TOP CONSIDERATIONS FOR ENTERPRISE SSDS - A PRIMER. Top Considerations for Enterprise SSDs A Primer

Size: px
Start display at page:

Download "TOP CONSIDERATIONS FOR ENTERPRISE SSDS - A PRIMER. Top Considerations for Enterprise SSDs A Primer"

Transcription

1 Top Considerations for Enterprise SSDs A Primer

2 Contents 1 Introduction 1 Interface Options 2 SSD Performance Scaling 3 Form Factors 3 Endurance Considerations 3 NAND Considerations 3 Error Handling and Data Protection 4 Power Considerations 4 Measuring Performance 5 Monitoring and Management 5 Conclusion Introduction Evaluating solid-state drives (SSDs) for use in enterprise applications can be tricky business. In addition to selecting the right interface type, endurance level and capacity, decision makers must also look beyond product data sheets to determine the right SSD to accelerate their applications. Often the specifications on SSD vendor collateral are based on multiple and different benchmark tests, or other criteria that may not represent one s unique environment. This paper will examine basic SSD differences and highlight key criteria that should be considered in choosing the right device for a given workload/application. Interface Options The industry typically classifies enterprise-class SSDs by interface type. The main interfaces to evaluate are SATA, SAS and PCIe. From here, it is easy to qualify the devices based on factors such as price, performance, capacity, endurance and form factor. SATA is usually the least expensive of the device types, but also brings up the rear in terms of performance due to the speed limitations of the 6Gb/s SATA bus. SAS SSDs are mostly deployed inside SAN or NAS storage arrays. With dual-port interfaces, they can be configured with multiple paths to multiple array controllers for high availability. SAS drives deliver nearly double the performance of SATA devices, thanks to the 12Gb/s SAS interface. SATA and SAS SSDs are the most widely deployed interface types today, with capacities that can reach more than 4TB. At the high-end of the performance spectrum are PCIe SSDs. These devices connect directly into the PCIe bus and are able to deliver much higher speeds. By implementing specialized controllers that closely resemble memory architectures, PCIe products eliminate traditional storage protocol overhead, thereby reducing latencies and access times when compared to SATA or SAS. Given the importance of latency in enterprise applications, PCIe is often preferred as it reduces IO wait times, improves CPU utilization and enables more users or threads per SSD. Figure 1. Software Stack Comparison of SATA or SAS SSD vs. PCIe SSD SATA and SAS SSDs typically have higher latency than PCIe SSDs. This is primarily due to the software stack that must be traversed to read and write data. The diagram in Figure 1 above illustrates the layers of this stack. More on PCIe A PCIe connection consists of one or more data transmission lanes, connected serially. Each lane consists of two pairs of wires, one for receiving and one for transmitting. The PCIe specification supports one, four, eight or sixteen lanes in a single PCIe slot typically denoted as x1, x4, x8 or x16. Each lane is an independent connection between the PCI controller and the SSD, and bandwidth scales linearly, so an x8 connection will have twice the bandwidth of a x4 connection. PCIe transfer rates will depend on the generation of the base specification. Base 2.0 or Gen-2 provides 4Gb/s per lane, so a Gen-2 with 16 lanes can deliver an aggregate bandwidth of 64Gb/s. Gen-3 provides 8Gb/s per lane, so accordingly a Gen-3 with 8 lanes provides 64Gb/s. When evaluating PCIe devices, it is important to look for references to generation and number of lanes (Gen-2 x4 or Gen-3 x8 and so on). While PCIe devices tend to be the most expensive per GB, they can deliver more than 10 times the performance of SATA. Table 1 on the following page shows a quick summary of the distinctions between the three SSD interfaces. 1

3 Why NVMe Matters for PCIe Another recent PCIe development is a standards-based device driver called NVM Express or NVMe. Most operating systems are shipping the standard NVMe driver today, which eliminates the hassles of deploying proprietary drivers from multiple vendors. Compared to the SATA interface, NVMe is designed to work with pipeline-rich, random access, memory-based storage. As such, it requires only a single message for 4K transfers (compared to 2 for SATA) and has the ability to process multiple queues instead of only one. In fact, NVMe allows for up to 65,536 simultaneous queues. Highlighted in Table 2 to the right are more details comparing SATA (which follows the Advanced Host Controller Interface standard) to NVMe-compliant PCIe. The NVM Express Work Group has not stopped at just a driver. Coming soon are standards for monitoring and managing multi-vendor PCIe installations under a single pane of glass, as well as common methods for creating low-latency networks between NVMe devices for clustering and high availability (NVMe-over-Fabrics). SSD Performance Scaling SSDs deployed inside storage arrays as All-Flash or Hybrid (where storage controllers use tiering or caching between HDDs and SSDs to aggregate devices together and manage data protection) provide large capacity shared storage that can take advantage of SSD performance characteristics. These architectures are ideal for many enterprise use cases, but not for databases like MySQL and NoSQL. For the latter, each server node has its own SSD/HDDs and the databases scale and handle data protection with techniques like sharding that stripe data across lots of individual nodes. For MySQL and NoSQL environments, achieving optimal SSD performance is usually done with PCIe devices due to their low latency and high speeds. Depending on the workload requirements, there are scenarios where striping data across SATA or SAS SSDs inside a single server using RAID-0 can add capacity to the node. However, striping numerous SATA or SAS drives does not necessarily guarantee similar performance to PCIe. As workloads or thread counts increase, SATA and SAS latencies are magnified and software overhead tends to throttle the aggregate performance of the devices. As a result, a single PCIe SSD can often be less expensive than multiple cheaper SATA or SAS devices aggregated together. This is why many vendors have started to speak about performance SSDs as a cost per IOP, rather than the traditional cost per GB that is more familiar from the traditional storage world. Illustrated in Figure 2 to the right is an example of NVMe-compliant PCIe devices compared to 1, 2 and 4 SATA devices in RAID-0 using a tool called SSD Bench. This data illustrates that the overhead of RAID on SATA offsets the potential for linear scalability that can be gained from a single PCIe SSD. Table 1. Typical Specifications for SATA, SAS and PCIe SSDs Specification SATA SSD SAS SSD PCIe SSD IOPS Read/Write Sequential Read/Write 75k / 11.5k 500MB / 450MB 130k / 110k 1.1GB / 765MB 740k / 160k 3GB / 1.6GB Capacity 80GB-4TB 100GB-2TB TB Power (Watts) 9 11 <25 Price $1.00/GB $1.50/GB $2.25/GB Price/Read IOP $0.02/IOP $0.01/IOP $0.001/IOP Figure 2. Performance Comparison NVMe PCIe vs. Multiple SATA Sustained Multi-Threaded Random 4KB Mixed (70R/30W) Using 100% Capacity Sustained Random 4KB Read Performance by # of Threads Using 100% Capacity Table 2. Features Comparison of SATA/AHCI vs. PCIe/NVMe Feature SATA/AHCI PCIe/NVMe Maximum Queue Depth Uncacheable Register Accesses (2000 cycles each) Message Signal Interrupts (MSI-X) and Interrupt Steering Parallelism and Multiple Threads Efficiency for 4KB Commands One command per queue; 32 commands per queue Six per non-queued command; Nine per queued command A single interrupt; No steering Requires synchronization lock to issue a command Command parameters require two serialized host DRAM fetches 65,536 queues; 65,536 commands per queue Two per command 2048 MSI-X interrupts No locking Gets command parameters in a single 64-byte fetch Sustained Random 4KB Mixed (70R/30W) Performance by # of Threads Using 100% Capacity Sustained Random 4KB Write Performance by # of Threads Using 100% Capacity 2

