Configurable Fault Tolerant Processor (CFTP) for Space Based Applications

Size: px
Start display at page:

Download "Configurable Fault Tolerant Processor (CFTP) for Space Based Applications"

Transcription

1 Error Interrupt Status & I/O Memory Control Clock Control Interface/switching logic Configuration Control Interface/switching (GLUE) logic EDAC TMR PRLOS PRLOS Command and Status Registers Bus Transceivers FPGA 2 µp µp µp voter Configuration Memory Naval Postgraduate School FPGA 1 Memory RLOS Configurable Fault Tolerant Processor (CFTP) for Space Based Applications Presented by Capt Charles Hulme, USMC With Dr. Alan A. Ross Naval Postgraduate School 777 Dyer Rd., Code (SP) Monterey, CA 93943

2 Agenda Introduction Components Architecture Configuration Testing Small Satellite Conference 2

3 CFTP Objective Design a fault-tolerant reconfigurable System-On-a-Chip (SOC) to mitigate bit errors in computation for evaluation onorbit Evaluate techniques for configuration protection Small Satellite Conference 3

4 CFTP Concept CFTP is centered on a reconfigurable Triple Modular Redundant (TMR) SOC that will overcome transient errors without full system resets and the commensurate loss of data The flexibility of this design will enable on-orbit reconfigurations to the on-board architecture supporting dynamic mission requirements Reducing development time and cost Improving reliability in hardware Increasing flexibility and upgradeability Small Satellite Conference 4

5 Motivation Current processors require radiation hardened (RADHARD), custom built, inflexible systems. RADHARD parts lag current technology and are years old by the time of launch Space systems development times are long with designs frozen early in the process Upgrading to newer technologies difficult Space systems are often replenished for years without significant design changes (e.g. GPS) CFTP can provide updateable architectures for backwards and forward compatibility between systems via reconfiguration Small Satellite Conference 5

6 Space Application Once a satellite is in orbit, hardware changes are expensive, if even possible. If reconfigurable logic can be used instead, then changes can be made via command and control communications, vice a personal visit. CFTP can be reconfigured on orbit to correct errors, meet dynamic mission requirements, upgrade, or serve as back-up devices to several on-board systems. Small Satellite Conference 6

7 Effects of Radiation Total Ionizing Dose (TID) Single Event Effects (SEE) Single Event Latchup (SEL) Can be destructive Single Event Upset (SEU) Can be mitigated Many Others Small Satellite Conference 7

8 Conceptual framework FPGA implementation of TMR softcore microprocessors SOC design 16 or 32 bit softcore microprocessors Maximize use of COTS products Or at least provide COTS-like functionality Maximize system speed and reliability Minimize component cost and power consumption Introduce real time on-orbit orbit reconfigurability Small Satellite Conference 8

9 Physical Framework Size 5.3 in x 7.3 in PC-104 Bus Bus interface PC/104 Reconfigurability Cornerstone of the research, using an FPGA Reliability COTS hardware preferred COTS performance targeted Low Power Target 11 Watts or less, max Small Satellite Conference 9

10 The CFTP Concept Error Interrupt Clock Control FPGA 2 Configurable Processor Configuration Controller µp µp µp voter EDAC TMR PRLOS Status & I/O Interface/switching logic FPGA 1 Memory Control PRLOS Memory Configuration Memory System Memory Configuration memory Configuration Control Command and Status Registers Interface/switching (GLUE) logic RLOS PC/104 Bus Bus Transceivers Small Satellite Conference 10

11 Fault-Tolerant Architecture Error Interrupt Clock Control FPGA 2 µ P µ P voter EDAC ADDRESS DATA System Memory CONTROL Status & I/O µpp TMR PRLOS Interface/switching logic Small Satellite Conference 11

12 CFTP Components SOC Processor Xilinx XQVR600-4 CB228 FPGA Xilinx XQV600-4 CB228 FPGA 661,111 system gates 228 pins (162 I/O pins) Controller XQVR600-4 CB228 FPGA XQV600-4 CB228 FPGA Small Satellite Conference 12

13 CFTP Components Configuration storage for both FPGAs Flash Memory (EEPROM) µprocessor Intel TE28F320C3 32 Mbit EPROM Configuration Controller Xilinx XC18V04 ISP PROM Development ROM Configuration Controller Xilinx XQR17V16 OTP SPROM Flight Small Satellite Conference 13

14 CFTP Components System Memory RAM SDRAM: Elpida (Hitachi) HM BTT Mbit, 16.7M-word x 4bit x 4bank, 3.3 V Small Satellite Conference 14

15 Putting it all together Small Satellite Conference 15

16 Primary Data Paths X X X Configuration Data Data Control Address Small Satellite Conference 16

17 Additional Data Paths Theses paths exist for additional adhoc storage for the µprocessor These paths exist for additional adhoc communications between FPGAs Small Satellite Conference 17

18 Current Project Status 2 Prototypes Manifested on LEO Midshipman Space Technologies Applications Research (MidSTAR-1) Naval Postgraduate School Satellite (NPSAT1) Seeking High-Radiation Orbit MidStar-1 NPSat1 SPACE TEST PROGRAM (STP-1), ATLAS V LAUNCH VEHICLE, Est Launch March 2006 Small Satellite Conference 18

19 Required Tests Development Tests Hardware Functionality Tests Operational Tests Environmental Tests Small Satellite Conference 19

20 Development Tests Verify Physical performance Electrical performance Stuck-at Faults, Bridge Faults, etc.. Small Satellite Conference 20

21 Hardware Functionality Tests Confirm Functionality with FPGAs ROM RAM EEPROM PC104 Bus Error Interrupt Status & I/O µp µp µp FPGA 2 Clock Control EDAC voter TMR PRLOS Interface/switching logic FPGA 1 Memory Control PRLOS Memory Configuration Memory Configuration Control RLOS Command and Status Registers Interface/switching (GLUE) logic Bus Transceivers Small Satellite Conference 21

22 voter Operational Tests Evaluate missions µp TMR Design Built-In Self Test Triple Modular Redundancy Reconfiguration µp EDAC memory µp Status I/O Small Satellite Conference 22

