Parallel storage. Toni Cortes Team leader. EXPERTISE training school

Size: px
Start display at page:

Download "Parallel storage. Toni Cortes Team leader. EXPERTISE training school"

Transcription

1 Parallel storage Toni Cortes Team leader Jan 11 th, 2018 EXPERTISE training school

2 Agenda Introduction Parallel file systems Object stores Back to interfaces dataclay: next generation object store

3 Agenda Introduction Parallel file systems Object stores Back to interfaces dataclay: next generation object store

4 How parallel applications do IO What is a parallel application? Any application that concurrently uses several processing units Jose and Daniele have already discussed about them How do these applications use persistent storage? POSIX Traditional open/close/read/write (more later) Designed for sequential applications MPI IO Extension of what Jose has explained for IO (more later) Designed for parallel applications Object oriented storage Much more the last half of the talk

5 How these interfaces are implemented Both POSIX and MPI are supported by Parallel File Systems Their native interface is POSIX with extensions Many HPC implementations of MPI over them Examples Luster, GPFS, BeeGFS, OrangeFS, PanFS Object stores are gaining momentum Their native interface is HTTP (REST) MPI implementations are being developed Examples DAOS, Cepth, S3, Swift (OpenStack), Object stores are not yet object oriented As in OO programming languages More later

6 Agenda Introduction Parallel file systems Object stores Back to interfaces dataclay: next generation object store

7 What is a [Parallel] file systems A filesystem is software module intended to organize and maintain the file namespace store the contents of the files and their attributes Some interesting details Most persistent devices offer big granularities (a few Kilobytes) Thus reading a byte implies reading the while block This will have many implication later All files keep a lot of metadata (information defining the data) Rules for this metadata thought for sequential systems Parallel file system A file system ready to Serve many clients at the same time Distribute its data to offer a high bandwidth and low latency

8 Paralle file system architecture Data server Data server C Data server Data server Data server Data server C C C C C C Metadata or file server

9 Data distribution Idea Distribute data blocks among different devices in a deterministic way Can be applied to The whole storage space Each file independently The most typical distribution is round robin With different fault tolerance levels RAID levels

10 Raid 0 Disc

11 Raid 1 Disc

12 Raid 4 Disc P0 P1 P2 P3 P4 P P6 XOR

13 Raid 4 Disc X P0 P1 P2 P3 P4 P P6 XOR

14 Agenda Introduction Parallel file systems Object stores Back to interfaces dataclay: next generation object store

15 Why object stores Parallel filesystems are struggling to keep the HPC path Object stores have simplified many issues to be more scalable Clear separation of data and metadata Flat name space Access semantics Object store is like a distributed key value store Stores pairs (ID, object) ID is an element in the flat namespace Object is an arbitrary size string of bytes Many applications only need this functionality Traditional REST API Good for usability, not so good for HPC Some file systems are built on top Luster, Cepth

16 Object stores allow random placement Basic tasks of balls into bins games Assign a set of m balls to n bins Motivation Bins = Hard disks Balls = Data items L = max number of data items on each disk Advantages Better load balancing Possibility of rebalancing Finding it back New random same seed Keep a table Idea: Just take a random position! Where should I place the next item?

17 Agenda Introduction Parallel file systems Object stores Back to interfaces dataclay: next generation object store

18 POSIX Why POSIX is not the answer Sequential consistency semantics Once a write completes, any read, from anywhere, must see that write Not always important False sharing problems Size of the file must always reflect the actual size Is this always important? Access/modification times must be updated every access/modification When do we check these dates? Can be eventually updated? Implementing such semantics reduces performance significantly Most applications do not even reach to 1% of potential IO performance [Bill Gropp 2017]

19 MPI Designed for parallel applications Extension to MPI (message passing) Better semantics: some examples Each process sees the portion of file it will use Avoids false sharing Asynchronous operations Enables overlapping computation and IO Offers collective operations Better use of devices by building large operations

20 MPI IO: some basic ideas What is visible by each task Definition of etype Basic element size Definition of the subfile Bytes that can be used Build the filetype Access to data Specify the desired bytes Pattern defined by each read/write operation Specify the location in the buffer All operations Synchronous or asynchronous Collective or individual File a b c etype filetype Subfile buftype Buffer

21 MPI IO example MPI_Aint lb, extent; MPI_Datatype etype, filetype, contig; MPI_Offset disp; MPI_Type_contiguous(2, MPI_INT, &contig); lb = 0; extent = 6 * sizeof(int); MPI_Type_create_resized(contig, lb, extent, &filetype); MPI_Type_commit(&filetype); disp = 5 * sizeof(int); etype = MPI_INT; MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", MPI_MODE_CREATE MPI_MODE_RDWR, MPI_INFO_NULL, &fh); MPI_File_set_view(fh, disp, etype, filetype, "native", MPI_INFO_NULL); MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

22 Main problems These interfaces are too low level Data semantic is lost and cannot be exploited

23 Agenda Introduction Parallel file systems Object stores Back to interfaces dataclay: next generation object store

24 Different data models Memory vs. Storage The pillars of dataclay New devices to come Data sharing Moving code close to the data