4 Form Factors Both SATA and SAS devices come in 2.5 disk form factors. Until recently, PCIe devices were only available in the Half-Height, Half- Length (HH-HL) card form factor, meaning that the buyer would have to open up the server to install the SSD. This has changed in recent months. Almost all server vendors now offer machines where PCIe Flash can be accessed in the front of the server just like a traditional hard drive. Adoption of this server and storage combination is growing rapidly as it allows simple maintenance (like hot-swap) and gives customers the choice of easily adding or changing SSDs as needed. Endurance Considerations SSD endurance is usually described in terms of Drive Writes per Day (DW/D). Specifically, this is how much data that can be written to the device for a specified time period (typically three years or five years). For many vendors, this time period is the same as the SSD s warranty period. But this is not always the case, so understanding the definition of DW/D is important. For example, if a 1TB SSD is specified for 1DW/D, it should handle 1TB of data written to it every day for the warranty period. It is important to pay close attention to how DW/D is presented. Some vendors show DW/D in a best case scenario using Total Flash Writes. This is very different from measurements that use Application Writes. The latter takes into consideration worst-case, small block (4K) random I/O patterns with all device activities including writes, reads, wear leveling and garbage collection. It is common to hear about Write Amplification which is a reference to the realistic view of what happens over time when writing to an SSD. Other considerations like random or sequential writes will have an impact on endurance. The above reference is for random writes, which will yield lower endurance than sequential writes. Another metric that is used for SSD write endurance is Terabytes Written (TBW), which describes how much data can be written to the SSD over the life of the drive. Again, the higher the TBW value, the better the endurance of the SSD. Depending on the supplier, endurance may be reported as either DW/D or TBW. To convert between the two metrics, the drive capacity and the supplier measurement period must be known. To convert TBW to DW/D, the following formula can be used. TBW = DWD * Warranty * 365 * Capacity/1024 Note: 1024 is simply the conversion for gigabytes to terabytes. A few years ago, endurance was the top criteria for purchasing an SSD. What the industry has found over time is that SSD technology has improved and generally use-cases tend to be more read intensive. As such, there is now a broad mix of SSD endurance, capacities and DW/D annotations for High Endurance (HE), Medium Endurance (ME), Read Intensive (RI) and Very Read Intensive (VRI) along with associated DW/D warranties. There are several good ways to choose the right DW/D for a specific environment s needs. Options include vendor-supplied profiling tools or historical storage information with Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). NAND Considerations Endurance, footprint, cost and performance are all directly impacted by the underlying NAND technology used by the SSD maker. Early on, Single-Level Cell (SLC) NAND Flash, which uses a single cell to store one bit of data, was the primary choice as it provided high endurance for write intensive applications. The downside, however, was that SLC was extremely expensive. To allow the cost of SSDs to reach the mainstream, the industry moved to Multi-Level Cell (MLC) architectures. While less expensive, MLC also has lower endurance. Pioneering SSD vendors addressed MLC endurance challenges with specialized controller architectures for error handling and data protection, yielding Unrecoverable Bit Error Rates (UBER) of 1 error in 100,000 trillion bits read over the full write endurance of the device. With broad adoption of MLC NAND today, the industry continues to seek new ways to reduce cost and expand the use cases for SSDs. To address both capacity and cost, a new technology is emerging called 3D NAND, where the NAND cells are arranged vertically in the NAND die to gain more density in the same footprint. NAND manufacturers have chosen different paths for the construction of NAND cells. Some fabrications use traditional floating gate MOSFET technology with doped polycrystalline silicon. Others use Charge Trap Flash (CTF) where silicon nitride film is used to store electrons. Floating gate is more mature based on its long history, but CTF may have advantages in certain areas. Enterprises should look to vendors with a strong track record of delivering high-quality and high-reliability to successfully manage the 3D NAND transition. Error Handling and Data Protection Every vendor addresses NAND management in a slightly different way with unique software and firmware in the controller. The primary objective is to improve SSD endurance through Flash management algorithms. Proactive cell management provides improved reliability and reduced bit error rates. State-of-the-art controllers also employ advanced signal processing techniques to dynamically manage how NAND wears. This eliminates the need for read-retries by accessing error-free data, even at vendor-specified endurance limits. In addition, techniques such as predictive read-optimization ensure there is no loss of performance during the useful life of the drive. Some technologies also incorporate controller-based media access management, which dynamically adjusts over the lifetime of the media to reduce the Unrecoverable 3

