(page 0 of the address space) (page 1) (page 2) (page 3) Figure 12.1: A Simple 64-byte Address Space

Size: px
Start display at page:

Download "(page 0 of the address space) (page 1) (page 2) (page 3) Figure 12.1: A Simple 64-byte Address Space"

Transcription

1 12 Paging: Introduction Remember our goal: to virtualize memory. Segmentation (a generalization of dynamic relocation) helped us do this, but has some problems; in particular, managing free space becomes quite a pain as memory becomes fragmented. Thus, we d like to find a different solution (page 0 of the address space) (page 1) (page 2) (page 3) Figure 12.1: A Simple 64-byte Address Space Thus comes along the idea of paging [KE+62,L78]. Instead of splitting up our address space into three logical segments (each of variable size), we will split up our address space into fixedsized units we call a page. Here in Figure 12.1 an example of a tiny address space, 64 bytes total in size, with 16 byte pages (real address spaces are much bigger, of course, commonly 32 bits and thus 4-GB of address space). 1

2 2 PAGING: INTRODUCTION Thus, we have an address space that is split into four pages (0 through 3). With paging, physical memory is also split into some number of pages as well; we sometimes will call each page of physical memory a page frame. For an example, let s examine Figure reserved for OS page 3 of AS page 0 of AS page 2 of AS page 1 of AS page frame 0 of physical memory page frame 1 page frame 2 page frame 3 page frame 4 page frame 5 page frame 6 page frame 7 Figure 12.2: 64-Byte Address Space Placed In Physical Memory The beauty of paging is the simplicity and ease the OS has when it is managing free physical memory. For example, when the OS wishes to place our tiny 64-byte address space from above into our 8-page physical memory, it simply finds four free pages; perhaps the OS keeps a free list of all free pages for this, and just grabs the first four free pages off of the list. In the example above, the OS has placed virtual page 0 of the address space (AS) in physical page 3, virtual page 1 of the AS on physical page 7, page 2 on page 5, and page 3 on page 2. To record where each virtual page of the operating system is placed in physical memory, the operating system keeps a perprocess data structure known as a page table. The major role of the page table is to store address translations for each of the virtual pages of the address space, thus letting us know where in physical memory they live. For our simple example above, the page table would thus have the following entries: OPERATING SYSTEMS

3 PAGING: INTRODUCTION 3 Virtual Page Number Physical Page Frame As we said before, it is important to remember that this is a per-process data structure. If another process were to run in our example above, the OS would have to manage a different page table for it, as its virtual pages obviously map to different physical pages (modulo any sharing going on). Now, we know enough to perform an address-translation example. Let s imagine the process with that tiny address space (64 bytes) is performing a memory access: movl <virtual address>, %eax Specifically, let s pay attention to the explicit load of the data at<virtual address> into the registereax (and thus ignore the instruction fetch that must have happened prior). To translate this virtual address that the process generated, we have to first split it into two components: the virtual page number (VPN), and the offset within the page. For this example, because the virtual address space of the process is 64 bytes, we need 6 bits total for our virtual address (2 6 = 64). Thus, our virtual address looks like this: Va5 Va4 Va3 Va2 Va1 Va0 where Va5 is the highest-order bit of the virtual address, and Va0 the lowest order bit. Because we know the page size (16 bytes), we can further divide the virtual address as follows: VPN offset Va5 Va4 Va3 Va2 Va1 Va0 The page size is 16 bytes in a 64-byte address space; thus we need to be able to select 4 pages, and the top 2 bits of the WHAT HAPPENS WHEN (V0.3)

4 4 PAGING: INTRODUCTION address do just that. Thus, we have a 2-bit virtual page number (VPN). The remaining bits tell us which byte of the page we are interested in, 4 bits in this case; we call this the offset. When a process generates a virtual address, the OS and hardware must combine to translate this virtual address into a meaningful physical address. For example, let us assume the load above was to virtual address 21: movl 21, %eax Turning 21 into binary form, we get , and thus we can examine this virtual address and see how it breaks down into a virtual page number (VPN) and offset: VPN offset Thus, the virtual address 20 is on the 5th ( 0101 th) byte of virtual page 01 (or 1). With our virtual page number, we can now index our page table and find which physical page that virtual page 1 resides within. In the page table above the physical page number (PPN) (a.k.a. physical frame number or PFN) is 7 (binary 111). Thus, we can translate this virtual address by simply replacing the VPN with the correct PFN and then finally issue the load to physical memory: VPN offset becomes PFN offset Note the offset stays the same (i.e., it is not translated), because the offset just tells us which byte within the page we want. Thus, our final physical address is , which is 117 in decimal, and is exactly where we want our load to fetch data from (Figure 12.2). OPERATING SYSTEMS