25 Why persistent data is different than volatile? Today We have one data model for volatile data Traditional data structures and/or objects We have a different data model for the persistent data Relational database, NoSQL database, files Future Store data in the same way as when volatile Store objects and relations

26 Data selection (No more SQL queries) In memory Data never queried using SQL Data linked according to needs of program Next data item found by following a link, not a query Persistent data should behave in a similar way Following a link is faster than a query over the whole dataset Programs do not need to make any differences whether Data is in memory or in persistent storage

27 Different data models New devices to come Persistent memories (SCM) Byte addressable The pillars of dataclay Data sharing Moving code close to the data

28 The pillars of dataclay Different data models New devices to come Data sharing Moving code close to the data

29 Data sharing Transparent access to data from different sources Regardless of its location According to the data owner s permissions 29

30 The pillars of dataclay Different data models New devices to come Data sharing Moving code close to the data We store object methods with data Can be executed where the object is stored/cached

31 Storage API Integration of programming model & storage platforms

32 Storage API Object Interface Method constructor(alias) C.getByAlias(alias) o.makepersistent o.deletepersistent init finish Objective Retrieve an object with alias // currently only in the Java flavour Retrieve an object with alias // currently only in the Python flavour Persist the object in the datastore Alias Recursive Location Delete the object from the datastore Do any initialization action before starting to execute the application Do any finalization action after executing the application 32

33 Word Count Python from dataclay import api initialization prepares the dataclay environment from my_collections import MyWords uses the registered class... if name == main : data = MyWords.get_by_alias( experiment1 ) r = defaultdict(int) for block in data.blocks: partial_result = word_count(block) reduce_count(r, partial_result) r = compss_wait_on(r) print data=in) def word_count(data): Unmodified word_count function map_count = defaultdict(int) for word in data: map_count[word] += 1 return map_count

34 Word Count (v2) Python from dataclay import api initialization prepares the dataclay environment from my_collections import MyWords, MyResult registered classes... if name == main : data = MyWords.get_by_alias( experiment1 ) r = MyResult(); r.make_persistent( result1 ); for block in data.blocks: partial_result = word_count(block) reduce_count(r, partial_result) r = compss_wait_on(r) print data=in) def word_count(data): Unmodified word_count function map_count = defaultdict(int) for word in data: map_count[word] += 1 return map_count

35 Iterating collections in parallel Use case: execute a method on the objects in a collection COMPSs assigns one worker per object For applications using a standard iterator: Executes the method (task) in the node where the object is getlocations Blocking usually needed Object method granularity may be too small It implies grouping objects in the same backend dataclay collections simplify it by offering locality aware iterators Iterate all the objects in the current node Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

36 Word Count (v3) Python from dataclay import api from dc_classes.contrib.collections import StorageList... if name == main : data = StorageList.get_by_alias( experiment1 ) r = defaultdict(int) for block in data.split(): partial_result = word_count(block) reduce_count(r, partial_result) r = compss_wait_on(r) print data=in) def word_count(data): Unmodified word_count function map_count = defaultdict(int) for word in data: map_count[word] += 1 return map_count

37 Storage API Runtime Interface Method getlocations newreplica getid getbyid newversion consolidateversion executetask getresult TaskContext Objective Retrieve the locations where a particular object is Create a new read only replica of an object in the datastore Gets the OID of an object Retrieve an object from its identifier Create a new version of an object in the datastore (COMPSs) Consolidate a version of an object in the datastore (COMPSs) Execute the task into the datastore (COMPSs) Retrieve the result of the execution into the datastore (COMPSs) Define a task context (task enter/exit actions) (COMPSs) 37

38 dataclay: now the pain Data API Make object persistent [Using alias] Delete persistent object Retrieve objects By Alias if set By OID/reference Execute method Management API Register class Get classes (stubs) Manage model/data contracts Register a class ClassRegistrator( BioNamespace, Molecule, classpath) Application... Molecule m = newmolecule(...);... m.makepersistent();... dataclay Molecule.class Molecule.class Original class Get a registered class Stub class GetStubs( Molecule, destinationpath) 38

39 Summary If persistent storage is not a problem You are lucky Enjoy it! Otherwise Think about Us! Think about Pierlauro!

40 Thanks to dataclay team Anna Queralt (PhD) Jonathan Martí (PhD) Daniel Gasull Alex Barceló Rizkallah Touma Enrico LaSala Pierlauro Sciarelli Former team members Ernest Artiaga (PhD) Juanjo Costa (PhD) Paola Garfias (PhD) Jaime Ivan Lopez (PhD)

41 Thank you

BSC and integrating persistent data and parallel programming models

BSC and integrating persistent data and parallel programming models www.bsc.es Barcelona, September 22 nd, 2015 BSC and integrating persistent data and parallel programming models Toni Cortes Leader of the storage-system research group Barcelona Supercomputing Center Centro

More information

Introduction to I/O at CHPC

Introduction to I/O at CHPC CENTER FOR HIGH PERFORMANCE COMPUTING Introduction to I/O at CHPC Martin Čuma, m.cumautah.edu Center for High Performance Computing Fall 2015 Outline Types of storage available at CHPC Types of file I/O