23 Environmental Tests Launch Environment Testing Random Vibration Testing Simulates vibrations on Spacecraft due to Launch Vehicle On-Orbit Environment Testing Thermal Vacuum Testing Verifies proper operation of Spacecraft under simulated space vacuum and temperature Radiation Tests Evaluate susceptibility to SEUs and Total Dose Tolerance Small Satellite Conference 23

24 Conclusions The design provides maximum flexibility Allows for redundant reconfiguration methods Provides for configuration error mitigation Provides numerous options for future configurations with multiple data paths through the configurable logic Provides a fault-tolerant architecture for SEU mitigation Small Satellite Conference 24

25 Questions? Small Satellite Conference 25

26 Error Interrupt Status & I/O Memory Control Clock Control Interface/switching logic Configuration Control Interface/switching (GLUE) logic EDAC TMR PRLOS PRLOS Command and Status Registers Bus Transceivers FPGA 2 µp µp µp voter Configuration Memory Naval Postgraduate School FPGA 1 Memory RLOS BACK-UP Presented by SLIDES Naval Postgraduate School 777 Dyer Rd., Code (SP) Monterey, CA 93943

27 Radiation Environment Galactic Cosmic Rays Solar Wind Solar Protons & Heavier Ions Trapped Particles Nikkei Science, Inc. of Japan, by K. Endo Small Satellite Conference 27

28 FPGA Description A Field Programmable Gate Array (FPGA) is a high density Programmable Logic Device (PLD) Built of small logic blocks in a sea of interconnects Each logic block can emulate a digital circuit Small Satellite Conference 28

29 FPGA Description (cont) If the circuit is large, smaller portions are instantiated in separate logic blocks and interconnected This allows for implementation of complex digital circuits such as microprocessors An FPGA is reconfigurable, which means it can be erased and rewritten with new designs The configuration is data Small Satellite Conference 29

30 Soft-Core Description A soft-core is a software expression in HDL of a hardware design It is typically a slower design than the hardwired version But it is not permanently wired Small Satellite Conference 30

31 FPGA/Soft-core (cont) Combining these two technologies, (softcore and FPGA), the capability exists to implement a soft-core processor in an environment where reconfiguring hardwired systems is difficult Thus introducing COTS like performance in a non-cots device Small Satellite Conference 31

32 Design Considerations Radiation induced Errors Can occur in the data as it is processed Can occur in the configuration of the FPGA Can occur in memory Mitigation Strategies Avoid if possible Parts selection If/when they occur, reduce their impact Use of TMR Use of EDAC Use of background reconfiguration Small Satellite Conference 32

33 Design Considerations Configuration errors FPGAs can self-correct configuration errors Some errors may still slip through CFTP design is intended for frequent reconfiguration, correcting configuration errors is important. Configuration errors corrected in background through readback/reconfiguration process I/O Errors FPGAs have a large number of I/O pins Voting each input and output is costly and complex Small Satellite Conference 33

34 Configuration Methods Master Slave Serial Mode Default Load for the Configuration Controller Configuration Control FPGA (X1) MODE 0/1/ SPROM MASTER Configurable Processor FPGA (X2) DATA DIN 2 MODE 0/1/2 1 CCLK CE OE/ RESET CF 3 CONFIG_CLK 1 DONE 1 INIT 2 PROGRAM 1 DOUT/BUSY 2 DIN 2 SLAVE CONFIG_CLK 1 DONE 1 INIT 1 1 These are dedicated pins PROGRAM 1 2 These standard configuration pins that revert to I/O pins post-configuration 3 CF specific to XC18V04 ISP PROMS. Red connection must be made during test and evaluation Small Satellite Conference 34

35 Configuration Methods SelectMAP Mode Default for Configurable Processor FASH ADDRESS FLASH CONTROL FASH DATA Flash Memory Controller soft core MODE 0/1/2 1 SelectMAP Controller soft core MODE 0/1/2 2 USER I/O_DATA[7:0] USER I/O_DONE USER I/O_INIT USER I/O_BUSY USER I/O_CS USER I/O_WRITE D[7:0] 2 DONE 1 INIT 2 DOUT/BUSY 2 CS 2 WRITE 2 PROGRAM 1 PROGRAM 1 USER I/O_CONFIG_CLK Configuration Control FPGA (X1)** OSCILLATOR CONFIG_CLK 1 Configurable Processor FPGA (X2)** ** X1 or X2 can serve as the Flash memory and SelectMAP controller, as all required physical connections exist. 1 These are dedicated pins 2 These are user I/O pins configured to drive the SelectMAP mode Small Satellite Conference 35

36 Configuration Methods JTAG/Boundary Scan This layout uses inherent JTAG functionality to waterfall load, or selectively load (using the JTAG Header), the configurable components. PROM_JTAG_TDO X1_JTAG_TDI X1_JTAG_TDO X2_JTAG_TDI X2_JTAG_TDO TMS TCK TDI JTAG JUMPER JTAG_TMS JTAG_TCK PROM_JTAG_TDI SPROM JTAG_TMS 1 JTAG_TCK 1 PROM_JTAG_TDI 1 Configuration Control FPGA (X1) MODE 0/1/ Configurable Processor FPGA (X2) MODE 0/1/ PROM_JTAG_TDO 1 X1_JTAG_TDI 1 JTAG_TCK 1 JTAG_TMS 1 X1_JTAG_TDO 1 X2_JTAG_TDI 1 JTAG_TCK 1 JTAG_TMS 1 X2_JTAG_TDO 1 1 These are dedicated JTAG pins Arc represents optional connections for JTAG Daisy Chain Small Satellite Conference 36

37 Configuration Methods Self-Scrubbing JTAG Configuration Control FPGA (X1) X1_MODE 0/1/ MODE 0/1/2 1 X1_JTAG_TDO 2 JTAG_TMS 2 JTAG_TCK 2 X1_JTAG_TDI 2 JTAG Controller soft core X1_JTAG_TDI 1 JTAG_TCK 1 JTAG_TMS 1 X1_JTAG_TDO 1 1 These are dedicated pins 2 These are user I/O pins configured as JTAG controller pins Small Satellite Conference 37