5 Bit Error Rate (UBER). Advanced Error Correction Code (ECC) techniques enable a higher degree of protection against media errors, leading to improved endurance while maintaining or delivering higher performance. From a data protection standpoint, certain SSDs can prevent data loss associated with Flash media. These products provide the ability to recover from NAND Flash page, block, die and chip failures by creating multiple instances of data striped across multiple NAND Flash dies. Fundamentally, each NAND Flash die consists of multiple pages which are further arranged in multiple blocks. Data stored by the controller is managed at the NAND block level. Software in the controller is used to arrange data in stripes. When the host writes data to the SSD, redundancy information is generated by the controller over a stripe of data. The controller then writes the host data and the redundant data to the Flash stripes. Data in the stripe is spread across the NAND Flash blocks over multiple Flash channels, so that no two blocks of data within a stripe resides in the same NAND block or die. The result is RAID-like protection of NAND that yields very high reliability. Power Considerations PCIe SSDs use more power than their SATA and SAS counterparts. High-end NVMe-compliant PCIe SSDs generally specify maximum power ratings for Gen-3 x4 around 25 watts. While there are low-power PCIe SSDs, they typically have lower performance characteristics than the high-end devices. A few products on the market also offer field programmable power options that allow users to set power thresholds. As a lower power threshold can throttle performance, users should check with the manufacturer for proper power/performance tuning. Measuring Performance SSD performance typically is measured by three distinct metrics Input/Output Operations per Second (IOPS), throughput and latency. A fourth metric that is often overlooked but important to note is Quality of Service (QoS). Each is described below: 1. IOPS is the transfer rate of the device or the number of transactions that can be completed in a given amount of time. Depending on the type of benchmarking tool, this measure could also be shown as Transactions per Minute (TPM). 2. Throughput is the amount of data that can be transferred to or from the SSD. Throughput is measured in MB/s or GB/s. 3. Latency is the amount of time it takes for a command generated by the host to go to the SSD and return (round trip time for an IO request). Response time is measured in milliseconds or microseconds depending on the type of SSD. 4. QoS measures the consistency of performance over a specific time interval with a fixed confidence level or threshold. QoS measurements can include both Macro (consistency of average IOPS latency) and Micro (measured command completion time latencies at various queue depths). Performance measurements must be tied to the workload or use case for the SSD. In some cases, block sizes are small, in others they are large. Workloads also differ by access patterns like random or sequential and read/write mix. A read or write operation is sequential when its starting storage location, or Logical Block Address (LBA), follows directly after the previous operation. Each new IO begins where the last one ended. Random operations are just the opposite, where the LBA is not contiguous to the ending LBA of the previous operation. SSD controllers maintain a mapping table to align LBAs to Flash Physical Block Addresses (PBA). The algorithms employed by different vendors vary and have a big impact on both performance and endurance. The mix of read and write operations also impact SSD performance. SSDs are really good at reads since there are very few steps that the controller must take. Writes on the other hand are slower. This is because a single NAND memory location cannot be overwritten in a single IO operation (unlike HDDs that can overwrite a single LBA). The number of write steps depends on how full the device is and whether the controller must first erase the target cell (or potentially relocate data with a read/ modify/write operation). Overall, SSDs can deliver very high IOPS in small random read access patterns and high throughput with large block sequential patterns. IOPS and Throughput Nearly all SSD data sheets will specify IOPS performance using 100% read or 100% write at 4K block sizes, as well as throughput specifications on 100% sequential reads and writes with a 128KB block size. These numbers make SSDs look extremely fast, and vendors tune their controllers to optimize the results. However, an application that is 100% read is quite unusual. A more relevant metric of the real world is a mixed read/write workload. It is fairly rare to see published specs on mixed read/ write performance. It is even more uncommon to see mixed workload measures as thread count or user count increases. But this type of measurement is critical as it illustrates the robustness of controller design and how much work a given SSD can perform, allowing users to accurately plan the number of SSDs (and potentially servers) needed. Highlighted in Figure 3 to the right is an example of different NVMe vendor device IOPS in a 70/30 read/write mix as workloads increase. As shown in Figure 3 at the bottom of the page, most SSDs perform well under light workloads but as the load increases, only a few can scale in a linear fashion. In fact, the difference between NVMe Comp-A and NVMe Comp-C is 2x. Latency User experience, CPU utilization, number of CPU cores and ultimately the number of software licenses and servers required for an application are all driven by a combination of IOPS, throughput and latency. Of these three metrics, latency has the greatest impact. As the unit of measure for response time, being able to view latency over increasing workload demand should be a driving factor in selecting a SSD. Most vendors will publish an average latency metric on their data sheets. However, just like the 100% 4K random read metric, this number must be put into a workload context. Figure 4 on the next page illustrates how several vendors stack up on a more realistic scenario measuring throughput of a 4K random 70/30 mixed read/ write workload. Figure 3. Sustained 4KB Random Mixed 70/30 by Number of Threads for NVMe-compliant PCIe SSDs (100% Capacity with Full Preconditioning) 4

6 Quality of Service In mission critical environments, the consistency of SSD performance is paramount. But controller tasks like garbage collection or wear-leveling operating concurrently with IO traffic can severely impact data delivery. A few vendors are starting to publish QoS measurements. Both Macro QoS (consistency of IOPS and latency at a specific queue depth and time interval) as well as Micro QoS (cumulative summary of command completions in a specific time interval based on a given workload) should be reviewed. Examples of each type of report are shown in Figure 5 to the left. Monitoring and Management Deploying SSDs is relatively easy. But as more SSDs are installed, having tools that can monitor health, performance and utilization from a centralized platform will save time and reduce stress. Monitoring tools that will provide the most value will have Active Directory/LDAP integration, automated alerts and endurance reporting, as well as the ability to perform device-specific and/or enterprise-wide functions like format, sanitize, resize and firmware updating. Conclusion According to IDC, 11.5 million Enterprise SSDs were shipped in calendar year 2015 which represents 7.1 Exabytes of capacity with a 32% unit volume increase compared to Clearly the technology has moved from niche to mainstream as NAND fabrication and the products themselves have matured. While there is no expected date when SSD cost/gb pricing will match HDDs, the cost/iop metric is rapidly being embraced for performance and latency-sensitive applications. There are many different enterprise SSD options that span the gamut of price, performance, endurance and form factor. The contents of this paper should serve as a useful primer to help guide users in making the best decisions for SSD deployment. During the process, it is also valuable to source and reference additional materials to assist with benchmarking, application-specific implementation guides and peer case studies to stay abreast of the latest news in SSD technologies. Figure 4. Average Latency Comparisons Between NVMe SSD Vendors (1.6TB PCIe, 4KB Random 70/30 at Given Level of IOPS) Figure 5. Example Reports of Macro QoS and Micro QoS Macro QoS Example Report 1 Second Time Series: 4KiB Random 70R/30W, QD = 32 IOPS StDev / Avg IOPS = 1.9% Micro QoS Example Reports Cumulative CCT: 4KiB Random 70R/30W, QD = 32 Percentile Summary: 99% = 2.8ms 99.99% = 7.5ms 100% = 70.46ms CCT Histogram: 4KiB Random 70R/30W, QD = 32 Max Observed Latency: 70.46ms Learn more about HGST Enterprise SSDs at HGST, Inc., 3403 Yerba Buena Road, San Jose, CA USA. Produced in the United States 2/16. All rights reserved. References in this publication to HGST s products, programs or services do not imply that HGST intends to make these available in all countries in which it operates. Information is true as of the date of publication and is subject to change and does not constitute a warranty. Individual performance may vary. Users are responsible for evaluating their own requirements. WP30-Top-Considerations-Enterprise-SSDs-Primer-EN-01 5

Interface Trends for the Enterprise I/O Highway

Interface Trends for the Enterprise I/O Highway Interface Trends for the Enterprise I/O Highway Mitchell Abbey Product Line Manager Enterprise SSD August 2012 1 Enterprise SSD Market Update One Size Does Not Fit All : Storage solutions will be tiered

More information

Benchmarking Enterprise SSDs

Benchmarking Enterprise SSDs Whitepaper March 2013 Benchmarking Enterprise SSDs When properly structured, benchmark tests enable IT professionals to compare solid-state drives (SSDs) under test with conventional hard disk drives (HDDs)

More information

NVMe: The Protocol for Future SSDs

NVMe: The Protocol for Future SSDs When do you need NVMe? You might have heard that Non-Volatile Memory Express or NVM Express (NVMe) is the next must-have storage technology. Let s look at what NVMe delivers. NVMe is a communications protocol