More information

Parallel I/O. Steve Lantz Senior Research Associate Cornell CAC. Workshop: Data Analysis on Ranger, January 19, 2012

Parallel I/O. Steve Lantz Senior Research Associate Cornell CAC. Workshop: Data Analysis on Ranger, January 19, 2012 Parallel I/O Steve Lantz Senior Research Associate Cornell CAC Workshop: Data Analysis on Ranger, January 19, 2012 Based on materials developed by Bill Barth at TACC 1. Lustre 2 Lustre Components All Ranger

More information

MPI Parallel I/O. Chieh-Sen (Jason) Huang. Department of Applied Mathematics. National Sun Yat-sen University

MPI Parallel I/O. Chieh-Sen (Jason) Huang. Department of Applied Mathematics. National Sun Yat-sen University MPI Parallel I/O Chieh-Sen (Jason) Huang Department of Applied Mathematics National Sun Yat-sen University Materials are taken from the book, Using MPI-2: Advanced Features of the Message-Passing Interface

More information

an Object-Based File System for Large-Scale Federated IT Infrastructures

an Object-Based File System for Large-Scale Federated IT Infrastructures an Object-Based File System for Large-Scale Federated IT Infrastructures Jan Stender, Zuse Institute Berlin HPC File Systems: From Cluster To Grid October 3-4, 2007 In this talk... Introduction: Object-based

More information

Parallel I/O. Steve Lantz Senior Research Associate Cornell CAC. Workshop: Parallel Computing on Ranger and Lonestar, May 16, 2012

Parallel I/O. Steve Lantz Senior Research Associate Cornell CAC. Workshop: Parallel Computing on Ranger and Lonestar, May 16, 2012 Parallel I/O Steve Lantz Senior Research Associate Cornell CAC Workshop: Parallel Computing on Ranger and Lonestar, May 16, 2012 Based on materials developed by Bill Barth at TACC Introduction: The Parallel

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

Introduction to I/O at CHPC

Introduction to I/O at CHPC CENTER FOR HIGH PERFORMANCE COMPUTING Introduction to I/O at CHPC Martin Čuma, m.cuma@utah.edu Center for High Performance Computing Fall 2018 Outline Types of storage available at CHPC Types of file I/O

More information

Best Practice Guide - Parallel I/O

Best Practice Guide - Parallel I/O Sandra Mendez, LRZ, Germany Sebastian Lührs, FZJ, Germany Dominic Sloan-Murphy (Editor), EPCC, United Kingdom Andrew Turner (Editor), EPCC, United Kingdom Volker Weinberg (Editor), LRZ, Germany Version

More information

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures GFS Overview Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures Interface: non-posix New op: record appends (atomicity matters,

More information

Map-Reduce. Marco Mura 2010 March, 31th

Map-Reduce. Marco Mura 2010 March, 31th Map-Reduce Marco Mura (mura@di.unipi.it) 2010 March, 31th This paper is a note from the 2009-2010 course Strumenti di programmazione per sistemi paralleli e distribuiti and it s based by the lessons of

More information

CLOUD-SCALE FILE SYSTEMS

CLOUD-SCALE FILE SYSTEMS Data Management in the Cloud CLOUD-SCALE FILE SYSTEMS 92 Google File System (GFS) Designing a file system for the Cloud design assumptions design choices Architecture GFS Master GFS Chunkservers GFS Clients

More information

Lecture 33: More on MPI I/O. William Gropp

Lecture 33: More on MPI I/O. William Gropp Lecture 33: More on MPI I/O William Gropp www.cs.illinois.edu/~wgropp Today s Topics High level parallel I/O libraries Options for efficient I/O Example of I/O for a distributed array Understanding why

More information

Fast Forward I/O & Storage

Fast Forward I/O & Storage Fast Forward I/O & Storage Eric Barton Lead Architect 1 Department of Energy - Fast Forward Challenge FastForward RFP provided US Government funding for exascale research and development Sponsored by 7

More information

Parallel IO Benchmarking

Parallel IO Benchmarking Parallel IO Benchmarking Jia-Ying Wu August 17, 2016 MSc in High Performance Computing with Data Science The University of Edinburgh Year of Presentation: 2016 Abstract The project is aimed to investigate

More information

Fast Forward Storage & I/O. Jeff Layton (Eric Barton)

Fast Forward Storage & I/O. Jeff Layton (Eric Barton) Fast Forward & I/O Jeff Layton (Eric Barton) DOE Fast Forward IO and Exascale R&D sponsored by 7 leading US national labs Solutions to currently intractable problems of Exascale required to meet the 2020

More information

COSC 6397 Big Data Analytics. Distributed File Systems (II) Edgar Gabriel Fall HDFS Basics

COSC 6397 Big Data Analytics. Distributed File Systems (II) Edgar Gabriel Fall HDFS Basics COSC 6397 Big Data Analytics Distributed File Systems (II) Edgar Gabriel Fall 2018 HDFS Basics An open-source implementation of Google File System Assume that node failure rate is high Assumes a small

More information

Crossing the Chasm: Sneaking a parallel file system into Hadoop

Crossing the Chasm: Sneaking a parallel file system into Hadoop Crossing the Chasm: Sneaking a parallel file system into Hadoop Wittawat Tantisiriroj Swapnil Patil, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University In this work Compare and contrast large

