Dynamic Sparse Matrix Allocation on GPUs. James King

Size: px
Start display at page:

Download "Dynamic Sparse Matrix Allocation on GPUs. James King"

Transcription

1 Dynamic Sparse Matrix Allocation on GPUs James King

2 Graph Applications Dynamic updates to graphs Adding edges add entries to sparse matrix representation

3 Motivation Graph operations (adding edges) (e.g. transitive closure of a graph) Iterative Updates: Ax = b A = A + B A = A (Repeat) 3

4 Sparse Matrices Store nonzero values Sparsity of an MxN matrix: nnz M N COO, ELL, CSR, HYB, DIA, etc. 4

5 Coordinate Format (COO) Stores tuples of row index, column index, and value using 3 arrays Row Indices Column Indices Values

6 Compressed Sparse Row (CSR) Rows compressed Column Indices and Values stored uncompressed Row Offsets Column Indices Values

7 Ellpack (ELL) / Hybrid-Ellpack (HYB) ELL stores all rows with a fixed column width W HYB combines ELL with a COO matrix for overflow rows Column Indices ELL Values COO Row Indices 3 3 Column Indices Values

8 Current Formats Current formats are inefficient for dynamic updates Compressed sparse formats like CSR must be rebuilt for each update COO like formats must be sorted for efficient SpMV 8

9 Dynamic Compressed Sparse Row (DCSR) Stores K segments with starting and ending index of each segment Segments can be dynamically allocated and need not be in order Row Offsets Segments Column Indices Values Row Sizes 3 4 9

10 Memory Footprint Matrix Format COO ELL HYB CSR DCSR Memory Footprint for MxN Sparse Matrix 3(nnz) MW MW + 3(ovf) M+(nnz) MK + (nnz) 1

11 COO Memory Fill Elements are appended to the end of the matrix 11

12 DCSR Memory Fill Elements are added in new segments Gaps between segments are allowed 1

13 Dynamic Allocation Memory offset pointer keeps track of currently allocated space When a new segment is allocated, the offset pointer is atomically adjusted Defragmentation compacts segments into 1 segment 13

14 Dynamic Insertions Segs. Row Offsets Column Indices Values Segs. Segs. Inserting Entries: Row Offsets Row Indices Column Indices Values Column Indices Values

15 Defragmentation Gaps can form between segments due to insertion and deletion Defragmentation performs a prefix sum operation on the row sizes Row segments are scattered to their appropriate location in newly allocated arrays 15

16 Defragmentation Algorithm 1. Exclusive scan on row sizes to get offsets. Allocate new memory space. 3. Shuffle column indices and values to offsets within new memory space 4. Adjust entries in row offsets array 16

17 Defragmentation Segs. Row Offsets Column Indices Values Defragmentation: Row Sizes New offsets 17

18 Inserting Entries: Defragmentation Row Indices Column Indices Values Segs. Row Offsets New offsets Column Indices Values Segs. Row Offsets Column Indices Values

19 SpMV Compatible with standard CSR SpMV algorithms (CSR-scalar, CSR-Vector, etc.) Loop is added to SpMV to iterate over segments 15 CSR DCSR Def. DCSR HYB GFLOPS 1 5 AMA CNR DBL ENR EU FLI HOL IN IND INT KRO LJO RAL SOC WEB WIK 19

20 SpMV Optimizations DCSR compatible with CSR optimizations Bin rows by row size for optimized performance (Ashari et al. 14) Sort tuples of bin ID, row index, and row size Prefix-sum over permuted row sizes to get offsets Defragmentation will group by row sizes

21 Optimized SpMV Improved memory access due to row size groupings and row sorting 15 CSR ADCSR Def. ADCSR HYB GFLOPS 1 5 AMA CNR DBL ENR EU FLI HOL IN IND INT KRO LJO RAL SOC WEB WIK 1

22 Results Iterative Updates with SpMV operations Relative Speedup 1 5 DCSR HYB CSR AMA CNR DBL ENR EU FLI HOL IN IND INT KRO LJO RAL SOC WEB WIK

23 Conversion Between Formats RelaCve Conversion Times COO -> CSR COO -> DCSR COO -> HYB CSR -> DCSR CSR -> HYB DCSR -> CSR 3