More information

FC-NVMe. NVMe over Fabrics. Fibre Channel the most trusted fabric can transport NVMe natively. White Paper

FC-NVMe. NVMe over Fabrics. Fibre Channel the most trusted fabric can transport NVMe natively. White Paper FC-NVMe NVMe over Fabrics Fibre Channel the most trusted fabric can transport NVMe natively BACKGROUND AND SUMMARY Ever since IBM shipped the world s first hard disk drive (HDD), the RAMAC 305 in 1956,

More information

Evaluation Report: Improving SQL Server Database Performance with Dot Hill AssuredSAN 4824 Flash Upgrades

Evaluation Report: Improving SQL Server Database Performance with Dot Hill AssuredSAN 4824 Flash Upgrades Evaluation Report: Improving SQL Server Database Performance with Dot Hill AssuredSAN 4824 Flash Upgrades Evaluation report prepared under contract with Dot Hill August 2015 Executive Summary Solid state

More information

SSD Architecture Considerations for a Spectrum of Enterprise Applications. Alan Fitzgerald, VP and CTO SMART Modular Technologies

SSD Architecture Considerations for a Spectrum of Enterprise Applications. Alan Fitzgerald, VP and CTO SMART Modular Technologies SSD Architecture Considerations for a Spectrum of Enterprise Applications Alan Fitzgerald, VP and CTO SMART Modular Technologies Introduction Today s SSD delivers form-fit-function compatible solid-state

More information

TOP CONSIDERATIONS FOR ENTERPRISE SSDS. Top Considerations for Enterprise SSDs

TOP CONSIDERATIONS FOR ENTERPRISE SSDS. Top Considerations for Enterprise SSDs Top Considerations for Enterprise SSDs Contents Introduction 1 Form Factors 1 Interface Options 3 Endurance Considerations 4 Error Handling, Power Protection, and End-to-End Data Protection 5 NAND Types

More information

Preface. Fig. 1 Solid-State-Drive block diagram

Preface. Fig. 1 Solid-State-Drive block diagram Preface Solid-State-Drives (SSDs) gained a lot of popularity in the recent few years; compared to traditional HDDs, SSDs exhibit higher speed and reduced power, thus satisfying the tough needs of mobile

More information

Frequently Asked Questions. s620 SATA SSD Enterprise-Class Solid-State Device

Frequently Asked Questions. s620 SATA SSD Enterprise-Class Solid-State Device Frequently Asked Questions s620 SATA SSD Enterprise-Class Solid-State Device Frequently Asked Questions Q: What about advanced data protection? A: In mission-critical enterprise and datacenter applications,

More information

Accelerating Real-Time Big Data. Breaking the limitations of captive NVMe storage

Accelerating Real-Time Big Data. Breaking the limitations of captive NVMe storage Accelerating Real-Time Big Data Breaking the limitations of captive NVMe storage 18M IOPs in 2u Agenda Everything related to storage is changing! The 3rd Platform NVM Express architected for solid state

More information

Samsung PM1725a NVMe SSD

Samsung PM1725a NVMe SSD Samsung PM1725a NVMe SSD Exceptionally fast speeds and ultra-low latency for enterprise application Brochure 1 Extreme performance from an SSD technology leader Maximize data transfer with the high-performance,

More information

Storage Systems : Disks and SSDs. Manu Awasthi CASS 2018

Storage Systems : Disks and SSDs. Manu Awasthi CASS 2018 Storage Systems : Disks and SSDs Manu Awasthi CASS 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology, Qureshi et al, ISCA 2009 Trends Total amount

More information

Considering the 2.5-inch SSD-based RAID Solution:

Considering the 2.5-inch SSD-based RAID Solution: Considering the 2.5-inch SSD-based RAID Solution: Using Infortrend EonStor B12 Series with Intel SSD in a Microsoft SQL Server Environment Application Note Abstract This application note discusses the

More information

Technical Notes. Considerations for Choosing SLC versus MLC Flash P/N REV A01. January 27, 2012

Technical Notes. Considerations for Choosing SLC versus MLC Flash P/N REV A01. January 27, 2012 Considerations for Choosing SLC versus MLC Flash Technical Notes P/N 300-013-740 REV A01 January 27, 2012 This technical notes document contains information on these topics:...2 Appendix A: MLC vs SLC...6

More information

COMP283-Lecture 3 Applied Database Management

COMP283-Lecture 3 Applied Database Management COMP283-Lecture 3 Applied Database Management Introduction DB Design Continued Disk Sizing Disk Types & Controllers DB Capacity 1 COMP283-Lecture 3 DB Storage: Linear Growth Disk space requirements increases

More information

Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c

Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c White Paper Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c What You Will Learn This document demonstrates the benefits

More information

Emulex LPe16000B 16Gb Fibre Channel HBA Evaluation

Emulex LPe16000B 16Gb Fibre Channel HBA Evaluation Demartek Emulex LPe16000B 16Gb Fibre Channel HBA Evaluation Evaluation report prepared under contract with Emulex Executive Summary The computing industry is experiencing an increasing demand for storage

More information

Replacing the FTL with Cooperative Flash Management

Replacing the FTL with Cooperative Flash Management Replacing the FTL with Cooperative Flash Management Mike Jadon Radian Memory Systems www.radianmemory.com Flash Memory Summit 2015 Santa Clara, CA 1 Data Center Primary Storage WORM General Purpose RDBMS

More information

Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage,

Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage, Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage, Micron @peglarr 2015 Micron Technology, Inc All rights reserved Products are warranted only to

More information

Optimizing Quality of Service with SAP HANA on Power Rapid Cold Start

Optimizing Quality of Service with SAP HANA on Power Rapid Cold Start Optimizing Quality of Service with SAP HANA on Power Rapid Cold Start How SAP HANA on Power with Rapid Cold Start helps clients quickly restore business-critical operations Contents 1 About this document

More information

Dell PowerEdge R730xd Servers with Samsung SM1715 NVMe Drives Powers the Aerospike Fraud Prevention Benchmark

Dell PowerEdge R730xd Servers with Samsung SM1715 NVMe Drives Powers the Aerospike Fraud Prevention Benchmark Dell PowerEdge R730xd Servers with Samsung SM1715 NVMe Drives Powers the Aerospike Fraud Prevention Benchmark Testing validation report prepared under contract with Dell Introduction As innovation drives

More information

PCIe Workload Accelerators HH/HL

PCIe Workload Accelerators HH/HL HPE s for ProLiant Servers Overview HPE s for ProLiant Servers Could your data center benefit from PCIe workload acceleration based on solid-state storage technology? HPE s for ProLiant ML/DL/SL Servers

More information

Micron NVMe in the Open19 Platform: Low-Latency Storage at the Edge.