More information

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning September 22 nd 2015 Tommaso Cecchi 2 What is IME? This breakthrough, software defined storage application

More information

Crossing the Chasm: Sneaking a parallel file system into Hadoop

Crossing the Chasm: Sneaking a parallel file system into Hadoop Crossing the Chasm: Sneaking a parallel file system into Hadoop Wittawat Tantisiriroj Swapnil Patil, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University In this work Compare and contrast large

More information

Distributed Filesystem

Distributed Filesystem Distributed Filesystem 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributing Code! Don t move data to workers move workers to the data! - Store data on the local disks of nodes in the

More information

Introduction to MPI-2 (Message-Passing Interface)

Introduction to MPI-2 (Message-Passing Interface) Introduction to MPI-2 (Message-Passing Interface) What are the major new features in MPI-2? Parallel I/O Remote Memory Operations Dynamic Process Management Support for Multithreading Parallel I/O Includes

More information

Parallel I/O with MPI TMA4280 Introduction to Supercomputing

Parallel I/O with MPI TMA4280 Introduction to Supercomputing Parallel I/O with MPI TMA4280 Introduction to Supercomputing NTNU, IMF March 27. 2017 1 Limits of data processing Development of computational resource allow running more complex simulations. Volume of

More information

CSE 444: Database Internals. Lecture 23 Spark

CSE 444: Database Internals. Lecture 23 Spark CSE 444: Database Internals Lecture 23 Spark References Spark is an open source system from Berkeley Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei

More information

Distributed Systems. Lec 10: Distributed File Systems GFS. Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Distributed Systems. Lec 10: Distributed File Systems GFS. Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Distributed Systems Lec 10: Distributed File Systems GFS Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung 1 Distributed File Systems NFS AFS GFS Some themes in these classes: Workload-oriented

More information

Lustre* - Fast Forward to Exascale High Performance Data Division. Eric Barton 18th April, 2013

Lustre* - Fast Forward to Exascale High Performance Data Division. Eric Barton 18th April, 2013 Lustre* - Fast Forward to Exascale High Performance Data Division Eric Barton 18th April, 2013 DOE Fast Forward IO and Storage Exascale R&D sponsored by 7 leading US national labs Solutions to currently

More information

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013 PNUTS: Yahoo! s Hosted Data Serving Platform Reading Review by: Alex Degtiar (adegtiar) 15-799 9/30/2013 What is PNUTS? Yahoo s NoSQL database Motivated by web applications Massively parallel Geographically

More information

MapReduce. U of Toronto, 2014

MapReduce. U of Toronto, 2014 MapReduce U of Toronto, 2014 http://www.google.org/flutrends/ca/ (2012) Average Searches Per Day: 5,134,000,000 2 Motivation Process lots of data Google processed about 24 petabytes of data per day in

More information

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006 Google File System, Replication Amin Vahdat CSE 123b May 23, 2006 Annoucements Third assignment available today Due date June 9, 5 pm Final exam, June 14, 11:30-2:30 Google File System (thanks to Mahesh

More information

Distributed File Systems II

Distributed File Systems II Distributed File Systems II To do q Very-large scale: Google FS, Hadoop FS, BigTable q Next time: Naming things GFS A radically new environment NFS, etc. Independence Small Scale Variety of workloads Cooperation

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017 Hadoop File System 1 S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y Moving Computation is Cheaper than Moving Data Motivation: Big Data! What is BigData? - Google

More information

Enosis: Bridging the Semantic Gap between

Enosis: Bridging the Semantic Gap between Enosis: Bridging the Semantic Gap between File-based and Object-based Data Models Anthony Kougkas - akougkas@hawk.iit.edu, Hariharan Devarajan, Xian-He Sun Outline Introduction Background Approach Evaluation

More information

Dept. Of Computer Science, Colorado State University

Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [HADOOP/HDFS] Trying to have your cake and eat it too Each phase pines for tasks with locality and their numbers on a tether Alas within a phase, you get one,

More information

Lecture 21: Reliable, High Performance Storage. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 21: Reliable, High Performance Storage. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 21: Reliable, High Performance Storage CSC 469H1F Fall 2006 Angela Demke Brown 1 Review We ve looked at fault tolerance via server replication Continue operating with up to f failures Recovery

More information

XtreemFS a case for object-based storage in Grid data management. Jan Stender, Zuse Institute Berlin

XtreemFS a case for object-based storage in Grid data management. Jan Stender, Zuse Institute Berlin XtreemFS a case for object-based storage in Grid data management Jan Stender, Zuse Institute Berlin In this talk... Traditional Grid Data Management Object-based file systems XtreemFS Grid use cases for

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel I/O (I) I/O basics Fall 2010 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network card 1 Network card

More information

OPERATING SYSTEMS: Lesson 11: Files

OPERATING SYSTEMS: Lesson 11: Files OPERATING SYSTEMS: Lesson 11: Files Jesús Carretero Pérez David Expósito Singh José Daniel García Sánchez Francisco Javier García Blas Florin Isaila 1 Goals To know the concepts of file and directory and