38 Configuration Methods JTAG Loading the other FPGA Configuration Control FPGA (X1) Configurable Processor FPGA (X2) MODE 0/1/ X2_MODE 0/1/ MODE 0/1/2 1 X1_JTAG_TDO 2 JTAG_TMS 2 JTAG_TCK 2 JTAG Controller soft core X1_JTAG_TDI 2 X1_MODE 0/1/2 2 X1_JTAG_TDI 1 X1_JTAG_TDI 1 JTAG_TCK 1 JTAG_TCK 1 JTAG_TMS 1 X1_JTAG_TDO 1 JTAG_TMS 1 X1_JTAG_TDO 1 When JTAG daisy chain used, eliminate green connections and make blue connections 1 These are dedicated pins 2 These are user I/O pins configured to drive JTAG mode Small Satellite Conference 38

Space: The Final Frontier FPGAs for Space and Harsh Environments

Space: The Final Frontier FPGAs for Space and Harsh Environments Space: The Final Frontier FPGAs for Space and Harsh Environments Introduction FPGAs offer several benefits to the system designer Flexibility of Design performance, upgrades Reduction in NRE and Cost.

More information

SCS750. Super Computer for Space. Overview of Specifications

SCS750. Super Computer for Space. Overview of Specifications SUPER COMPUTER FOR SPACE TM Super Computer for Space F FLIGHT MODULE Overview of Specifications One board upset every 100 years in a GEO or LEO Orbit Up to 1000X Better Performance Than Current Space Processor

More information

Initial Single-Event Effects Testing and Mitigation in the Xilinx Virtex II-Pro FPGA

Initial Single-Event Effects Testing and Mitigation in the Xilinx Virtex II-Pro FPGA Initial Single-Event Effects Testing and Mitigation in the Xilinx Virtex II-Pro FPGA J. George 1, S. Rezgui 2, G. Swift 3, C. Carmichael 2 For the North American Xilinx Test Consortium 1 The Aerospace

More information

QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM

QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM R DS126 (v1.0) December 18, 2003 0 8 Product Specification 0 QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM Features Latch-Up Immune to LET >120 MeV/cm 2 /mg Guaranteed TID of 50 krad(si)

More information

SINGLE BOARD COMPUTER FOR SPACE

SINGLE BOARD COMPUTER FOR SPACE SINGLE BOARD COMPUTER FOR SPACE Proven in Space Best Single Event Performance Seamless Error Correction Wide Range of Processing Power Highest Design Margin SCS750 FLIGHT MODULE Overview of Specifications

More information

ALMA Memo No Effects of Radiation on the ALMA Correlator

ALMA Memo No Effects of Radiation on the ALMA Correlator ALMA Memo No. 462 Effects of Radiation on the ALMA Correlator Joseph Greenberg National Radio Astronomy Observatory Charlottesville, VA July 8, 2003 Abstract This memo looks specifically at the effects

More information

SpaceWire IP Cores for High Data Rate and Fault Tolerant Networking

SpaceWire IP Cores for High Data Rate and Fault Tolerant Networking SpaceWire IP Cores for High Data Rate and Fault Tolerant Networking E. Petri 1,2, T. Bacchillone 1,2, N. E. L Insalata 1,2, T. Cecchini 1, I. Del Corona 1,S. Saponara 1, L. Fanucci 1 (1) Dept. of Information

More information

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers R. Bannatyne, D. Gifford, K. Klein, C. Merritt VORAGO Technologies 2028 E. Ben White Blvd., Suite #220, Austin, Texas, 78741,

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS IMPLEMENTATION OF THE CONFIGURABLE FAULT TOLERANT SYSTEM EXPERIMENT ON NPSAT - 1 by Andrew S. Jackson March 2016 Thesis Advisor: Co-Advisor: Herschel

More information

Single Event Upset Mitigation Techniques for SRAM-based FPGAs

Single Event Upset Mitigation Techniques for SRAM-based FPGAs Single Event Upset Mitigation Techniques for SRAM-based FPGAs Fernanda de Lima, Luigi Carro, Ricardo Reis Universidade Federal do Rio Grande do Sul PPGC - Instituto de Informática - DELET Caixa Postal

More information

Fine-Grain Redundancy Techniques for High- Reliable SRAM FPGA`S in Space Environment: A Brief Survey

Fine-Grain Redundancy Techniques for High- Reliable SRAM FPGA`S in Space Environment: A Brief Survey Fine-Grain Redundancy Techniques for High- Reliable SRAM FPGA`S in Space Environment: A Brief Survey T.Srinivas Reddy 1, J.Santosh 2, J.Prabhakar 3 Assistant Professor, Department of ECE, MREC, Hyderabad,

More information

SAN FRANCISCO, CA, USA. Ediz Cetin & Oliver Diessel University of New South Wales

SAN FRANCISCO, CA, USA. Ediz Cetin & Oliver Diessel University of New South Wales SAN FRANCISCO, CA, USA Ediz Cetin & Oliver Diessel University of New South Wales Motivation & Background Objectives & Approach Our technique Results so far Work in progress CHANGE 2012 San Francisco, CA,

More information

RADIATION TOLERANT MANY-CORE COMPUTING SYSTEM FOR AEROSPACE APPLICATIONS. Clinton Francis Gauer

RADIATION TOLERANT MANY-CORE COMPUTING SYSTEM FOR AEROSPACE APPLICATIONS. Clinton Francis Gauer RADIATION TOLERANT MANY-CORE COMPUTING SYSTEM FOR AEROSPACE APPLICATIONS by Clinton Francis Gauer A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical

More information

Spartan-II Demo Board User s Guide

Spartan-II Demo Board User s Guide Spartan-II Demo Board User s Guide Version.2 May 200 Overview The Spartan-II Demo Board is a low cost evaluation platform for testing and verifying designs based on the Xilinx Spartan-II family of FPGA