Micron NVMe in the Open19 Platform: Low-Latency Storage at the Edge. Micron NVMe in the Open19 Platform: Low-Latency Storage at the Edge. Introduction The explosion of data in the Age of Intelligence has created an unprecedented shift in the way data is generated and consumed.

More information

It s Time to Move Your Critical Data to SSDs Introduction

It s Time to Move Your Critical Data to SSDs Introduction It s Time to Move Your Critical Data to SSDs Introduction by the Northamber Storage Specialist Today s IT professionals are well aware that users expect fast, reliable access to ever-growing amounts of

More information

Storage Update and Storage Best Practices for Microsoft Server Applications. Dennis Martin President, Demartek January 2009 Copyright 2009 Demartek

Storage Update and Storage Best Practices for Microsoft Server Applications. Dennis Martin President, Demartek January 2009 Copyright 2009 Demartek Storage Update and Storage Best Practices for Microsoft Server Applications Dennis Martin President, Demartek January 2009 Copyright 2009 Demartek Agenda Introduction Storage Technologies Storage Devices

More information

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Storage Systems : Disks and SSDs Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology,

More information

Solid State Drive (SSD) Cache:

Solid State Drive (SSD) Cache: Solid State Drive (SSD) Cache: Enhancing Storage System Performance Application Notes Version: 1.2 Abstract: This application note introduces Storageflex HA3969 s Solid State Drive (SSD) Cache technology

More information

How to Speed up Database Applications with a Purpose-Built SSD Storage Solution

How to Speed up Database Applications with a Purpose-Built SSD Storage Solution How to Speed up Database Applications with a Purpose-Built SSD Storage Solution SAN Accessible Storage Array Speeds Applications by up to 25x Introduction Whether deployed in manufacturing, finance, web

More information

Samsung Z-SSD SZ985. Ultra-low Latency SSD for Enterprise and Data Centers. Brochure

Samsung Z-SSD SZ985. Ultra-low Latency SSD for Enterprise and Data Centers. Brochure Samsung Z-SSD SZ985 Ultra-low Latency SSD for Enterprise and Data Centers Brochure 1 A high-speed storage device from the SSD technology leader Samsung Z-SSD SZ985 offers more capacity than PRAM-based

More information

INTRODUCTION TO EMC XTREMSF

INTRODUCTION TO EMC XTREMSF White Paper INTRODUCTION TO EMC XTREMSF XtremSF is server-based PCIe Flash hardware XtremSF can be used as local storage or as a caching device with EMC XtremSW Cache Abstract This white paper provides

More information

LSI and HGST accelerate database applications with Enterprise RAID and Solid State Drives

LSI and HGST accelerate database applications with Enterprise RAID and Solid State Drives LSI and HGST accelerate database applications with Enterprise RAID and Solid State Drives HGST Ultrastar enterprise-class solid state drives (SSDs) connected to LSI MegaRAID 6Gb/s SAS+SATA RAID controller

More information

FAQs HP Z Turbo Drive Quad Pro

FAQs HP Z Turbo Drive Quad Pro FAQs HP Z Turbo Drive Quad Pro Product performance/implementation What is the HP Z Turbo Drive PCIe SSD? The HP Z Turbo Drive PCIe SSD is the family name for an M.2 PCIe connected SSD. The M.2 PCIe card

More information

QuickSpecs. PCIe Solid State Drives for HP Workstations

QuickSpecs. PCIe Solid State Drives for HP Workstations Overview Introduction Storage technology with NAND media is outgrowing the bandwidth limitations of the SATA bus. New high performance Storage solutions will connect directly to the PCIe bus for revolutionary

More information

WWW. FUSIONIO. COM. Fusion-io s Solid State Storage A New Standard for Enterprise-Class Reliability Fusion-io, All Rights Reserved.

WWW. FUSIONIO. COM. Fusion-io s Solid State Storage A New Standard for Enterprise-Class Reliability Fusion-io, All Rights Reserved. Fusion-io s Solid State Storage A New Standard for Enterprise-Class Reliability iodrive Fusion-io s Solid State Storage A New Standard for Enterprise-Class Reliability Fusion-io offers solid state storage

More information

The Impact of SSD Selection on SQL Server Performance. Solution Brief. Understanding the differences in NVMe and SATA SSD throughput

The Impact of SSD Selection on SQL Server Performance. Solution Brief. Understanding the differences in NVMe and SATA SSD throughput Solution Brief The Impact of SSD Selection on SQL Server Performance Understanding the differences in NVMe and SATA SSD throughput 2018, Cloud Evolutions Data gathered by Cloud Evolutions. All product

More information

The Transition to PCI Express* for Client SSDs

The Transition to PCI Express* for Client SSDs The Transition to PCI Express* for Client SSDs Amber Huffman Senior Principal Engineer Intel Santa Clara, CA 1 *Other names and brands may be claimed as the property of others. Legal Notices and Disclaimers

More information

SSD ENDURANCE. Application Note. Document #AN0032 Viking SSD Endurance Rev. A

SSD ENDURANCE. Application Note. Document #AN0032 Viking SSD Endurance Rev. A SSD ENDURANCE Application Note Document #AN0032 Viking Rev. A Table of Contents 1 INTRODUCTION 3 2 FACTORS AFFECTING ENDURANCE 3 3 SSD APPLICATION CLASS DEFINITIONS 5 4 ENTERPRISE SSD ENDURANCE WORKLOADS

More information

Extending the NVMHCI Standard to Enterprise

Extending the NVMHCI Standard to Enterprise Extending the NVMHCI Standard to Enterprise Amber Huffman Principal Engineer Intel Corporation August 2009 1 Outline Remember: What is NVMHCI PCIe SSDs Coming with Challenges Enterprise Extensions to NVMHCI

More information

Samsung SSD PM863 and SM863 for Data Centers. Groundbreaking SSDs that raise the bar on satisfying big data demands

Samsung SSD PM863 and SM863 for Data Centers. Groundbreaking SSDs that raise the bar on satisfying big data demands Samsung SSD PM863 and SM863 for Data Centers Groundbreaking SSDs that raise the bar on satisfying big data demands 2 Samsung SSD PM863 and SM863 Innovations in solid state As the importance of data in

More information

It Takes Guts to be Great

It Takes Guts to be Great It Takes Guts to be Great Sean Stead, STEC Tutorial C-11: Enterprise SSDs Tues Aug 21, 2012 8:30 to 11:20AM 1 Who s Inside Your SSD? Full Data Path Protection Host Interface It s What s On The Inside That

More information

vsan 6.6 Performance Improvements First Published On: Last Updated On:

vsan 6.6 Performance Improvements First Published On: Last Updated On: vsan 6.6 Performance Improvements First Published On: 07-24-2017 Last Updated On: 07-28-2017 1 Table of Contents 1. Overview 1.1.Executive Summary 1.2.Introduction 2. vsan Testing Configuration and Conditions