5 PAGING: INTRODUCTION 5 DATA STRUCTURE: THE PAGE TABLE One of the most important data structures in the memory management subsystem of a modern OS is the page table. In general, a page table stores virtual-to-physical address translations, thus letting the system know where each page of an address space actually resides in physical memory. Because each address space requires such translations, in general there is one page table per process in the system. The exact structure of the page table is either determined by the hardware (older systems) or can be more flexibly managed entirely by the OS (more modern systems) Where Are Page Tables Stored? Page tables can get awfully large, much bigger than the small segment table or base/bounds pair we have discussed previously. For example, imagine a typical 32-bit address space, with 4-KB pages. This virtual address splits into a 20-bit VPN and 12-bit offset (recall that 10 bits would be needed for a 1-KB page size, and just add two more to get to 4 KB). A 20-bit VPN implies that there are 2 20 translations that the OS would have to manage for each process (that s roughly a million); assuming we need 4 bytes per page table entry (PTE) to hold the physical translation plus any other useful stuff, we get an immense 4MB of memory needed for each page table! That is pretty big. Now imagine there are 100 processes running: this means the OS would need 400MB of memory just for all those address translations! Because they are so big, we don t keep any special on-chip hardware in the MMU to store the page table of the currentlyrunning process. Instead, we store the page table for each process in memory somewhere. Let s assume for now that the page tables live in physical memory that the OS manages. In Figure 12.3 is a picture of what that might look like. WHAT HAPPENS WHEN (V0.3)

6 6 PAGING: INTRODUCTION page table: page 3 of AS page 0 of AS page 2 of AS page 1 of AS page frame 0 of physical memory page frame 1 page frame 2 page frame 3 page frame 4 page frame 5 page frame 6 page frame 7 Figure 12.3: Example: Page Table in Kernel Physical Memory 12.2 What s Actually In The Page Table? A small aside about page table organization. The page table is just a data structure that is used to map virtual addresses (or really, virtual page numbers) to physical addresses (physical page numbers). Thus, any data structure could work. The simplest form is called a linear page table. It is just an array. The OS indexes the array by the VPN, and thus looks up the page-table entry (PTE) at that index in order to find the desired PFN. For now, we will assume this linear page table structure; below we will make use of more advanced data structures to help solve some problems with paging. As for the contents of each PTE, we have a number of different bits in there worth understanding at some level. A valid bit is common to indicate whether the particular translation is valid; for example, when a program starts running, it will have code and heap at one end of its address space, and the stack at the other. All the unused space in-between will be marked invalid, and if the process tries to access such memory, it will generate a trap to the OS which will likely terminate the process. OPERATING SYSTEMS

7 PAGING: INTRODUCTION 7 Thus, the valid bit is crucial for supporting a sparse address space; by simply marking all the unused pages in the address space invalid, we remove the need to allocate physical frames for those pages and thus save a great deal of memory. We also might have protection bits, indicating whether the page could be read from, written to, or executed from (e.g., a code page). Again, accessing a page in a way not matched allowed by these bits will generate a trap to the OS. There are a couple of other bits that are important but we won t talk about much for now. A present bit indicates whether this page is in physical memory or on disk (swapped out); we will understand this in more detail when we study how to move parts of the address space to disk and back in order to support address spaces that are larger than physical memory and allow for the pages of processes that aren t actively being run to be swapped out. A dirty bit is also common, indicating whether the page has been modified since it was brought into memory. We will come back to this bit as well Paging: Also Too Slow With page tables in memory, we already know that they might be too big. Turns out they can slow things down too. For example, take our simple instruction: movl 21, %eax Again, let s just examine the explicit reference to address 21 and not worry about the instruction fetch. In this example, we will assume the hardware performs the translation for us. To fetch the desired data, the system must first translate the virtual address (21) into the correct physical address (85). Thus, before issuing the load to address 85, the system must first fetch the proper page table entry from the process s page table, perform the translation, and then finally get the desired data from physical memory. To do so, the hardware must know where the page table is for the currently-running process. Let s assume for now that a WHAT HAPPENS WHEN (V0.3)

