen P. Morgan Futurewei Technologies, Inc. Huawei R&D USA An SMR-aware Append-only File System Chi-Young Ku Stephen P. Morgan Futurewei Technologies, Inc. Huawei R&D USA SMR Technology (1) Future disk drives will be based on shingled magnetic recording. Conventional

More information

In Pursuit of Optimal Storage Performance: Hardware/Software Co-Design with Dual-Mode SSD

In Pursuit of Optimal Storage Performance: Hardware/Software Co-Design with Dual-Mode SSD In Pursuit of Optimal Storage Performance: Hardware/Software Co-Design with Dual-Mode SSD Yu Du, Ph.D. Alibaba Group Ping Zhou, Ph.D. Alibaba Group Shu Li, Ph.D. Alibaba Group Abstract The increasing proliferation

More information

White Paper: Understanding the Relationship Between SSD Endurance and Over-Provisioning. Solid State Drive

White Paper: Understanding the Relationship Between SSD Endurance and Over-Provisioning. Solid State Drive White Paper: Understanding the Relationship Between SSD Endurance and Over-Provisioning Solid State Drive 2 Understanding the Relationship Between Endurance and Over-Provisioning Each of the cells inside

More information

NVMe: The Protocol for Future SSDs

NVMe: The Protocol for Future SSDs When do you need NVMe? You might have heard that Non-Volatile Memory Express or NVM Express (NVMe) is the next must-have storage technology. Let s look at what NVMe delivers. NVMe is a communications protocol

More information

Using Transparent Compression to Improve SSD-based I/O Caches

Using Transparent Compression to Improve SSD-based I/O Caches Using Transparent Compression to Improve SSD-based I/O Caches Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

Client vs. Enterprise SSDs

Client vs. Enterprise SSDs Client vs. Enterprise SSDs A Guide to Understanding Similarities and Differences in Performance and Use Cases Overview Client SSDs those designed primarily for personal computer storage can excel in some,

More information

A Self Learning Algorithm for NAND Flash Controllers

A Self Learning Algorithm for NAND Flash Controllers A Self Learning Algorithm for NAND Flash Controllers Hao Zhi, Lee Firmware Manager Core Storage Electronics Corp./Phison Electronics Corp. haozhi_lee@phison.com Santa Clara, CA 1 Outline Basic FW Architecture

More information

Developing Low Latency NVMe Systems for HyperscaleData Centers. Prepared by Engling Yeo Santa Clara, CA Date: 08/04/2017

Developing Low Latency NVMe Systems for HyperscaleData Centers. Prepared by Engling Yeo Santa Clara, CA Date: 08/04/2017 Developing Low Latency NVMe Systems for HyperscaleData Centers Prepared by Engling Yeo Santa Clara, CA 95054 Date: 08/04/2017 Quality of Service IOPS, Throughput, Latency Short predictable read latencies

More information

Intel SSD Data center evolution

Intel SSD Data center evolution Intel SSD Data center evolution March 2018 1 Intel Technology Innovations Fill the Memory and Storage Gap Performance and Capacity for Every Need Intel 3D NAND Technology Lower cost & higher density Intel

More information

LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE

LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE Luanne Dauber, Pure Storage Author: Matt Kixmoeller, Pure Storage SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless

More information

Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage,

Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage, Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage, Micron @peglarr 2015 Micron Technology, Inc All rights reserved Products are warranted only to

More information

How Next Generation NV Technology Affects Storage Stacks and Architectures

How Next Generation NV Technology Affects Storage Stacks and Architectures How Next Generation NV Technology Affects Storage Stacks and Architectures Marty Czekalski, Interface and Emerging Architecture Program Manager, Seagate Technology Flash Memory Summit 2013 Santa Clara,

More information

NAND Flash-based Storage. Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

Next Generation Data Center : Future Trends and Technologies

Next Generation Data Center : Future Trends and Technologies Next Generation Data Center : Future Trends and Technologies November 18 th 2016 Rajender Singh Bhandari Director Technology and Solutions Group NetApp India 1 Agenda 1)About NetApp 2)Next Generation Data

More information

Developing Extremely Low-Latency NVMe SSDs

Developing Extremely Low-Latency NVMe SSDs Developing Extremely Low-Latency NVMe SSDs Young Paik Director of Product Planning Samsung Electronics Santa Clara, CA 1 Disclaimer This presentation and/or accompanying oral statements by Samsung representatives

More information

SanDisk Enterprise Storage Solutions

SanDisk Enterprise Storage Solutions SanDisk Enterprise Storage Solutions Mike Chenery Senior Fellow Deutsche Bank Technology Conference Las Vegas, Nevada September 14, 2011 Forward-looking Statement During our meeting today we will be making

More information

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

The What, Why and How of the Pure Storage Enterprise Flash Array. Ethan L. Miller (and a cast of dozens at Pure Storage)

The What, Why and How of the Pure Storage Enterprise Flash Array. Ethan L. Miller (and a cast of dozens at Pure Storage) The What, Why and How of the Pure Storage Enterprise Flash Array Ethan L. Miller (and a cast of dozens at Pure Storage) Enterprise storage: $30B market built on disk Key players: EMC, NetApp, HP, etc.