More information

QuickSpecs. HPE Solid State Disk Drives. Overview. HPE Solid State Disk Drives (SSD, AICs, M.2s and M.2 EKits)

QuickSpecs. HPE Solid State Disk Drives. Overview. HPE Solid State Disk Drives (SSD, AICs, M.2s and M.2 EKits) Overview (, AICs, M.2s and M.2 EKits) HPE Solid State Drives (s), Add-In-Cards, M.2s and M.2 Enablement Kits (EKits) are based upon industry leading NAND Flash technology, which delivers exceptional performance

More information

SAS Technical Update Connectivity Roadmap and MultiLink SAS Initiative Jay Neer Molex Corporation Marty Czekalski Seagate Technology LLC

SAS Technical Update Connectivity Roadmap and MultiLink SAS Initiative Jay Neer Molex Corporation Marty Czekalski Seagate Technology LLC SAS Technical Update Connectivity Roadmap and MultiLink SAS Initiative Jay Neer Molex Corporation Marty Czekalski Seagate Technology LLC SAS Connectivity Roadmap Background Connectivity Objectives Converged

More information

Top 5 Reasons to Consider

Top 5 Reasons to Consider Top 5 Reasons to Consider NVM Express over Fabrics For Your Cloud Data Center White Paper Top 5 Reasons to Consider NVM Express over Fabrics For Your Cloud Data Center Major transformations are occurring

More information

Building an All Flash Server What s the big deal? Isn t it all just plug and play?

Building an All Flash Server What s the big deal? Isn t it all just plug and play? Building an All Flash Server What s the big deal? Isn t it all just plug and play? Doug Rollins Micron Technology Santa Clara, CA 1 What we ll cover Industry Secrets (shhhhh. ) Example Platform Key features

More information

Key Points. Rotational delay vs seek delay Disks are slow. Techniques for making disks faster. Flash and SSDs

Key Points. Rotational delay vs seek delay Disks are slow. Techniques for making disks faster. Flash and SSDs IO 1 Today IO 2 Key Points CPU interface and interaction with IO IO devices The basic structure of the IO system (north bridge, south bridge, etc.) The key advantages of high speed serial lines. The benefits

More information

QuickSpecs. HPE Solid State Disk Drives (SSD & Accelerators) Overview. HPE Solid State Disk Drives (SSD & Accelerators)

QuickSpecs. HPE Solid State Disk Drives (SSD & Accelerators) Overview. HPE Solid State Disk Drives (SSD & Accelerators) Overview HPE Solid State Drives (SSDs) & Accelerators are based upon industry leading NAND Flash technology, which delivers exceptional performance and endurance to support a growing broad spectrum of

More information

White Paper: Increase ROI by Measuring the SSD Lifespan in Your Workload

White Paper: Increase ROI by Measuring the SSD Lifespan in Your Workload White Paper: Using SMART Attributes to Estimate Drive Lifetime Increase ROI by Measuring the SSD Lifespan in Your Workload Using SMART Attributes to Estimate Drive Endurance The lifespan of storage has

More information

NVMe SSDs Becoming Norm for All Flash Storage

NVMe SSDs Becoming Norm for All Flash Storage SSDs Becoming Norm for All Flash Storage Storage media has improved by leaps and bounds over the last several years. Capacity and performance are both improving at rather rapid rates as popular vendors

More information

Red Hat Ceph Storage and Samsung NVMe SSDs for intensive workloads

Red Hat Ceph Storage and Samsung NVMe SSDs for intensive workloads Red Hat Ceph Storage and Samsung NVMe SSDs for intensive workloads Power emerging OpenStack use cases with high-performance Samsung/ Red Hat Ceph reference architecture Optimize storage cluster performance

More information

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse]

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Disks and RAID CS 4410 Operating Systems [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Storage Devices Magnetic disks Storage that rarely becomes corrupted Large capacity at low cost Block

More information

Toward a Memory-centric Architecture

Toward a Memory-centric Architecture Toward a Memory-centric Architecture Martin Fink EVP & Chief Technology Officer Western Digital Corporation August 8, 2017 1 SAFE HARBOR DISCLAIMERS Forward-Looking Statements This presentation contains

More information

Introducing and Validating SNIA SSS Performance Test Suite Esther Spanjer SMART Modular

Introducing and Validating SNIA SSS Performance Test Suite Esther Spanjer SMART Modular Introducing and Validating SNIA SSS Performance Test Suite Esther Spanjer SMART Modular Abstract SSS Performance Benchmarking Learning Objectives Get a good understanding of the various parameters that

More information

Intel Solid State Drive Data Center Family for PCIe* in Baidu s Data Center Environment

Intel Solid State Drive Data Center Family for PCIe* in Baidu s Data Center Environment Intel Solid State Drive Data Center Family for PCIe* in Baidu s Data Center Environment Case Study Order Number: 334534-002US Ordering Information Contact your local Intel sales representative for ordering

More information

3MG2-P Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date:

3MG2-P Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: 3MG2-P Series Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: Innodisk Approver Customer Approver Table of contents 2.5 SATA SSD 3MG2-P LIST OF FIGURES... 6 1. PRODUCT

More information

UCS Invicta: A New Generation of Storage Performance. Mazen Abou Najm DC Consulting Systems Engineer

UCS Invicta: A New Generation of Storage Performance. Mazen Abou Najm DC Consulting Systems Engineer UCS Invicta: A New Generation of Storage Performance Mazen Abou Najm DC Consulting Systems Engineer HDDs Aren t Designed For High Performance Disk 101 Can t spin faster (200 IOPS/Drive) Can t seek faster

More information

STORAGE NETWORKING TECHNOLOGY STEPS UP TO PERFORMANCE CHALLENGES

STORAGE NETWORKING TECHNOLOGY STEPS UP TO PERFORMANCE CHALLENGES E-Guide STORAGE NETWORKING TECHNOLOGY STEPS UP TO PERFORMANCE CHALLENGES SearchStorage S torage network technology is changing and speed is the name of the game. To handle the burgeoning data growth, organizations

More information

Micron Quad-Level Cell Technology Brings Affordable Solid State Storage to More Applications

Micron Quad-Level Cell Technology Brings Affordable Solid State Storage to More Applications Micron Quad-Level Cell Technology Brings Affordable Solid State Storage to More Applications QLC Empowers Immense, Read-Focused Workloads Overview For years, read-focused workloads were relegated to legacy

More information

QuickSpecs. HPE Solid State Drives (SSD) Overview

QuickSpecs. HPE Solid State Drives (SSD) Overview Overview HPE Solid State Drives (SSDs) deliver exceptional performance and endurance for customers with applications requiring high random read IOPs performance. Leveraging NAND Flash technology, they

More information

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager 1 T HE D E N A L I N E X T - G E N E R A T I O N H I G H - D E N S I T Y S T O R A G E I N T E R F A C E Laura Caulfield Senior Software Engineer Arie van der Hoeven Principal Program Manager Outline Technology