More information

MultiChipSat: an Innovative Spacecraft Bus Architecture. Alvar Saenz-Otero

MultiChipSat: an Innovative Spacecraft Bus Architecture. Alvar Saenz-Otero MultiChipSat: an Innovative Spacecraft Bus Architecture Alvar Saenz-Otero 29-11-6 Motivation Objectives Architecture Overview Other architectures Hardware architecture Software architecture Challenges

More information

Dynamic Partial Reconfiguration of FPGA for SEU Mitigation and Area Efficiency

Dynamic Partial Reconfiguration of FPGA for SEU Mitigation and Area Efficiency Dynamic Partial Reconfiguration of FPGA for SEU Mitigation and Area Efficiency Vijay G. Savani, Akash I. Mecwan, N. P. Gajjar Institute of Technology, Nirma University vijay.savani@nirmauni.ac.in, akash.mecwan@nirmauni.ac.in,

More information

THE SMART BACKPLANE LOWERING THE COST OF SPACECRAFT AVIONICS BY IMPROVING THE RADIATION TOLERANCE OF COTS ELECTRONIC SYSTEMS Daniel Gleeson, MSc.

THE SMART BACKPLANE LOWERING THE COST OF SPACECRAFT AVIONICS BY IMPROVING THE RADIATION TOLERANCE OF COTS ELECTRONIC SYSTEMS Daniel Gleeson, MSc. THE SMART BACKPLANE LOWERING THE COST OF SPACECRAFT AVIONICS BY IMPROVING THE RADIATION TOLERANCE OF COTS ELECTRONIC SYSTEMS Daniel Gleeson, MSc. Curtiss-Wright, dgleeson@curtisswright.com Milos Melicher,

More information

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today.

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today. Overview This set of notes introduces many of the features available in the FPGAs of today. The majority use SRAM based configuration cells, which allows fast reconfiguation. Allows new design ideas to

More information

QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM

QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM 0 QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM 0 8 Product Specification Features Latch-Up Immune to LET >120 MeV/cm2/mg Guaranteed TID of 50 krad(si) per spec 1019.5 Fabricated on Epitaxial

More information

Enabling success from the center of technology. A Practical Guide to Configuring the Spartan-3A Family

Enabling success from the center of technology. A Practical Guide to Configuring the Spartan-3A Family A Practical Guide to Configuring the Spartan-3A Family Goals 2 Explain advantages and disadvantages of each configuration mechanism available for Spartan-3A Show how to use an industry standard flash for

More information

Non Volatile Rad Hard Reprogrammable FPGA. ATF280 SRAM-based FPGA AT69170 Serial EEPROM. 2x SRAM-based FPGA designed for Space use - ATF280

Non Volatile Rad Hard Reprogrammable FPGA. ATF280 SRAM-based FPGA AT69170 Serial EEPROM. 2x SRAM-based FPGA designed for Space use - ATF280 Atmel ATFEE560 Multi-Chip Rad-Hard Modules: Reprogrammable FPGA matrix (ATF280) (x2) EEPROM Memory (AT69170) (x2) DATASHEET Features Non Volatile Rad Hard Reprogrammable FPGA ATF280 SRAM-based FPGA AT69170

More information

Processor Building Blocks for Space Applications

Processor Building Blocks for Space Applications Processor Building Blocks for Space Applications John Holland, Northrop Grumman Corporation, Linthicum, U.S.A., John.Holland@ngc.com Jeremy W. Horner, Northrop Grumman Corporation, Linthicum, U.S.A., Jeremy.Horner@ngc.com

More information

Platform Flash In-System Programmable Configuration PROMs

Platform Flash In-System Programmable Configuration PROMs R 0 Platform Flash In-System Programmable Configuration PROMs DS123 (v2.2) December 15, 2003 0 0 Preliminary Product Specification Features In-System Programmable PROMs for Configuration of Xilinx FPGAs

More information

PROGRAMMABLE MODULE WHICH USES FIRMWARE TO REALISE AN ASTRIUM PATENTED COSMIC RANDOM NUMBER GENERATOR FOR GENERATING SECURE CRYPTOGRAPHIC KEYS

PROGRAMMABLE MODULE WHICH USES FIRMWARE TO REALISE AN ASTRIUM PATENTED COSMIC RANDOM NUMBER GENERATOR FOR GENERATING SECURE CRYPTOGRAPHIC KEYS A PROPOSAL FOR A SPACE FLIGHT DEMONSTRATION OF A DYNAMICALLY RECONFIGURABLE PROGRAMMABLE MODULE WHICH USES FIRMWARE TO REALISE AN ASTRIUM PATENTED COSMIC RANDOM NUMBER GENERATOR FOR GENERATING SECURE CRYPTOGRAPHIC

More information

QPro Virtex 2.5V Radiation-Hardened FPGAs Features Description

QPro Virtex 2.5V Radiation-Hardened FPGAs Features Description 17 QPro Virtex 2.5V Radiation-Hardened FPGAs Features 0.22 µm 5-layer epitaxial process QML certified Radiation-hardened FPGAs for space and satellite applications Guaranteed total ionizing dose to 100K

More information

Allmost all systems contain two main types of memory :

Allmost all systems contain two main types of memory : Memory Interface Allmost all systems contain two main types of memory : read-only memory (ROM) system software and permanent system data random access memory (RAM) or read/write memory application software

More information

Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing Authors: Robert L Akamine, Robert F. Hodson, Brock J. LaMeres, and Robert E. Ray www.nasa.gov Contents Introduction to the

More information

DESIGN AND ANALYSIS OF SOFTWARE FAULTTOLERANT TECHNIQUES FOR SOFTCORE PROCESSORS IN RELIABLE SRAM-BASED FPGA

DESIGN AND ANALYSIS OF SOFTWARE FAULTTOLERANT TECHNIQUES FOR SOFTCORE PROCESSORS IN RELIABLE SRAM-BASED FPGA DESIGN AND ANALYSIS OF SOFTWARE FAULTTOLERANT TECHNIQUES FOR SOFTCORE PROCESSORS IN RELIABLE SRAM-BASED FPGA 1 Vatsya Tiwari M.Tech Student Department of computer science & engineering Abstract. This paper