8 8 PAGING: INTRODUCTION single page-table base register contains the physical address of the starting location of the page table. To find the location of the desired PTE, the hardware will thus perform the following functions: VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT; AddressOfPTE = PageTableBaseRegister + (VPN * sizeof(pte)); In our example, VPN MASK would be set to 0x30 (hex 30, or binary ) which picks out the VPN bits from the full virtual address; VPN SHIFT is set to 4 (the size of the offset), such that we move the VPN bits down to form the correct integer virtual page number. For example, with virtual address 21 (010101), the mask turns this into , and the shift turns it into 01, or virtual page 1, as desired. We then use this value as an index into the array of PTEs pointed to by the page table base register. Once this physical address is known, the hardware can fetch the PTE, extract the PFN, and concatenate it with the offset from the virtual address to form the desired physical address. Finally, the hardware can fetch the desired data from memory and put it into registereax. Simply put, for every memory reference (whether an instruction fetch or an explicit load or store), paging now requires us to perform one extra memory reference in order to first fetch the translation from the page table. Wow, that is a lot of work! Extra memory references are costly, and in this case will likely slow down the process by a factor of two or more. And now we can see what the two real problems are that we must solve. THE CRUX: PAGING TOO SLOW, TABLES TOO BIG Paging, as we ve described, has two big problems: the page tables are too big, and the address translation process is too slow. Thus, how can the OS, in tandem with the hardware, speed up translation? How can the OS and hardware reduce the exorbitant memory demands of paging? OPERATING SYSTEMS

9 PAGING: INTRODUCTION 9 References [KE+62] One-level Storage System T. Kilburn, and D.B.G. Edwards and M.J. Lanigan and F.H. Sumner IRE Trans. EC-11, 2 (1962), pp (Reprinted in Bell and Newell, Computer Structurers: Readings and Examples McGraw-Hill, New York, 1971). The Atlas pioneered the idea of dividing memory into fixed-sized pages and in many senses was an early form of the memory-management ideas we see in modern computer systems. [L78] The Manchester Mark I and atlas: a historical perspective S. H. Lavington Communications of the ACM archive Volume 21, Issue 1 (January 1978), pp Special issue on computer architecture This paper is a great retrospective of some of the history of the development of some important computer systems. As we sometimes forget in the US, many of these new ideas came from overseas. WHAT HAPPENS WHEN (V0.3)

Paging: Introduction A Simple Example And Overview

Paging: Introduction A Simple Example And Overview 18 Paging: Introduction It is sometimes said that the operating system takes one of two approaches when solving most any space-management problem. The first approach is to chop things up into variable-sized

More information

CS 550 Operating Systems Spring Memory Management: Paging

CS 550 Operating Systems Spring Memory Management: Paging CS 550 Operating Systems Spring 2018 Memory Management: Paging 1 Recap: Memory Management Ideally programmers want memory that is large fast non volatile Memory hierarchy small amount of fast, expensive

More information

Operating System Labs. Yuanbin Wu

Operating System Labs. Yuanbin Wu Operating System Labs Yuanbin Wu cs@ecnu Operating System Labs Review of Memory Management Early days Memory Management Memory Management Multiprogramming multiple processes could be ready to run at a

More information

11.1 Segmentation: Generalized Base/Bounds

11.1 Segmentation: Generalized Base/Bounds 11 Segmentation So far we have been putting the entire address space of each process in memory. With the base and bounds registers, the OS can easily relocate processes to different parts of physical memory.

More information

Operating System Labs. Yuanbin Wu

Operating System Labs. Yuanbin Wu Operating System Labs Yuanbin Wu cs@ecnu Operating System Labs Review of Memory Management Early days Memory Management Memory Management Multiprogramming and Time Sharing Multiple processes live in memory

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is infinite Allocation of memory

More information

Virtual Memory. Today. Handling bigger address spaces Speeding translation

Virtual Memory. Today. Handling bigger address spaces Speeding translation Virtual Memory Today Handling bigger address spaces Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least 1

More information

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation Virtual Memory 2 Today Handling bigger address spaces Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least

More information

Virtual Memory 2. To do. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. To do. q Handling bigger address spaces q Speeding translation Virtual Memory 2 To do q Handling bigger address spaces q Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least

More information

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura CSE 451: Operating Systems Winter 2013 Page Table Management, TLBs and Other Pragmatics Gary Kimura Moving now from Hardware to how the OS manages memory Two main areas to discuss Page table management,