More information

The Benefits of Solid State in Enterprise Storage Systems. David Dale, NetApp

The Benefits of Solid State in Enterprise Storage Systems. David Dale, NetApp The Benefits of Solid State in Enterprise Storage Systems David Dale, NetApp SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies

More information

Introducing NVDIMM-X: Designed to be the World s Fastest NAND-Based SSD Architecture and a Platform for the Next Generation of New Media SSDs

Introducing NVDIMM-X: Designed to be the World s Fastest NAND-Based SSD Architecture and a Platform for the Next Generation of New Media SSDs , Inc. Introducing NVDIMM-X: Designed to be the World s Fastest NAND-Based SSD Architecture and a Platform for the Next Generation of New Media SSDs Doug Finke Director of Product Marketing September 2016

More information

Overprovisioning and the SanDisk X400 SSD

Overprovisioning and the SanDisk X400 SSD and the SanDisk X400 SSD Improving Performance and Endurance with Rev 1.2 October 2016 CSS Technical Marketing Western Digital Technologies, Inc. 951 SanDisk Dr. Milpitas, CA 95035 Phone (408) 801-1000

More information

Evaluation Report: HP StoreFabric SN1000E 16Gb Fibre Channel HBA

Evaluation Report: HP StoreFabric SN1000E 16Gb Fibre Channel HBA Evaluation Report: HP StoreFabric SN1000E 16Gb Fibre Channel HBA Evaluation report prepared under contract with HP Executive Summary The computing industry is experiencing an increasing demand for storage

More information

Intel SSD Data center evolution

Intel SSD Data center evolution Intel SSD Data center evolution March 2018 1 Intel Technology Innovations Fill the Memory and Storage Gap Performance and Capacity for Every Need Intel 3D NAND Technology Lower cost & higher density Intel

More information

Persistent Memory. High Speed and Low Latency. White Paper M-WP006

Persistent Memory. High Speed and Low Latency. White Paper M-WP006 Persistent Memory High Speed and Low Latency White Paper M-WP6 Corporate Headquarters: 3987 Eureka Dr., Newark, CA 9456, USA Tel: (51) 623-1231 Fax: (51) 623-1434 E-mail: info@smartm.com Customer Service:

More information

Identifying Performance Bottlenecks with Real- World Applications and Flash-Based Storage

Identifying Performance Bottlenecks with Real- World Applications and Flash-Based Storage Identifying Performance Bottlenecks with Real- World Applications and Flash-Based Storage TechTarget Dennis Martin 1 Agenda About Demartek Enterprise Data Center Environments Storage Performance Metrics

More information

IBM Emulex 16Gb Fibre Channel HBA Evaluation

IBM Emulex 16Gb Fibre Channel HBA Evaluation IBM Emulex 16Gb Fibre Channel HBA Evaluation Evaluation report prepared under contract with Emulex Executive Summary The computing industry is experiencing an increasing demand for storage performance

More information

DDN. DDN Updates. Data DirectNeworks Japan, Inc Shuichi Ihara. DDN Storage 2017 DDN Storage

DDN. DDN Updates. Data DirectNeworks Japan, Inc Shuichi Ihara. DDN Storage 2017 DDN Storage DDN DDN Updates Data DirectNeworks Japan, Inc Shuichi Ihara DDN A Broad Range of Technologies to Best Address Your Needs Protection Security Data Distribution and Lifecycle Management Open Monitoring Your

More information

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs 1 Public and Private Cloud Providers 2 Workloads and Applications Multi-Tenancy Databases Instance

More information

CSE 451: Operating Systems Spring Module 12 Secondary Storage. Steve Gribble

CSE 451: Operating Systems Spring Module 12 Secondary Storage. Steve Gribble CSE 451: Operating Systems Spring 2009 Module 12 Secondary Storage Steve Gribble Secondary storage Secondary storage typically: is anything that is outside of primary memory does not permit direct execution

More information

White Paper: Understanding the Relationship Between SSD Endurance and Over-Provisioning. Solid State Drive

White Paper: Understanding the Relationship Between SSD Endurance and Over-Provisioning. Solid State Drive White Paper: Understanding the Relationship Between SSD Endurance and Over-Provisioning Solid State Drive 2 Understanding the Relationship Between Endurance and Over-Provisioning Each of the cells inside

More information

SanDisk Enterprise Storage Solutions

SanDisk Enterprise Storage Solutions SanDisk Enterprise Storage Solutions Mike Chenery Senior Fellow Deutsche Bank Technology Conference Las Vegas, Nevada September 14, 2011 Forward-looking Statement During our meeting today we will be making

More information

HP VMA-series Memory Arrays

HP VMA-series Memory Arrays HP VMA-series Memory Arrays Optimize OLTP database applications Presenter title August 2011 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without

More information

Driving SSD Storage into Today s Embedded Systems Computing Architecture s

Driving SSD Storage into Today s Embedded Systems Computing Architecture s Driving SSD Storage into Today s Embedded Systems Computing Architecture s Grady Lambert SMART Modular Technologies Presentation Agenda Standard Form-Factors and Applications Market Trends Common Figures

More information

Reducing Solid-State Storage Device Write Stress Through Opportunistic In-Place Delta Compression

Reducing Solid-State Storage Device Write Stress Through Opportunistic In-Place Delta Compression Reducing Solid-State Storage Device Write Stress Through Opportunistic In-Place Delta Compression Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao and Tong Zhang xuebinzhang.rpi@gmail.com ECSE Department,

More information

2.5-Inch SATA SSD -7.0mm PSSDS27xxx3

2.5-Inch SATA SSD -7.0mm PSSDS27xxx3 2.5-Inch SATA SSD -7.0mm PSSDS27xxx3 Features: Ultra-efficient Block Management & Wear Leveling Advanced Read Disturb Management Intelligent Recycling for advanced free space management RoHS-compliant

More information

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory Dhananjoy Das, Sr. Systems Architect SanDisk Corp. 1 Agenda: Applications are KING! Storage landscape (Flash / NVM)

More information

Intrepid 3000 Series MLC & emlc

Intrepid 3000 Series MLC & emlc Intrepid 3000 Series MLC & emlc SATA 3.0 2.5 Enterprise SSD A Superior Solution Consistency: Superior latency consistency, for better and more predictable I/O performance. Performance: 5x faster than previous

More information

Flash Memory. 2D NAND vs. 3D NAND. White Paper F-WP002

Flash Memory. 2D NAND vs. 3D NAND. White Paper F-WP002 Flash Memory 2D NAND vs. 3D NAND White Paper F-WP002 Corporate Headquarters: 39870 Eureka Dr., Newark, CA 94560, USA Tel: (510) 623-1231 Fax: (510) 623-1434 E-mail: info@smartm.com Customer Service: Tel:

More information

Performance Modeling and Analysis of Flash based Storage Devices

Performance Modeling and Analysis of Flash based Storage Devices Performance Modeling and Analysis of Flash based Storage Devices H. Howie Huang, Shan Li George Washington University Alex Szalay, Andreas Terzis Johns Hopkins University MSST 11 May 26, 2011 NAND Flash

More information

Microsoft Exchange Server 2010 workload optimization on the new IBM PureFlex System

Microsoft Exchange Server 2010 workload optimization on the new IBM PureFlex System Microsoft Exchange Server 2010 workload optimization on the new IBM PureFlex System Best practices Roland Mueller IBM Systems and Technology Group ISV Enablement April 2012 Copyright IBM Corporation, 2012

More information

ZD-XL SQL Accelerator 1.6

ZD-XL SQL Accelerator 1.6 ZD-XL SQL Accelerator 1.6 Integrated Flash Hardware & Software Acceleration Solution for SQL Server Features Supports Microsoft Hyper-V and VMware ESXi environments Accelerates SQL Server at a per database

More information

The devices can be set up with RAID for additional performance and redundancy using software RAID. Models HP Z Turbo Drive Quad Pro 2x512GB PCIe SSD

The devices can be set up with RAID for additional performance and redundancy using software RAID. Models HP Z Turbo Drive Quad Pro 2x512GB PCIe SSD Overview HP Z Turbo Quad Pro Introduction The demands on Workstations continue to increase, especially in segments like digital media or imaging, where resolutions and file sizes are increasing. SSD technology

More information

IBM Spectrum NAS. Easy-to-manage software-defined file storage for the enterprise. Overview. Highlights

IBM Spectrum NAS. Easy-to-manage software-defined file storage for the enterprise. Overview. Highlights IBM Spectrum NAS Easy-to-manage software-defined file storage for the enterprise Highlights Reduce capital expenditures with storage software on commodity servers Improve efficiency by consolidating all

More information

Dell Reference Configuration for Large Oracle Database Deployments on Dell EqualLogic Storage

Dell Reference Configuration for Large Oracle Database Deployments on Dell EqualLogic Storage Dell Reference Configuration for Large Oracle Database Deployments on Dell EqualLogic Storage Database Solutions Engineering By Raghunatha M, Ravi Ramappa Dell Product Group October 2009 Executive Summary

More information

DataON and Intel Select Hyper-Converged Infrastructure (HCI) Maximizes IOPS Performance for Windows Server Software-Defined Storage

DataON and Intel Select Hyper-Converged Infrastructure (HCI) Maximizes IOPS Performance for Windows Server Software-Defined Storage Solution Brief DataON and Intel Select Hyper-Converged Infrastructure (HCI) Maximizes IOPS Performance for Windows Server Software-Defined Storage DataON Next-Generation All NVMe SSD Flash-Based Hyper-Converged

More information

Optimizes Embedded Flash-based Storage for Automotive Use

Optimizes Embedded Flash-based Storage for Automotive Use WHITE PAPER Optimizes Embedded Flash-based Storage for Automotive Use The In-Vehicle Infotainment (IVI) systems in new car designs today have a huge appetite for data storage capacity and this appetite

More information

Flash Trends: Challenges and Future

Flash Trends: Challenges and Future Flash Trends: Challenges and Future John D. Davis work done at Microsoft Researcher- Silicon Valley in collaboration with Laura Caulfield*, Steve Swanson*, UCSD* 1 My Research Areas of Interest Flash characteristics

More information

2TB DATA SHEET Preliminary

2TB DATA SHEET Preliminary 2TB DATA SHEET Preliminary Features: SATA 3.1 Compliant, - SATA 6.0Gb/s with 3Gb/s and 1.5Gb/s support ATA modes supported - PIO modes 3 and 4 - Multiword DMA modes 0, 1, 2 - Ultra DMA modes 0, 1, 2, 3,

More information

HP Z Turbo Drive G2 PCIe SSD

HP Z Turbo Drive G2 PCIe SSD Performance Evaluation of HP Z Turbo Drive G2 PCIe SSD Powered by Samsung NVMe technology Evaluation Conducted Independently by: Hamid Taghavi Senior Technical Consultant August 2015 Sponsored by: P a

More information

Presented by: Nafiseh Mahmoudi Spring 2017

Presented by: Nafiseh Mahmoudi Spring 2017 Presented by: Nafiseh Mahmoudi Spring 2017 Authors: Publication: Type: ACM Transactions on Storage (TOS), 2016 Research Paper 2 High speed data processing demands high storage I/O performance. Flash memory

More information

The next step in Software-Defined Storage with Virtual SAN

The next step in Software-Defined Storage with Virtual SAN The next step in Software-Defined Storage with Virtual SAN Osama I. Al-Dosary VMware vforum, 2014 2014 VMware Inc. All rights reserved. Agenda Virtual SAN s Place in the SDDC Overview Features and Benefits

More information

Cloud Optimized Performance: I/O-Intensive Workloads Using Flash-Based Storage

Cloud Optimized Performance: I/O-Intensive Workloads Using Flash-Based Storage Cloud Optimized Performance: I/O-Intensive Workloads Using Flash-Based Storage Version 1.0 Brocade continues to innovate by delivering the industry s first 16 Gbps switches for low latency and high transaction

More information

What is 3D V-NAND and how does it differ from existing technology?

What is 3D V-NAND and how does it differ from existing technology? FEATURES Print What is 3D V-NAND and how does it differ from existing technology? Samsung s unique and innovative 3D V-NAND ash memory architecture is a breakthrough in overcoming the density limitations,

More information

MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices

MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, Onur Mutlu February 13, 2018 Executive Summary

More information

NVMe over Universal RDMA Fabrics

NVMe over Universal RDMA Fabrics NVMe over Universal RDMA Fabrics Build a Flexible Scale-Out NVMe Fabric with Concurrent RoCE and iwarp Acceleration Broad spectrum Ethernet connectivity Universal RDMA NVMe Direct End-to-end solutions

More information

Entry-level Intel RAID RS3 Controller Family

Entry-level Intel RAID RS3 Controller Family PRODUCT Brief Entry-Level Intel RAID RS3 Controller Portfolio Entry-level Intel RAID RS3 Controller Family 12Gb/s connectivity and basic data protection RAID matters. Rely on Intel RAID. Cost-effective

More information

Best Practices for SSD Performance Measurement

Best Practices for SSD Performance Measurement Best Practices for SSD Performance Measurement Overview Fast Facts - SSDs require unique performance measurement techniques - SSD performance can change as the drive is written - Accurate, consistent and

More information

QLogic/Lenovo 16Gb Gen 5 Fibre Channel for Database and Business Analytics

QLogic/Lenovo 16Gb Gen 5 Fibre Channel for Database and Business Analytics QLogic/ Gen 5 Fibre Channel for Database Assessment for Database and Business Analytics Using the information from databases and business analytics helps business-line managers to understand their customer

More information