More information

Improving the Fault Tolerance of a Computer System with Space-Time Triple Modular Redundancy

Improving the Fault Tolerance of a Computer System with Space-Time Triple Modular Redundancy Improving the Fault Tolerance of a Computer System with Space-Time Triple Modular Redundancy Wei Chen, Rui Gong, Fang Liu, Kui Dai, Zhiying Wang School of Computer, National University of Defense Technology,

More information

S950 3U cpci Radiation Tolerant PowerPC SBC

S950 3U cpci Radiation Tolerant PowerPC SBC S950 3U cpci Radiation Tolerant PowerPC SBC Designed for LEO, Mars Terrestrial with an Option for GEO Environments Single-Slot Conduction-Cooled 3U CompactPCI (cpci) Single Board Computer (SBC) High Performance

More information

Platform Flash In-System Programmable Configuration PROMs

Platform Flash In-System Programmable Configuration PROMs 0 Platform Flash In-System Programmable Configuration s DS123 (v2.1) November 18, 2003 0 0 Preliminary Product Specification Features In-System Programmable s for Configuration of Xilinx FPGAs Low-Power

More information

Single Event Effects in SRAM based FPGA for space applications Analysis and Mitigation

Single Event Effects in SRAM based FPGA for space applications Analysis and Mitigation Single Event Effects in SRAM based FPGA for space applications Analysis and Mitigation Diagnostic Services in Network-on-Chips (DSNOC 09) Roland Weigand David Merodio Codinachs European Space Agency (1)

More information

Micro Sun Sensor with CMOS Imager for Small Satellite Attitude Control

Micro Sun Sensor with CMOS Imager for Small Satellite Attitude Control SSC05-VIII-5 Micro Sun Sensor with CMOS Imager for Small Satellite Attitude Control Keisuke Yoshihara, Hidekazu Hashimoto, Toru Yamamoto, Hirobumi Saito, Eiji Hirokawa, Makoto Mita Japan Aerospace Exploration

More information

Fast SEU Detection and Correction in LUT Configuration Bits of SRAM-based FPGAs

Fast SEU Detection and Correction in LUT Configuration Bits of SRAM-based FPGAs Fast SEU Detection and Correction in LUT Configuration Bits of SRAM-based FPGAs Hamid R. Zarandi,2, Seyed Ghassem Miremadi, Costas Argyrides 2, Dhiraj K. Pradhan 2 Department of Computer Engineering, Sharif

More information

FPGAs in radiation-harsh environments

FPGAs in radiation-harsh environments FPGAs in radiation-harsh environments 1 Application examples AFDX Used on new commercial aircrafts from Boeing and Airbus Main communication interface Safety level up to DAL-A Mission computers Used on

More information

A Fault-Tolerant Alternative to Lockstep Triple Modular Redundancy

A Fault-Tolerant Alternative to Lockstep Triple Modular Redundancy A Fault-Tolerant Alternative to Lockstep Triple Modular Redundancy Andrew L. Baldwin, BS 09, MS 12 W. Robert Daasch, Professor Integrated Circuits Design and Test Laboratory Problem Statement In a fault

More information

RTG4 PLL SEE Test Results July 10, 2017 Revised March 29, 2018 Revised July 31, 2018

RTG4 PLL SEE Test Results July 10, 2017 Revised March 29, 2018 Revised July 31, 2018 RTG4 PLL SEE Test Results July 10, 2017 Revised March 29, 2018 Revised July 31, 2018 Radiation Group 1 I. Introduction This document disseminates recently acquired single-event-effects (SEE) data on the

More information

LEON- PCI- UMC Development Board

LEON- PCI- UMC Development Board LEON- PCI- UMC Development Board Test Report GAISLER RESEARCH / PENDER ELECTRONIC DESIGN Rev. 1.2, 2004-04- 02 LEON- PCI- UMC Development Board Test Report 2 Gaisler Resarch LEON- PCI- UMC Development

More information

Space Micro Satellite Computer Goals Space Computer Performance Goals: >1,000 MIPS throughput Less than 1 SEU in 1,000 days Less than 10 watts power R

Space Micro Satellite Computer Goals Space Computer Performance Goals: >1,000 MIPS throughput Less than 1 SEU in 1,000 days Less than 10 watts power R Low Power, High-Speed Radiation Tolerant Computer & Flight Experiment Space Micro, Inc. dcz@spacemicro.com D. Czajkowski, M. Pagey, P. Samudrala, M. Goksel, and M. Viehman Space Micro, Inc., 9765 Clairemont

More information

BOUNDARY-SCAN: AN INTRODUCTION. by James Stanbridge, Sales Manager of JTAG Technologies

BOUNDARY-SCAN: AN INTRODUCTION. by James Stanbridge, Sales Manager of JTAG Technologies BOUNDARY-SCAN: AN INTRODUCTION by James Stanbridge, Sales Manager of JTAG Technologies Once considered to be something of a black art, and solely an aid to manufacturing, boundary-scan is coming of age

More information

GOES-R SpaceWire Implementation

GOES-R SpaceWire Implementation GOES-R SpaceWire Implementation William Anderson GSFC/MEI Technologies Inc. William.H.Anderson@nasa.gov International SpaceWire Conference 2007 Dundee, Scotland, UK September 17, 2007 1 GOES-R SpaceWire

More information

Improving FPGA Design Robustness with Partial TMR

Improving FPGA Design Robustness with Partial TMR Improving FPGA Design Robustness with Partial TMR Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, Michael Wirthlin Abstract This paper describes an efficient approach of applying mitigation to

More information

FPGAs operating in a radiation environment: lessons learned from FPGAs in space

FPGAs operating in a radiation environment: lessons learned from FPGAs in space Journal of Instrumentation OPEN ACCESS FPGAs operating in a radiation environment: lessons learned from FPGAs in space To cite this article: M J Wirthlin View the article online for updates and enhancements.