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole Memory Management Memory Management Memory a linear array of bytes - Holds O.S. and programs (processes) - Each cell (byte) is named by a unique memory address Recall,

More information

Beyond Physical Memory: Mechanisms

Beyond Physical Memory: Mechanisms 21 Beyond Physical Memory: Mechanisms Thus far, we ve assumed that an address space is unrealistically small and fits into physical memory. In fact, we ve been assuming that every address space of every

More information

COSC3330 Computer Architecture Lecture 20. Virtual Memory

COSC3330 Computer Architecture Lecture 20. Virtual Memory COSC3330 Computer Architecture Lecture 20. Virtual Memory Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Virtual Memory Topics Reducing Cache Miss Penalty (#2) Use

More information

Lecture 23 Introduction to Paging

Lecture 23 Introduction to Paging Lecture 23 Introduction to Paging Why not Segmentation? Segmentation to chop up space into different-size chunks. the space itself can become fragmented, and thus allocation becomes more challenging over

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

New-School Machine Structures. Overarching Theme for Today. Agenda. Review: Memory Management. The Problem 8/1/2011

New-School Machine Structures. Overarching Theme for Today. Agenda. Review: Memory Management. The Problem 8/1/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Virtual Instructor: Michael Greenbaum 1 New-School Machine Structures Software Parallel Requests Assigned to computer e.g., Search Katz

More information

Simple idea 1: load-time linking. Our main questions. Some terminology. Simple idea 2: base + bound register. Protection mechanics.

Simple idea 1: load-time linking. Our main questions. Some terminology. Simple idea 2: base + bound register. Protection mechanics. Our main questions! How is protection enforced?! How are processes relocated?! How is ory partitioned? Simple idea 1: load-time linking! Link as usual, but keep the list of references! At load time, determine

More information

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018 CS 31: Intro to Systems Virtual Memory Kevin Webb Swarthmore College November 15, 2018 Reading Quiz Memory Abstraction goal: make every process think it has the same memory layout. MUCH simpler for compiler

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 29: an Introduction to Virtual Memory Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Virtual memory used to protect applications

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 12

ECE 571 Advanced Microprocessor-Based Design Lecture 12 ECE 571 Advanced Microprocessor-Based Design Lecture 12 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 March 2018 HW#6 will be posted Project will be coming up Announcements

More information

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis Multi-level Translation CS 57 Lecture 9 Paging Michael Swift Problem: what if you have a sparse address space e.g. out of GB, you use MB spread out need one PTE per page in virtual address space bit AS

More information

Virtual Memory 2. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. q Handling bigger address spaces q Speeding translation Virtual Memory 2 q Handling bigger address spaces q Speeding translation Two considerations with page tables Mapping must be fast Done on every memory reference, at least 1 per instruction With large address

More information

15 Sharing Main Memory Segmentation and Paging

15 Sharing Main Memory Segmentation and Paging Operating Systems 58 15 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

Memory Management Topics. CS 537 Lecture 11 Memory. Virtualizing Resources

Memory Management Topics. CS 537 Lecture 11 Memory. Virtualizing Resources Memory Management Topics CS 537 Lecture Memory Michael Swift Goals of memory management convenient abstraction for programming isolation between processes allocate scarce memory resources between competing

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

Virtual Memory. Yannis Smaragdakis, U. Athens

Virtual Memory. Yannis Smaragdakis, U. Athens Virtual Memory Yannis Smaragdakis, U. Athens Example Modern Address Space (64-bit Linux) location of code : 0x40057d location of heap : 0xcf2010 location of stack : 0x7fff9ca45fcc 0x400000 0x401000 0xcf2000

More information

Virtual Memory. Today. Segmentation Paging A good, if common example

Virtual Memory. Today. Segmentation Paging A good, if common example Virtual Memory Today Segmentation Paging A good, if common example Virtual memory system Goals Transparency Programs should not know that memory is virtualized; the OS +HW multiplex memory among processes

More information

CS 61 Section Notes 5

CS 61 Section Notes 5 CS 61 Section Notes 5 (Week of 10/22-10/26) Topics: Dangerous Instructions and Process Isolation Virtual Memory Memory Mapping Address Translation Some numbers Some Terms Processes and Fork What is a process?