More information

Data Movement & Tiering with DMF 7

Data Movement & Tiering with DMF 7 Data Movement & Tiering with DMF 7 Kirill Malkin Director of Engineering April 2019 Why Move or Tier Data? We wish we could keep everything in DRAM, but It s volatile It s expensive Data in Memory 2 Why

More information

BigData and Map Reduce VITMAC03

BigData and Map Reduce VITMAC03 BigData and Map Reduce VITMAC03 1 Motivation Process lots of data Google processed about 24 petabytes of data per day in 2009. A single machine cannot serve all the data You need a distributed system to

More information

Data Management in Parallel Scripting

Data Management in Parallel Scripting Data Management in Parallel Scripting Zhao Zhang 11/11/2012 Problem Statement Definition: MTC applications are those applications in which existing sequential or parallel programs are linked by files output

More information

Cloud Computing CS

Cloud Computing CS Cloud Computing CS 15-319 Distributed File Systems and Cloud Storage Part I Lecture 12, Feb 22, 2012 Majd F. Sakr, Mohammad Hammoud and Suhail Rehman 1 Today Last two sessions Pregel, Dryad and GraphLab

More information

A Breakthrough in Non-Volatile Memory Technology FUJITSU LIMITED

A Breakthrough in Non-Volatile Memory Technology FUJITSU LIMITED A Breakthrough in Non-Volatile Memory Technology & 0 2018 FUJITSU LIMITED IT needs to accelerate time-to-market Situation: End users and applications need instant access to data to progress faster and

More information

PyCOMPSs: Parallel computational workflows in Python

PyCOMPSs: Parallel computational workflows in Python Original Article PyCOMPSs: Parallel computational workflows in Python The International Journal of High Performance Computing Applications 2017, Vol. 31(1) 66 82 Ó The Author(s) 2015 Reprints and permissions:

More information

CEPHALOPODS AND SAMBA IRA COOPER SNIA SDC

CEPHALOPODS AND SAMBA IRA COOPER SNIA SDC CEPHALOPODS AND SABA IRA COOPER SNIA SDC 2016.09.18 AGENDA CEPH Architecture. Why CEPH? RADOS RGW CEPHFS Current Samba integration with CEPH. Future directions. aybe a demo? 2 CEPH OTIVATING PRINCIPLES

More information

Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI Presented by Xiang Gao

Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI Presented by Xiang Gao Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI 2006 Presented by Xiang Gao 2014-11-05 Outline Motivation Data Model APIs Building Blocks Implementation Refinement

More information

CSE 5306 Distributed Systems. Consistency and Replication

CSE 5306 Distributed Systems. Consistency and Replication CSE 5306 Distributed Systems Consistency and Replication 1 Reasons for Replication Data are replicated for the reliability of the system Servers are replicated for performance Scaling in numbers Scaling

More information

NPTEL Course Jan K. Gopinath Indian Institute of Science

NPTEL Course Jan K. Gopinath Indian Institute of Science Storage Systems NPTEL Course Jan 2012 (Lecture 39) K. Gopinath Indian Institute of Science Google File System Non-Posix scalable distr file system for large distr dataintensive applications performance,

More information

-Presented By : Rajeshwari Chatterjee Professor-Andrey Shevel Course: Computing Clusters Grid and Clouds ITMO University, St.

-Presented By : Rajeshwari Chatterjee Professor-Andrey Shevel Course: Computing Clusters Grid and Clouds ITMO University, St. -Presented By : Rajeshwari Chatterjee Professor-Andrey Shevel Course: Computing Clusters Grid and Clouds ITMO University, St. Petersburg Introduction File System Enterprise Needs Gluster Revisited Ceph

More information

! Design constraints. " Component failures are the norm. " Files are huge by traditional standards. ! POSIX-like

! Design constraints.  Component failures are the norm.  Files are huge by traditional standards. ! POSIX-like Cloud background Google File System! Warehouse scale systems " 10K-100K nodes " 50MW (1 MW = 1,000 houses) " Power efficient! Located near cheap power! Passive cooling! Power Usage Effectiveness = Total

More information

Performance Matters Scaling Integration Processes to Meet the Needs of Your Business. James Ahlborn, Chief Software Architect, Dell Boomi

Performance Matters Scaling Integration Processes to Meet the Needs of Your Business. James Ahlborn, Chief Software Architect, Dell Boomi Performance Matters Scaling Integration Processes to Meet the Needs of Your Business James Ahlborn, Chief Software Architect, Dell Boomi 1 Atoms Agenda Atoms vs. Molecules Atom Clouds Atom Workers Performance

More information

Ceph Intro & Architectural Overview. Abbas Bangash Intercloud Systems

Ceph Intro & Architectural Overview. Abbas Bangash Intercloud Systems Ceph Intro & Architectural Overview Abbas Bangash Intercloud Systems About Me Abbas Bangash Systems Team Lead, Intercloud Systems abangash@intercloudsys.com intercloudsys.com 2 CLOUD SERVICES COMPUTE NETWORK

More information

FLAT DATACENTER STORAGE CHANDNI MODI (FN8692)

FLAT DATACENTER STORAGE CHANDNI MODI (FN8692) FLAT DATACENTER STORAGE CHANDNI MODI (FN8692) OUTLINE Flat datacenter storage Deterministic data placement in fds Metadata properties of fds Per-blob metadata in fds Dynamic Work Allocation in fds Replication

More information

Structuring PLFS for Extensibility

Structuring PLFS for Extensibility Structuring PLFS for Extensibility Chuck Cranor, Milo Polte, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University What is PLFS? Parallel Log Structured File System Interposed filesystem b/w

More information

UK LUG 10 th July Lustre at Exascale. Eric Barton. CTO Whamcloud, Inc Whamcloud, Inc.