More information

Reconfigurable System-on-Chip Data Processing Units for Space Imaging Instruments

Reconfigurable System-on-Chip Data Processing Units for Space Imaging Instruments Reconfigurable System-on-Chip Data Processing Units for Space Imaging Instruments B. Fiethe, H. Michalik, C. Dierker, B. Osterloh, G. Zhou IDA TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig,

More information

QPro Series Configuration PROMs (XQ) including Radiation-Hardened Series (XQR)

QPro Series Configuration PROMs (XQ) including Radiation-Hardened Series (XQR) 0 QPro Series Configuration PROMs (XQ) including Radiation-Hardened Series (XQR) DS062 (v3.1) November 5, 2001 0 2 Preliminary Product Specification Features XQ1701L/XQR1701L QML Certified Configuration

More information

Time and Space Redundancy Fault Tolerance Trade-offs for FPGA Based Single and Multicore Designs

Time and Space Redundancy Fault Tolerance Trade-offs for FPGA Based Single and Multicore Designs Trans. JSASS Aerospace Tech. Japan Vol. 2, No. ists29, pp. Pj_5-Pj_24, 204 Original Paper Time and Space Redundancy Fault Tolerance Trade-offs for FPGA Based Single and Multicore Designs By Mohamed Mahmoud

More information

VORAGO TECHNOLOGIES. Solutions for Selective Radiation-Hardened Components in CubeSats Ross Bannatyne, VORAGO Technologies

VORAGO TECHNOLOGIES. Solutions for Selective Radiation-Hardened Components in CubeSats Ross Bannatyne, VORAGO Technologies VORAGO TECHNOLOGIES Solutions for Selective Radiation-Hardened Components in CubeSats Ross Bannatyne, VORAGO Technologies rbannatyne@voragotech.com VORAGO Technologies VORAGO Technologies, Austin, Texas.

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

The special radiation-hardened processors for new highly informative experiments in space

The special radiation-hardened processors for new highly informative experiments in space Journal of Physics: Conference Series PAPER OPEN ACCESS The special radiation-hardened processors for new highly informative experiments in space To cite this article: O V Serdin et al 2017 J. Phys.: Conf.

More information

MicroCore Labs. MCL51 Application Note. Lockstep. Quad Modular Redundant System

MicroCore Labs. MCL51 Application Note. Lockstep. Quad Modular Redundant System MicroCore Labs MCL51 Application Note Lockstep Quad Modular Redundant System Introduction: This application note describes a Lockstep Quad Modular Redundant (QMR) system that employs the microsequencer-based

More information

Outline. Field Programmable Gate Arrays. Programming Technologies Architectures. Programming Interfaces. Historical perspective

Outline. Field Programmable Gate Arrays. Programming Technologies Architectures. Programming Interfaces. Historical perspective Outline Field Programmable Gate Arrays Historical perspective Programming Technologies Architectures PALs, PLDs,, and CPLDs FPGAs Programmable logic Interconnect network I/O buffers Specialized cores Programming

More information

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory The basic element of a semiconductor memory is the memory cell. Although a variety of

More information

SRAM-based FPGA designed for Space use

SRAM-based FPGA designed for Space use ATF280F Rad-Hard Reprogrammable FPGA DATASHEET Features SRAM-based FPGA designed for Space use 280K equivalent ASIC gates 14,400 cells ( two 3-input LUT or one 4-input LUT, one DFF) Unlimited reprogrammability

More information

A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS

A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS Joseph R. Marshall, Richard W. Berger, Glenn P. Rakow Conference Contents Standards & Topology ASIC Program History ASIC Features

More information

Leso Martin, Musil Tomáš

Leso Martin, Musil Tomáš SAFETY CORE APPROACH FOR THE SYSTEM WITH HIGH DEMANDS FOR A SAFETY AND RELIABILITY DESIGN IN A PARTIALLY DYNAMICALLY RECON- FIGURABLE FIELD-PROGRAMMABLE GATE ARRAY (FPGA) Leso Martin, Musil Tomáš Abstract:

More information

Advanced Computing, Memory and Networking Solutions for Space

Advanced Computing, Memory and Networking Solutions for Space Advanced Computing, Memory and Networking Solutions for Space 25 th Microelectronics Workshop November 2012 µp, Networking Solutions and Memories Microprocessor building on current LEON 3FT offerings UT699E:

More information

Dynamically Reconfigurable Processing Module (DRPM), Application on Instruments and Qualification of FPGA Package

Dynamically Reconfigurable Processing Module (DRPM), Application on Instruments and Qualification of FPGA Package INSTITUTE OF COMPUTER AND NETWORK ENGINEERING Dynamically Reconfigurable Processing Module (DRPM), Application on Instruments and Qualification of FPGA Package Björn Fiethe, Frank Bubenhagen, Tobias Lange,

More information

Computer Organization. 8th Edition. Chapter 5 Internal Memory

Computer Organization. 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM)

More information

An Architecture for Fail-Silent Operation of FPGAs and Configurable SoCs

An Architecture for Fail-Silent Operation of FPGAs and Configurable SoCs An Architecture for Fail-Silent Operation of FPGAs and Configurable SoCs Lee W. Lerner and Charles E. Stroud Dept. of Electrical and Computer Engineering Auburn University Auburn, AL, USA Abstract We present

More information

PCI to SH-3 AN Hitachi SH3 to PCI bus

PCI to SH-3 AN Hitachi SH3 to PCI bus PCI to SH-3 AN Hitachi SH3 to PCI bus Version 1.0 Application Note FEATURES GENERAL DESCRIPTION Complete Application Note for designing a PCI adapter or embedded system based on the Hitachi SH-3 including:

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

QPro XQ17V16 Military 16Mbit QML Configuration PROM

QPro XQ17V16 Military 16Mbit QML Configuration PROM R 0 QPro XQ17V16 Military 16Mbit QML Configuration PROM DS111 (v1.0) December 15, 2003 0 8 Product Specification Features 16Mbit storage capacity Guaranteed operation over full military temperature range:

More information

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

FPGA Based Digital Design Using Verilog HDL

FPGA Based Digital Design Using Verilog HDL FPGA Based Digital Design Using Course Designed by: IRFAN FAISAL MIR ( Verilog / FPGA Designer ) irfanfaisalmir@yahoo.com * Organized by Electronics Division Integrated Circuits Uses for digital IC technology