More information

Chapter 3 - Memory Management

Chapter 3 - Memory Management Chapter 3 - Memory Management Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Memory Management 1 / 222 1 A Memory Abstraction: Address Spaces The Notion of an Address Space Swapping

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 13

ECE 571 Advanced Microprocessor-Based Design Lecture 13 ECE 571 Advanced Microprocessor-Based Design Lecture 13 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 21 March 2017 Announcements More on HW#6 When ask for reasons why cache

More information

16 Sharing Main Memory Segmentation and Paging

16 Sharing Main Memory Segmentation and Paging Operating Systems 64 16 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

Chapter 3 Memory Management: Virtual Memory

Chapter 3 Memory Management: Virtual Memory Memory Management Where we re going Chapter 3 Memory Management: Virtual Memory Understanding Operating Systems, Fourth Edition Disadvantages of early schemes: Required storing entire program in memory

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information

Memory Management. Goals of Memory Management. Mechanism. Policies

Memory Management. Goals of Memory Management. Mechanism. Policies Memory Management Design, Spring 2011 Department of Computer Science Rutgers Sakai: 01:198:416 Sp11 (https://sakai.rutgers.edu) Memory Management Goals of Memory Management Convenient abstraction for programming

More information

CS-537: Midterm Exam (Fall 2008) Hard Questions, Simple Answers

CS-537: Midterm Exam (Fall 2008) Hard Questions, Simple Answers CS-537: Midterm Exam (Fall 28) Hard Questions, Simple Answers Please Read All Questions Carefully! There are seven (7) total numbered pages. Please put your NAME and student ID on THIS page, and JUST YOUR

More information

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 13 Virtual memory and memory management unit In the last class, we had discussed

More information

ECE 598 Advanced Operating Systems Lecture 14

ECE 598 Advanced Operating Systems Lecture 14 ECE 598 Advanced Operating Systems Lecture 14 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 22 March 2016 Announcements 1 Got a Pi3 over break Pi3 Notes Very impressive performance,

More information

Goals of memory management

Goals of memory management CSE 451: Operating Systems Winter 2004 Module 10 Memory Management Ed Lazowska lazowska@cs.washington.edu Allen Center 570 Goals of memory management Allocate scarce memory resources among competing processes,

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

PROCESS VIRTUAL MEMORY. CS124 Operating Systems Winter , Lecture 18

PROCESS VIRTUAL MEMORY. CS124 Operating Systems Winter , Lecture 18 PROCESS VIRTUAL MEMORY CS124 Operating Systems Winter 2015-2016, Lecture 18 2 Programs and Memory Programs perform many interactions with memory Accessing variables stored at specific memory locations

More information

CS-537: Midterm Exam (Fall 2013) Professor McFlub

CS-537: Midterm Exam (Fall 2013) Professor McFlub CS-537: Midterm Exam (Fall 2013) Professor McFlub Please Read All Questions Carefully! There are fourteen (14) total numbered pages. Please put your NAME (mandatory) on THIS page, and this page only. Name:

More information

Virtual Memory 1. To do. q Segmentation q Paging q A hybrid system

Virtual Memory 1. To do. q Segmentation q Paging q A hybrid system Virtual Memory 1 To do q Segmentation q Paging q A hybrid system Address spaces and multiple processes IBM OS/360 Split memory in n parts (possible!= sizes) A process per partition Program Code Heap Operating

More information

Virtual Memory. Chapter 8

Virtual Memory. Chapter 8 Chapter 8 Virtual Memory What are common with paging and segmentation are that all memory addresses within a process are logical ones that can be dynamically translated into physical addresses at run time.

More information

Operating System Principles: Memory Management Swapping, Paging, and Virtual Memory CS 111. Operating Systems Peter Reiher

Operating System Principles: Memory Management Swapping, Paging, and Virtual Memory CS 111. Operating Systems Peter Reiher Operating System Principles: Memory Management Swapping, Paging, and Virtual Memory Operating Systems Peter Reiher Page 1 Outline Swapping Paging Virtual memory Page 2 Swapping What if we don t have enough

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 Recap Paged MMU: Two main Issues Translation speed can be slow TLB Table size is big Multi-level page table

More information

Memory Management. Kevin Webb Swarthmore College February 27, 2018

Memory Management. Kevin Webb Swarthmore College February 27, 2018 Memory Management Kevin Webb Swarthmore College February 27, 2018 Today s Goals Shifting topics: different process resource memory Motivate virtual memory, including what it might look like without it

More information

CS162 Operating Systems and Systems Programming Lecture 12. Address Translation. Page 1

CS162 Operating Systems and Systems Programming Lecture 12. Address Translation. Page 1 CS162 Operating Systems and Systems Programming Lecture 12 Translation March 10, 2008 Prof. Anthony D. Joseph http://inst.eecs.berkeley.edu/~cs162 Review: Important Aspects of Memory Multiplexing Controlled

More information

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation Virtual Memory Topics (Chapter 9) Motivations for VM Address translation 1 Motivations for Virtual Memory Use Physical DRAM as a Cache for the Disk Address space of a process can exceed physical memory

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS.