UK LUG 10 th July Lustre at Exascale. Eric Barton. CTO Whamcloud, Inc Whamcloud, Inc. UK LUG 10 th July 2012 Lustre at Exascale Eric Barton CTO Whamcloud, Inc. eeb@whamcloud.com Agenda Exascale I/O requirements Exascale I/O model 3 Lustre at Exascale - UK LUG 10th July 2012 Exascale I/O

More information

IBM Spectrum NAS, IBM Spectrum Scale and IBM Cloud Object Storage

IBM Spectrum NAS, IBM Spectrum Scale and IBM Cloud Object Storage IBM Spectrum NAS, IBM Spectrum Scale and IBM Cloud Object Storage Silverton Consulting, Inc. StorInt Briefing 2017 SILVERTON CONSULTING, INC. ALL RIGHTS RESERVED Page 2 Introduction Unstructured data has

More information

Feedback on BeeGFS. A Parallel File System for High Performance Computing

Feedback on BeeGFS. A Parallel File System for High Performance Computing Feedback on BeeGFS A Parallel File System for High Performance Computing Philippe Dos Santos et Georges Raseev FR 2764 Fédération de Recherche LUmière MATière December 13 2016 LOGO CNRS LOGO IO December

More information

Paxos Replicated State Machines as the Basis of a High- Performance Data Store

Paxos Replicated State Machines as the Basis of a High- Performance Data Store Paxos Replicated State Machines as the Basis of a High- Performance Data Store William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters and Peng Li March 30, 2011 Q: How to build a

More information

GFS: The Google File System

GFS: The Google File System GFS: The Google File System Brad Karp UCL Computer Science CS GZ03 / M030 24 th October 2014 Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung ACM SIGOPS 2003 {Google Research} Vaibhav Bajpai NDS Seminar 2011 Looking Back time Classics Sun NFS (1985) CMU Andrew FS (1988) Fault

More information

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space Today CSCI 5105 Coda GFS PAST Instructor: Abhishek Chandra 2 Coda Main Goals: Availability: Work in the presence of disconnection Scalability: Support large number of users Successor of Andrew File System

More information

Ceph: A Scalable, High-Performance Distributed File System PRESENTED BY, NITHIN NAGARAJ KASHYAP

Ceph: A Scalable, High-Performance Distributed File System PRESENTED BY, NITHIN NAGARAJ KASHYAP Ceph: A Scalable, High-Performance Distributed File System PRESENTED BY, NITHIN NAGARAJ KASHYAP Outline Introduction. System Overview. Distributed Object Storage. Problem Statements. What is Ceph? Unified

More information

OpenStack SwiftOnFile: User Identity for Cross Protocol Access Demystified Dean Hildebrand, Sasikanth Eda Sandeep Patil, Bill Owen IBM

OpenStack SwiftOnFile: User Identity for Cross Protocol Access Demystified Dean Hildebrand, Sasikanth Eda Sandeep Patil, Bill Owen IBM OpenStack SwiftOnFile: User Identity for Cross Protocol Access Demystified Dean Hildebrand, Sasikanth Eda Sandeep Patil, Bill Owen IBM 2015 Storage Developer Conference. Insert Your Company Name. All Rights

More information

New Oracle NoSQL Database APIs that Speed Insertion and Retrieval

New Oracle NoSQL Database APIs that Speed Insertion and Retrieval New Oracle NoSQL Database APIs that Speed Insertion and Retrieval O R A C L E W H I T E P A P E R F E B R U A R Y 2 0 1 6 1 NEW ORACLE NoSQL DATABASE APIs that SPEED INSERTION AND RETRIEVAL Introduction

More information

GFS: The Google File System. Dr. Yingwu Zhu

GFS: The Google File System. Dr. Yingwu Zhu GFS: The Google File System Dr. Yingwu Zhu Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one big CPU More storage, CPU required than one PC can

More information

Dynamo: Amazon s Highly Available Key-Value Store

Dynamo: Amazon s Highly Available Key-Value Store Dynamo: Amazon s Highly Available Key-Value Store DeCandia et al. Amazon.com Presented by Sushil CS 5204 1 Motivation A storage system that attains high availability, performance and durability Decentralized

More information

The Google File System (GFS)

The Google File System (GFS) 1 The Google File System (GFS) CS60002: Distributed Systems Antonio Bruto da Costa Ph.D. Student, Formal Methods Lab, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Design constraints

More information

Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete

Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete 1 DDN Who We Are 2 We Design, Deploy and Optimize Storage Systems Which Solve HPC, Big Data and Cloud Business