More information

ENHANCED DYNAMIC RECONFIGURABLE PROCESSING MODULE FOR FUTURE SPACE APPLICATIONS

ENHANCED DYNAMIC RECONFIGURABLE PROCESSING MODULE FOR FUTURE SPACE APPLICATIONS Enhanced Dynamic Reconfigurable Processing Module for Future Space Applications ENHANCED DYNAMIC RECONFIGURABLE PROCESSING MODULE FOR FUTURE SPACE APPLICATIONS Session: SpaceWire Missions and Applications

More information

Dynamic Reconfigurable Computing Architecture for Aerospace Applications

Dynamic Reconfigurable Computing Architecture for Aerospace Applications Dynamic Reconfigurable Computing Architecture for Aerospace Applications Brock J. LaMeres 406-994-5987 lameres@ece.montana.edu Clint Gauer 406-994-6495 gauer33@gmail.com Electrical & Computer Engineering

More information

Parallel Cable III Emulator for the XSV Board

Parallel Cable III Emulator for the XSV Board Parallel Cable III Emulator for the XSV Board June 1, 2002 (Version 1.1) Application Note by D. Vanden Bout Summary This application note shows how to configure the XC95108 CPLD on the XSV Board so its

More information

Fault-Tolerance Projects at Stanford CRC

Fault-Tolerance Projects at Stanford CRC Center for RC eliable omputing jeihgfdcbabakl Fault-Tolerance Projects at Stanford CRC Philip P. Nirmal Saxena Edward J. McCluskey Center for Reliable Computing Computer Systems Laboratory Departments

More information

NEPP Independent Single Event Upset Testing of the Microsemi RTG4: Preliminary Data

NEPP Independent Single Event Upset Testing of the Microsemi RTG4: Preliminary Data NEPP Independent Single Event Upset Testing of the Microsemi RTG4: Preliminary Data Melanie Berg, AS&D in support of NASA/GSFC Melanie.D.Berg@NASA.gov Kenneth LaBel, NASA/GSFC Jonathan Pellish, NASA/GSFC

More information

Multiple Event Upsets Aware FPGAs Using Protected Schemes

Multiple Event Upsets Aware FPGAs Using Protected Schemes Multiple Event Upsets Aware FPGAs Using Protected Schemes Costas Argyrides, Dhiraj K. Pradhan University of Bristol, Department of Computer Science Merchant Venturers Building, Woodland Road, Bristol,

More information

Chapter 2. FPGA and Dynamic Reconfiguration ...

Chapter 2. FPGA and Dynamic Reconfiguration ... Chapter 2 FPGA and Dynamic Reconfiguration... This chapter will introduce a family of silicon devices, FPGAs exploring their architecture. This work is based on these particular devices. The chapter will

More information

LSN 6 Programmable Logic Devices

LSN 6 Programmable Logic Devices LSN 6 Programmable Logic Devices Department of Engineering Technology LSN 6 What Are PLDs? Functionless devices in base form Require programming to operate The logic function of the device is programmed

More information

A Low-Cost SEE Mitigation Solution for Soft-Processors Embedded in Systems On Programmable Chips

A Low-Cost SEE Mitigation Solution for Soft-Processors Embedded in Systems On Programmable Chips A Low-Cost SEE Mitigation Solution for Soft-Processors Embedded in Systems On Programmable Chips M. Sonza Reorda, M. Violante Politecnico di Torino Torino, Italy Abstract The availability of multimillion

More information

The High-Reliability Programmable Logic Leader. Products for Space Applications. QML Certification Part of Overall Quality Platform

The High-Reliability Programmable Logic Leader. Products for Space Applications. QML Certification Part of Overall Quality Platform QPO High-eliability QML Certified and adiation Hardened Products for Aerospace and Defense Applications January 21, 2 (v2.) 7* The High-eliability Programmable Leader Xilinx is the leading supplier of

More information

FPGA-Based Embedded Systems for Testing and Rapid Prototyping

FPGA-Based Embedded Systems for Testing and Rapid Prototyping FPGA-Based Embedded Systems for Testing and Rapid Prototyping Martin Panevsky Embedded System Applications Manager Embedded Control Systems Department The Aerospace Corporation Flight Software Workshop

More information

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007 TU Wien 1 Fault Isolation and Error Containment in the TT-SoC H. Kopetz TU Wien July 2007 This is joint work with C. El.Salloum, B.Huber and R.Obermaisser Outline 2 Introduction The Concept of a Distributed

More information

Features. Description. 4 2 Platform Flash In-System Programmable Configuration PROMS. DS123 (v2.6) March 14, Preliminary Product Specification

Features. Description. 4 2 Platform Flash In-System Programmable Configuration PROMS. DS123 (v2.6) March 14, Preliminary Product Specification 4 2 Platform Flash In-System Programmable Configuration PROMS DS123 (v2.6) March 14, 2005 0 Features In-System Programmable PROMs for Configuration of Xilinx FPGAs Low-Power Advanced CMOS NOR FLASH Process

More information

RECONFIGURABLE FAULT TOLERANCE FOR SPACE SYSTEMS

RECONFIGURABLE FAULT TOLERANCE FOR SPACE SYSTEMS RECONFIGURABLE FAULT TOLERANCE FOR SPACE SYSTEMS By ADAM M. JACOBS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Chapter 13 Programmable Logic Device Architectures

Chapter 13 Programmable Logic Device Architectures Chapter 13 Programmable Logic Device Architectures Chapter 13 Objectives Selected areas covered in this chapter: Describing different categories of digital system devices. Describing different types of

More information

VORAGO TECHNOLOGIES. 6 th Interplanetary CubeSat Workshop Cambridge, May, 2017

VORAGO TECHNOLOGIES. 6 th Interplanetary CubeSat Workshop Cambridge, May, 2017 VORAGO TECHNOLOGIES Radiation-hardened ARM Cortex -M0 Microcontroller for CubeSats / SmallSats Ross Bannatyne, VORAGO Technologies rbannatyne@voragotech.com VORAGO Technologies Privately held fabless semiconductor