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS. Paging 11/10/16 Recall from Tuesday Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS Process 3 Process 3 OS: Place Process 3 Process 1 Process

More information

Multi-level Page Tables & Paging+ segmentation combined

Multi-level Page Tables & Paging+ segmentation combined Multi-level Page Tables & Paging+ segmentation combined Basic idea: use two levels of mapping to make tables manageable o Each segment contains one or more pages Segments correspond to logical units: code,

More information

Memory Hierarchy Requirements. Three Advantages of Virtual Memory

Memory Hierarchy Requirements. Three Advantages of Virtual Memory CS61C L12 Virtual (1) CS61CL : Machine Structures Lecture #12 Virtual 2009-08-03 Jeremy Huddleston Review!! Cache design choices: "! Size of cache: speed v. capacity "! size (i.e., cache aspect ratio)

More information

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson Virtual Memory I CSE 35 Spring 27 Instructor: Ruth Anderson Teaching Assistants: Dylan Johnson Kevin Bi Linxing Preston Jiang Cody Ohlsen Yufang Sun Joshua Curtis Administrivia Midterms Graded If you did

More information

Virtualizing Memory: Paging. Announcements

Virtualizing Memory: Paging. Announcements CS 537 Introduction to Operating Systems UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau Virtualizing Memory: Paging Questions answered in

More information

MEMORY: SWAPPING. Shivaram Venkataraman CS 537, Spring 2019

MEMORY: SWAPPING. Shivaram Venkataraman CS 537, Spring 2019 MEMORY: SWAPPING Shivaram Venkataraman CS 537, Spring 2019 ADMINISTRIVIA - Project 2b is out. Due Feb 27 th, 11:59 - Project 1b grades are out Lessons from p2a? 1. Start early! 2. Sketch out a design?

More information

ECE 598 Advanced Operating Systems Lecture 10

ECE 598 Advanced Operating Systems Lecture 10 ECE 598 Advanced Operating Systems Lecture 10 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 17 February 2015 Announcements Homework #1 and #2 grades, HW#3 Coming soon 1 Various

More information

Virtual Memory. CS 351: Systems Programming Michael Saelee

Virtual Memory. CS 351: Systems Programming Michael Saelee Virtual Memory CS 351: Systems Programming Michael Saelee registers cache (SRAM) main memory (DRAM) local hard disk drive (HDD/SSD) remote storage (networked drive / cloud) previously: SRAM

More information

Virtual Memory. 11/8/16 (election day) Vote!

Virtual Memory. 11/8/16 (election day) Vote! Virtual Memory 11/8/16 (election day) Vote! Recall: the job of the OS The OS is an interface layer between a user s programs and hardware. Program Operating System Computer Hardware It provides an abstract

More information

Virtual Memory. Kevin Webb Swarthmore College March 8, 2018

Virtual Memory. Kevin Webb Swarthmore College March 8, 2018 irtual Memory Kevin Webb Swarthmore College March 8, 2018 Today s Goals Describe the mechanisms behind address translation. Analyze the performance of address translation alternatives. Explore page replacement

More information

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays.

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays. CSE420 Virtual Memory Prof. Mokhtar Aboelaze York University Based on Slides by Prof. L. Bhuyan (UCR) Prof. M. Shaaban (RIT) Virtual Memory Virtual memory first used to relive programmers from the burden

More information

Chapter 8 Memory Management

Chapter 8 Memory Management Chapter 8 Memory Management Da-Wei Chang CSIE.NCKU Source: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 9th Edition, Wiley. 1 Outline Background Swapping Contiguous

More information

memory management Vaibhav Bajpai

memory management Vaibhav Bajpai memory management Vaibhav Bajpai OS 2013 motivation virtualize resources: multiplex CPU multiplex memory (CPU scheduling) (memory management) why manage memory? controlled overlap processes should NOT

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Segmentation. Multiple Segments. Lecture Notes Week 6

Segmentation. Multiple Segments. Lecture Notes Week 6 At this point, we have the concept of virtual memory. The CPU emits virtual memory addresses instead of physical memory addresses. The MMU translates between virtual and physical addresses. Don't forget,

More information

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements CS61C L25 Virtual I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25 Virtual I 27-8-7 Scott Beamer, Instructor Another View of the Hierarchy Thus far{ Next: Virtual { Regs Instr.