More information

Outline. INF3190:Distributed Systems - Examples. Last week: Definitions Transparencies Challenges&pitfalls Architecturalstyles

Outline. INF3190:Distributed Systems - Examples. Last week: Definitions Transparencies Challenges&pitfalls Architecturalstyles INF3190:Distributed Systems - Examples Thomas Plagemann & Roman Vitenberg Outline Last week: Definitions Transparencies Challenges&pitfalls Architecturalstyles Today: Examples Googel File System (Thomas)

More information

CSE 124: Networked Services Fall 2009 Lecture-19

CSE 124: Networked Services Fall 2009 Lecture-19 CSE 124: Networked Services Fall 2009 Lecture-19 Instructor: B. S. Manoj, Ph.D http://cseweb.ucsd.edu/classes/fa09/cse124 Some of these slides are adapted from various sources/individuals including but

More information

System that permanently stores data Usually layered on top of a lower-level physical storage medium Divided into logical units called files

System that permanently stores data Usually layered on top of a lower-level physical storage medium Divided into logical units called files System that permanently stores data Usually layered on top of a lower-level physical storage medium Divided into logical units called files Addressable by a filename ( foo.txt ) Usually supports hierarchical

More information

Remote Procedure Call (RPC) and Transparency

Remote Procedure Call (RPC) and Transparency Remote Procedure Call (RPC) and Transparency Brad Karp UCL Computer Science CS GZ03 / M030 10 th October 2014 Transparency in Distributed Systems Programmers accustomed to writing code for a single box

More information

Cloud object storage in Ceph. Orit Wasserman Fosdem 2017

Cloud object storage in Ceph. Orit Wasserman Fosdem 2017 Cloud object storage in Ceph Orit Wasserman owasserm@redhat.com Fosdem 2017 AGENDA What is cloud object storage? Ceph overview Rados Gateway architecture Questions Cloud object storage Block storage Data

More information

Dynamo. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Motivation System Architecture Evaluation

Dynamo. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Motivation System Architecture Evaluation Dynamo Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/20 Outline Motivation 1 Motivation 2 3 Smruti R. Sarangi Leader

More information

Windows Support for PM. Tom Talpey, Microsoft

Windows Support for PM. Tom Talpey, Microsoft Windows Support for PM Tom Talpey, Microsoft Agenda Industry Standards Support PMDK Open Source Support Hyper-V Support SQL Server Support Storage Spaces Direct Support SMB3 and RDMA Support 2 Windows

More information

PRESENTATION TITLE GOES HERE. Understanding Architectural Trade-offs in Object Storage Technologies

PRESENTATION TITLE GOES HERE. Understanding Architectural Trade-offs in Object Storage Technologies Object Storage 201 PRESENTATION TITLE GOES HERE Understanding Architectural Trade-offs in Object Storage Technologies SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA

More information

Flat Datacenter Storage. Edmund B. Nightingale, Jeremy Elson, et al. 6.S897

Flat Datacenter Storage. Edmund B. Nightingale, Jeremy Elson, et al. 6.S897 Flat Datacenter Storage Edmund B. Nightingale, Jeremy Elson, et al. 6.S897 Motivation Imagine a world with flat data storage Simple, Centralized, and easy to program Unfortunately, datacenter networks

More information

pnfs, POSIX, and MPI-IO: A Tale of Three Semantics

pnfs, POSIX, and MPI-IO: A Tale of Three Semantics Dean Hildebrand Research Staff Member PDSW 2009 pnfs, POSIX, and MPI-IO: A Tale of Three Semantics Dean Hildebrand, Roger Haskin Arifa Nisar IBM Almaden Northwestern University Agenda Motivation pnfs HPC

More information

A BigData Tour HDFS, Ceph and MapReduce

A BigData Tour HDFS, Ceph and MapReduce A BigData Tour HDFS, Ceph and MapReduce These slides are possible thanks to these sources Jonathan Drusi - SCInet Toronto Hadoop Tutorial, Amir Payberah - Course in Data Intensive Computing SICS; Yahoo!

More information

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context 1 Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes

More information

Parallel I/O and MPI-IO contd. Rajeev Thakur

Parallel I/O and MPI-IO contd. Rajeev Thakur Parallel I/O and MPI-IO contd. Rajeev Thakur Outline Accessing noncontiguous data with MPI-IO Special features in MPI-IO for accessing subarrays and distributed arrays I/O performance tuning 2 Accessing

More information

THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES

THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES 1 THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon Vincent.Garonne@cern.ch ph-adp-ddm-lab@cern.ch XLDB

More information

10/18/2017. Announcements. NoSQL Motivation. NoSQL. Serverless Architecture. What is the Problem? Database Systems CSE 414

10/18/2017. Announcements. NoSQL Motivation. NoSQL. Serverless Architecture. What is the Problem? Database Systems CSE 414 Announcements Database Systems CSE 414 Lecture 11: NoSQL & JSON (mostly not in textbook only Ch 11.1) HW5 will be posted on Friday and due on Nov. 14, 11pm [No Web Quiz 5] Today s lecture: NoSQL & JSON