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

Platform Flash In-System Programmable Configuration PROMs

Platform Flash In-System Programmable Configuration PROMs Platform Flash In-System Programmable Configuration PROMs 0 Product Specification Features In-System Programmable PROMs for Configuration of Xilinx FPGAs Low-Power Advanced CMOS NOR FLASH Process

More information

Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN

Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 Implementation in Sequential Logic 2 PAL Logic Implementation Design Example: BCD to Gray Code Converter A B

More information

Evolution of Implementation Technologies. ECE 4211/5211 Rapid Prototyping with FPGAs. Gate Array Technology (IBM s) Programmable Logic

Evolution of Implementation Technologies. ECE 4211/5211 Rapid Prototyping with FPGAs. Gate Array Technology (IBM s) Programmable Logic ECE 42/52 Rapid Prototyping with FPGAs Dr. Charlie Wang Department of Electrical and Computer Engineering University of Colorado at Colorado Springs Evolution of Implementation Technologies Discrete devices:

More information

Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat

Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat Jano Gebelein Infrastructure and Computer Systems in Data Processing (IRI) Frankfurt University Germany January 31st, 2012 Mannheim, Germany 1 Outline

More information

Outline of Presentation Field Programmable Gate Arrays (FPGAs(

Outline of Presentation Field Programmable Gate Arrays (FPGAs( FPGA Architectures and Operation for Tolerating SEUs Chuck Stroud Electrical and Computer Engineering Auburn University Outline of Presentation Field Programmable Gate Arrays (FPGAs( FPGAs) How Programmable

More information

Reconfigurable, Radiation Tolerant S-Band Transponder for Small Satellite Applications

Reconfigurable, Radiation Tolerant S-Band Transponder for Small Satellite Applications SSC11-XI-5 Reconfigurable, Radiation Tolerant S-Band Transponder for Small Satellite Applications Christopher D. Sauer, Jennifer L. Alvarez, John R. Dickinson, Michael E. Epperly, Meredith B. Lecocke Southwest

More information

Building Reliable High-Performance Hardware. Fraunhofer FOKUS. Fraunhofer FOKUS

Building Reliable High-Performance Hardware. Fraunhofer FOKUS. Fraunhofer FOKUS Fraunhofer Institute for Open Communication Systems Kaiserin-Augusta-Allee 31 10589 Berlin, Germany www.fokus.fraunhofer.de 1 Building Reliable High-Performance Hardware Friedrich Schön System Quality

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits Lecture Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University Design/manufacture Process Chung EPC655 2 Design/manufacture Process Chung EPC655 3 Layout

More information

Chapter TEN. Memory and Memory Interfacing

Chapter TEN. Memory and Memory Interfacing Chapter TEN Memory and Memory Interfacing OBJECTIVES this chapter enables the student to: Define the terms capacity, organization, and speed as used in semiconductor memories. Calculate the chip capacity

More information

Chapter 5. Internal Memory. Yonsei University

Chapter 5. Internal Memory. Yonsei University Chapter 5 Internal Memory Contents Main Memory Error Correction Advanced DRAM Organization 5-2 Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory(ram) Read-write

More information

Programmable Logic Devices

Programmable Logic Devices Programmable Logic Devices INTRODUCTION A programmable logic device or PLD is an electronic component used to build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD

More information

Address connections Data connections Selection connections

Address connections Data connections Selection connections Interface (cont..) We have four common types of memory: Read only memory ( ROM ) Flash memory ( EEPROM ) Static Random access memory ( SARAM ) Dynamic Random access memory ( DRAM ). Pin connections common

More information

GAUSS OBC ABACUS 2017

GAUSS OBC ABACUS 2017 [] Table of contents Table of contents... 1 1. Introduction... 3 1.1. ABACUS Features... 3 1.2. Block Diagram... 6 2. Pinouts... 7 3. Inertial Measurement Unit Details... 10 3.1. Orientation of Axes...

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits Lecture 9 Jaeyong Chung Robust Systems Laboratory Incheon National University DIGITAL DESIGN FLOW Chung EPC6055 2 FPGA vs. ASIC FPGA (A programmable Logic Device) Faster time-to-market

More information

Reducing Rad-Hard Memories for FPGA Configuration Storage on Space-bound Payloads

Reducing Rad-Hard Memories for FPGA Configuration Storage on Space-bound Payloads Reducing Rad-Hard Memories for FPGA Configuration Storage on Space-bound Payloads Abstract FPGA use in space-based applications is becoming more common. Radiation-hardened (rad-hard) memories are typically

More information

Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening Rehab I. Abdul Rahman, Mazhar B. Tayel

Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening Rehab I. Abdul Rahman, Mazhar B. Tayel Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening Rehab I. Abdul Rahman, Mazhar B. Tayel Abstract This paper presents a method of hardening the 8051 micro-controller, able

More information

RAD6000 Space Computers

RAD6000 Space Computers RAD6000 Space Computers RAD6000 space computers RAD6000 single-board computers combine commercial standards with unique radiation-hardened technology and packaging to meet the specific requirements of

More information

Reconfigurable Fault Tolerance: A Comprehensive Framework for Reliable and Adaptive FPGA-Based Space Computing

Reconfigurable Fault Tolerance: A Comprehensive Framework for Reliable and Adaptive FPGA-Based Space Computing Reconfigurable Fault Tolerance: A Comprehensive Framework for Reliable and Adaptive FPGA-Based Space Computing ADAM JACOBS, GRZEGORZ CIESLEWSKI, ALAN D. GEORGE, ANN GORDON-ROSS, and HERMAN LAM, University

More information

Adaptation of a fault tolerant FPGA based launch sequencer as a CubeSat payload processor

Adaptation of a fault tolerant FPGA based launch sequencer as a CubeSat payload processor Calhoun: The NPS Institutional Archive DSpace Repository Theses and Dissertations Thesis and Dissertation Collection 2014-06 Adaptation of a fault tolerant FPGA based launch sequencer as a CubeSat payload

More information