More information

Memory Hierarchy. Mehran Rezaei

Memory Hierarchy. Mehran Rezaei Memory Hierarchy Mehran Rezaei What types of memory do we have? Registers Cache (Static RAM) Main Memory (Dynamic RAM) Disk (Magnetic Disk) Option : Build It Out of Fast SRAM About 5- ns access Decoders

More information

Introduction to Paging

Introduction to Paging Introduction to Paging COMS W4118 References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright notice: care has been taken to use only those web images deemed by the

More information

Memory Management: Virtual Memory and Paging CS 111. Operating Systems Peter Reiher

Memory Management: Virtual Memory and Paging CS 111. Operating Systems Peter Reiher Memory Management: Virtual Memory and Paging Operating Systems Peter Reiher Page 1 Outline Paging Swapping and demand paging Virtual memory Page 2 Paging What is paging? What problem does it solve? How

More information

How to create a process? What does process look like?

How to create a process? What does process look like? How to create a process? On Unix systems, executable read by loader Compile time runtime Ken Birman ld loader Cache Compiler: generates one object file per source file Linker: combines all object files

More information

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley s companion website (including textbook images, when not explicitly

More information

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD OPERATING SYSTEMS #8 After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD MEMORY MANAGEMENT MEMORY MANAGEMENT The memory is one of

More information

CS 390 Chapter 8 Homework Solutions

CS 390 Chapter 8 Homework Solutions CS 390 Chapter 8 Homework Solutions 8.3 Why are page sizes always... Page sizes that are a power of two make it computationally fast for the kernel to determine the page number and offset of a logical

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L20 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time Page

More information

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19 PROCESS VIRTUAL MEMORY PART 2 CS24 Operating Systems Winter 25-26, Lecture 9 2 Virtual Memory Abstraction Last time, officially introduced concept of virtual memory Programs use virtual addresses to refer

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Fall 2018 Baris Kasikci Slides by: Harsha V. Madhyastha Base and bounds Load each process into contiguous region of physical memory Prevent process from accessing

More information

CS 134: Operating Systems

CS 134: Operating Systems CS 134: Operating Systems More Memory Management CS 134: Operating Systems More Memory Management 1 / 27 2 / 27 Overview Overview Overview Segmentation Recap Segmentation Recap Segmentation Recap Segmentation

More information

This training session will cover the Translation Look aside Buffer or TLB

This training session will cover the Translation Look aside Buffer or TLB This training session will cover the Translation Look aside Buffer or TLB I will cover: What It is How to initialize it And How TLB exceptions are handled 1 First let me explain what we are dealing with:

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Recap: Virtual Addresses A virtual address is a memory address that a process uses to access its own memory Virtual address actual physical

More information

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck Main memory management CMSC 411 Computer Systems Architecture Lecture 16 Memory Hierarchy 3 (Main Memory & Memory) Questions: How big should main memory be? How to handle reads and writes? How to find

More information

CS 537: Introduction to Operating Systems Fall 2016: Midterm Exam #1. All cell phones must be turned off and put away.

CS 537: Introduction to Operating Systems Fall 2016: Midterm Exam #1. All cell phones must be turned off and put away. CS 537: Introduction to Operating Systems Fall 2016: Midterm Exam #1 This exam is closed book, closed notes. All cell phones must be turned off and put away. No calculators may be used. You have two hours

More information

Virtual memory - Paging

Virtual memory - Paging Virtual memory - Paging Johan Montelius KTH 2017 1 / 32 The process code (.text) data heap stack kernel 0x00000000 0xC0000000 0xffffffff Memory layout for a 32-bit Linux process 2 / 32 Segments - a could

More information

The process. one problem

The process. one problem The process Virtual memory - Paging Johan Montelius code (.text) data heap stack kernel KTH 0x00000000 0xC0000000 0xffffffff 2017 Memory layout for a 32-bit Linux process Segments - a could be solution

More information

Virtual Memory. CS 3410 Computer System Organization & Programming

Virtual Memory. CS 3410 Computer System Organization & Programming Virtual Memory CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. Where are we now and

More information

143A: Principles of Operating Systems. Lecture 6: Address translation (Paging) Anton Burtsev October, 2017

143A: Principles of Operating Systems. Lecture 6: Address translation (Paging) Anton Burtsev October, 2017 143A: Principles of Operating Systems Lecture 6: Address translation (Paging) Anton Burtsev October, 2017 Paging Pages Pages Paging idea Break up memory into 4096-byte chunks called pages Modern hardware

More information

Lecture 16. Today: Start looking into memory hierarchy Cache$! Yay!