More information

Five Key Steps to High-Speed NAND Flash Performance and Reliability

Five Key Steps to High-Speed NAND Flash Performance and Reliability Five Key Steps to High-Speed Flash Performance and Reliability Presenter Bob Pierce Flash Memory Summit 2010 Santa Clara, CA 1 NVM Performance Trend ONFi 2 PCM Toggle ONFi 2 DDR SLC Toggle Performance

More information

SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device

SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device Hyukjoong Kim 1, Dongkun Shin 1, Yun Ho Jeong 2 and Kyung Ho Kim 2 1 Samsung Electronics

More information

Flash Storage Complementing a Data Lake for Real-Time Insight

Flash Storage Complementing a Data Lake for Real-Time Insight Flash Storage Complementing a Data Lake for Real-Time Insight Dr. Sanhita Sarkar Global Director, Analytics Software Development August 7, 2018 Agenda 1 2 3 4 5 Delivering insight along the entire spectrum

More information

Samsung PM1725a NVMe SSD

Samsung PM1725a NVMe SSD Samsung PM1725a NVMe SSD Exceptionally fast speeds and ultra-low latency for enterprise application Brochure 1 Extreme performance from an SSD technology leader Maximize data transfer with the high-performance,

More information

A New Key-Value Data Store For Heterogeneous Storage Architecture

A New Key-Value Data Store For Heterogeneous Storage Architecture A New Key-Value Data Store For Heterogeneous Storage Architecture brien.porter@intel.com wanyuan.yang@intel.com yuan.zhou@intel.com jian.zhang@intel.com Intel APAC R&D Ltd. 1 Agenda Introduction Background

More information

Performance Benefits of Running RocksDB on Samsung NVMe SSDs

Performance Benefits of Running RocksDB on Samsung NVMe SSDs Performance Benefits of Running RocksDB on Samsung NVMe SSDs A Detailed Analysis 25 Samsung Semiconductor Inc. Executive Summary The industry has been experiencing an exponential data explosion over the

More information

Using MLC Flash to Reduce System Cost in Industrial Applications

Using MLC Flash to Reduce System Cost in Industrial Applications Using MLC Flash to Reduce System Cost in Industrial Applications Chris Budd SMART High Reliability Solutions Santa Clara, CA 1 Introduction Component selection: cost versus quality Use same component to

More information

stec Host Cache Solution

stec Host Cache Solution White Paper stec Host Cache Solution EnhanceIO SSD Cache Software and the stec s1120 PCIe Accelerator speed decision support system (DSS) workloads and free up disk I/O resources for other applications.

More information

Optimizing the Data Center with an End to End Solutions Approach

Optimizing the Data Center with an End to End Solutions Approach Optimizing the Data Center with an End to End Solutions Approach Adam Roberts Chief Solutions Architect, Director of Technical Marketing ESS SanDisk Corporation Flash Memory Summit 11-13 August 2015 August

More information

The 3D-Memory Evolution

The 3D-Memory Evolution The 3D-Memory Evolution ISC 2015 /, Director Marcom + SBD EMEA Legal Disclaimer This presentation is intended to provide information concerning computer and memory industries. We do our best to make sure

More information

SanDisk Choosing the Right Non- Volatile Memory for Your Application Needs. August 2009

SanDisk Choosing the Right Non- Volatile Memory for Your Application Needs. August 2009 SanDisk Choosing the Right Non- Volatile Memory for Your Application Needs August 2009 Forward Looking Statement During our presentation today we will be making forward-looking statements. Any statement

More information

Accelerating NVMe-oF* for VMs with the Storage Performance Development Kit

Accelerating NVMe-oF* for VMs with the Storage Performance Development Kit Accelerating NVMe-oF* for VMs with the Storage Performance Development Kit Jim Harris Principal Software Engineer Intel Data Center Group Santa Clara, CA August 2017 1 Notices and Disclaimers Intel technologies

More information

Chapter 12 Wear Leveling for PCM Using Hot Data Identification

Chapter 12 Wear Leveling for PCM Using Hot Data Identification Chapter 12 Wear Leveling for PCM Using Hot Data Identification Inhwan Choi and Dongkun Shin Abstract Phase change memory (PCM) is the best candidate device among next generation random access memory technologies.

More information

Jim Harris. Principal Software Engineer. Data Center Group

Jim Harris. Principal Software Engineer. Data Center Group Jim Harris Principal Software Engineer Data Center Group Notices and Disclaimers Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service

More information

Hyperscaler Storage. September 12, 2016

Hyperscaler Storage. September 12, 2016 Storage Networking Industry Association Technical White Paper Hyperscaler Storage Abstract: Hyperscaler storage customers typically build their own storage systems from commodity components. They have

More information

High-Performance and Large-Capacity Storage: A Winning Combination for Future Data Centers. Phil Brace August 12, 2015

High-Performance and Large-Capacity Storage: A Winning Combination for Future Data Centers. Phil Brace August 12, 2015 High-Performance and Large-Capacity Storage: A Winning Combination for Future Data Centers Phil Brace August 12, 2015 Data is Changing Bigger Different $ Constrained Zettabytes 45 40 35 30 25 20 15 10

More information

The Unwritten Contract of Solid State Drives

The Unwritten Contract of Solid State Drives The Unwritten Contract of Solid State Drives Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau Department of Computer Sciences, University of Wisconsin - Madison Enterprise SSD

More information