More information

JULEA: A Flexible Storage Framework for HPC

JULEA: A Flexible Storage Framework for HPC JULEA: A Flexible Storage Framework for HPC Workshop on Performance and Scalability of Storage Systems Michael Kuhn Research Group Scientific Computing Department of Informatics Universität Hamburg 2017-06-22

More information

Ceph Rados Gateway. Orit Wasserman Fosdem 2016

Ceph Rados Gateway. Orit Wasserman Fosdem 2016 Ceph Rados Gateway Orit Wasserman owasserm@redhat.com Fosdem 2016 AGENDA Short Ceph overview Rados Gateway architecture What's next questions Ceph architecture Cephalopod Ceph Open source Software defined

More information

Large-Scale Key-Value Stores Eventual Consistency Marco Serafini

Large-Scale Key-Value Stores Eventual Consistency Marco Serafini Large-Scale Key-Value Stores Eventual Consistency Marco Serafini COMPSCI 590S Lecture 13 Goals of Key-Value Stores Export simple API put(key, value) get(key) Simpler and faster than a DBMS Less complexity,

More information

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail.

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. PCAP Assignment I 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. The multicore CPUs are designed to maximize the execution speed

More information

Google Cloud Platform for Systems Operations Professionals (CPO200) Course Agenda

Google Cloud Platform for Systems Operations Professionals (CPO200) Course Agenda Google Cloud Platform for Systems Operations Professionals (CPO200) Course Agenda Module 1: Google Cloud Platform Projects Identify project resources and quotas Explain the purpose of Google Cloud Resource

More information

Storage for HPC, HPDA and Machine Learning (ML)

Storage for HPC, HPDA and Machine Learning (ML) for HPC, HPDA and Machine Learning (ML) Frank Kraemer, IBM Systems Architect mailto:kraemerf@de.ibm.com IBM Data Management for Autonomous Driving (AD) significantly increase development efficiency by

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Piccolo: Building Fast, Distributed Programs

More information

Files and File Systems

Files and File Systems File Systems 1 Files and File Systems files: persistent, named data objects data consists of a sequence of numbered bytes alternatively, a file may have some internal structure, e.g., a file may consist

More information

RAIDIX Data Storage Solution. Clustered Data Storage Based on the RAIDIX Software and GPFS File System

RAIDIX Data Storage Solution. Clustered Data Storage Based on the RAIDIX Software and GPFS File System RAIDIX Data Storage Solution Clustered Data Storage Based on the RAIDIX Software and GPFS File System 2017 Contents Synopsis... 2 Introduction... 3 Challenges and the Solution... 4 Solution Architecture...

More information

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP TITLE: Implement sort algorithm and run it using HADOOP PRE-REQUISITE Preliminary knowledge of clusters and overview of Hadoop and its basic functionality. THEORY 1. Introduction to Hadoop The Apache Hadoop

More information

Introduction to NoSQL Databases

Introduction to NoSQL Databases Introduction to NoSQL Databases Roman Kern KTI, TU Graz 2017-10-16 Roman Kern (KTI, TU Graz) Dbase2 2017-10-16 1 / 31 Introduction Intro Why NoSQL? Roman Kern (KTI, TU Graz) Dbase2 2017-10-16 2 / 31 Introduction

More information

Best Practices in Designing Cloud Storage based Archival solution Sreenidhi Iyangar & Jim Rice EMC Corporation

Best Practices in Designing Cloud Storage based Archival solution Sreenidhi Iyangar & Jim Rice EMC Corporation Best Practices in Designing Cloud Storage based Archival solution Sreenidhi Iyangar & Jim Rice EMC Corporation Abstract Cloud storage facilitates the use case of digital archiving for long periods of time

More information

Introduction to HPC Parallel I/O

Introduction to HPC Parallel I/O Introduction to HPC Parallel I/O Feiyi Wang (Ph.D.) and Sarp Oral (Ph.D.) Technology Integration Group Oak Ridge Leadership Computing ORNL is managed by UT-Battelle for the US Department of Energy Outline

More information

Ben Walker Data Center Group Intel Corporation

Ben Walker Data Center Group Intel Corporation Ben Walker Data Center Group Intel Corporation Notices and Disclaimers Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation.

More information

Execution Architecture

Execution Architecture Execution Architecture Software Architecture VO (706.706) Roman Kern Institute for Interactive Systems and Data Science, TU Graz 2018-11-07 Roman Kern (ISDS, TU Graz) Execution Architecture 2018-11-07

More information

Log-structured files for fast checkpointing

Log-structured files for fast checkpointing Log-structured files for fast checkpointing Milo Polte Jiri Simsa, Wittawat Tantisiriroj,Shobhit Dayal, Mikhail Chainani, Dilip Kumar Uppugandla, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University

More information

App Engine MapReduce. Mike Aizatsky 11 May Hashtags: #io2011 #AppEngine Feedback:

App Engine MapReduce. Mike Aizatsky 11 May Hashtags: #io2011 #AppEngine Feedback: App Engine MapReduce Mike Aizatsky 11 May 2011 Hashtags: #io2011 #AppEngine Feedback: http://goo.gl/snv2i Agenda MapReduce Computational Model Mapper library Announcement Technical bits: Files API User-space

More information