Lecture 16. Today: Start looking into memory hierarchy Cache$! Yay! Lecture 16 Today: Start looking into memory hierarchy Cache$! Yay! Note: There are no slides labeled Lecture 15. Nothing omitted, just that the numbering got out of sequence somewhere along the way. 1

More information

Virtual Memory. Computer Systems Principles

Virtual Memory. Computer Systems Principles Virtual Memory Computer Systems Principles Objectives Virtual Memory What is it? How does it work? Virtual Memory Address Translation /7/25 CMPSCI 23 - Computer Systems Principles 2 Problem Lots of executing

More information

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8)

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) Important from last time We re trying to build efficient virtual address spaces Why?? Virtual / physical translation is done by HW and

More information

All Paging Schemes Depend on Locality. VM Page Replacement. Paging. Demand Paging

All Paging Schemes Depend on Locality. VM Page Replacement. Paging. Demand Paging 3/14/2001 1 All Paging Schemes Depend on Locality VM Page Replacement Emin Gun Sirer Processes tend to reference pages in localized patterns Temporal locality» locations referenced recently likely to be

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Review: Segmentation 2 Virtual Memory Accesses o Approaches: Static Relocation Dynamic Relocation Base Base-and-Bounds Segmentation

More information

Operating Systems. Operating Systems Sina Meraji U of T

Operating Systems. Operating Systems Sina Meraji U of T Operating Systems Operating Systems Sina Meraji U of T Recap Last time we looked at memory management techniques Fixed partitioning Dynamic partitioning Paging Example Address Translation Suppose addresses

More information

Classifying Information Stored in Memory! Memory Management in a Uniprogrammed System! Segments of a Process! Processing a User Program!

Classifying Information Stored in Memory! Memory Management in a Uniprogrammed System! Segments of a Process! Processing a User Program! Memory Management in a Uniprogrammed System! A! gets a fixed segment of (usually highest )"! One process executes at a time in a single segment"! Process is always loaded at "! Compiler and linker generate

More information

Memory Management. An expensive way to run multiple processes: Swapping. CPSC 410/611 : Operating Systems. Memory Management: Paging / Segmentation 1

Memory Management. An expensive way to run multiple processes: Swapping. CPSC 410/611 : Operating Systems. Memory Management: Paging / Segmentation 1 Memory Management Logical vs. physical address space Fragmentation Paging Segmentation An expensive way to run multiple processes: Swapping swap_out OS swap_in start swapping store memory ready_sw ready

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

CS 5523 Operating Systems: Memory Management (SGG-8)

CS 5523 Operating Systems: Memory Management (SGG-8) CS 5523 Operating Systems: Memory Management (SGG-8) Instructor: Dr Tongping Liu Thank Dr Dakai Zhu, Dr Palden Lama, and Dr Tim Richards (UMASS) for providing their slides Outline Simple memory management:

More information

(Refer Slide Time: 01:25)

(Refer Slide Time: 01:25) Computer Architecture Prof. Anshul Kumar Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 32 Memory Hierarchy: Virtual Memory (contd.) We have discussed virtual

More information

238P: Operating Systems. Lecture 5: Address translation. Anton Burtsev January, 2018

238P: Operating Systems. Lecture 5: Address translation. Anton Burtsev January, 2018 238P: Operating Systems Lecture 5: Address translation Anton Burtsev January, 2018 Two programs one memory Very much like car sharing What are we aiming for? Illusion of a private address space Identical

More information

Operating Systems. Pablo Prieto Torralbo. 3. Memory Virtualizing DEPARTMENT OF COMPUTER ENGINEERING

Operating Systems. Pablo Prieto Torralbo. 3. Memory Virtualizing DEPARTMENT OF COMPUTER ENGINEERING Operating Systems 3. Memory Virtualizing Pablo Prieto Torralbo DEPARTMENT OF COMPUTER ENGINEERING AND ELECTRONICS This material is published under: Creative Commons BY-NC-SA 4. 3.1 Memory Virtualization

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information