24 Sorting vs. Defragmentation RelaCve Time Comparison AMA CNR DBL ENR EU FLI HOL IN IND INT KRO LJO RAL SOC WEB WIK DCSR HYB 4

25 Sparse Matrix-Matrix Multiplication (SpMM) GEMM algorithm is inefficient in sparse case Many entries are zero and need not be operated on = 5

26 Related Work Bell et al. 13 Exploiting Fine-Grained Parallelism in Algebraic Multigrid Methods 1. Compute partial products. Sort partial products 3. Reduce partial products 6

27 SpMM Work Efficient Given A (MxK), B(KxN), and C(MxN) AB = C Set of partial products: a ij b jk k =1...nnz(B j ) 8 nonzeros A 7

28 SpMM Example A B C x 5 = Row Indices Column Indices Values Set of ParNal Products Row Indices Column Indices Values Sorted by row and column Row Indices Column Indices Values Reduced by row and column 8

29 Format Conversions CSR à COO Compute C matrix Sort & reduction performed in COO format COO à CSR 9

30 Improved SpMM Compute rows asynchronously Dynamically update C matrix in DCSR format Defragment C matrix to get result in sorted CSR format Avoids conversion to and from COO format 3

31 Adaptive Binning Partial product row size of C is computed by a first pass over A and B rs i = nnz(a i ) X i=1 nnz(b j ) a ij 31

32 Adaptive Binning Rows are binned by partial product row size 3

33 Adaptive Binning Rows are grouped by size of partial product set Up to shared memory limit 33

34 Asynchronous Computations Kernels asynchronously compute rows by bin Bandwidth is reduced since row is implicit Shared memory is faster than global memory Row size is not known until after reduction 34

35 Row Updates Kernel 1-3 C Matrix: Column Indices Kernel Kernel Values Kernel

36 Defragmentation Defragmentation is >x faster than sorting equivalent COO matrix Bandwidth is reduced by a third since rows are compressed Segments are shuffled directly to offset location without sort 36

37 SpMM Results Relative Speedup DCSR SpMM CSR SpMM 5 a 9 a 3 7 a 3 7 a 5 b 9 b 3 7 b 3 7 b 37

38 Summary DCSR allows for efficient dynamic updates to sparse matrices Suitable for graph applications Defragmentation method is faster than sorting equivalent COO matrix Code will soon be available through Scientific Computing and Imaging (SCI) Institute GPUTUM library 38

39 Questions 39

Dynamic Sparse-Matrix Allocation on GPUs

Dynamic Sparse-Matrix Allocation on GPUs Dynamic Sparse-Matrix Allocation on GPUs James King, Thomas Gilray, Robert M. Kirby, and Matthew Might University of Utah {jsking2,tgilray,kirby,might}@cs.utah.edu Abstract. Sparse matrices are a core

More information

Dynamic Sparse-Matrix Allocation on GPUs

Dynamic Sparse-Matrix Allocation on GPUs Dynamic Sparse-Matrix Allocation on GPUs James King, Thomas Gilray, Robert M. Kirby, and Matthew Might University of Utah {jsking2,tgilray,kirby,might}@cs.utah.edu Abstract. Sparse matrices are a core

More information

Lecture 6: Input Compaction and Further Studies

Lecture 6: Input Compaction and Further Studies PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 6: Input Compaction and Further Studies 1 Objective To learn the key techniques for compacting input data for reduced consumption of

More information

Flexible Batched Sparse Matrix-Vector Product on GPUs

Flexible Batched Sparse Matrix-Vector Product on GPUs ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems November 13, 217 Flexible Batched Sparse Matrix-Vector Product on GPUs Hartwig Anzt, Gary Collins, Jack Dongarra,

More information

Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra

Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra Dominik Grewe Anton Lokhmotov Media Processing Division ARM School of Informatics University of Edinburgh December 13, 2010 Introduction

More information

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA NVIDIA Corporation Outline! Overview of CG benchmark! Overview of CUDA Libraries! CUSPARSE! CUBLAS! Porting Sequence! Algorithm Analysis! Data/Code

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices CSE 599 I Accelerated Computing - Programming GPUS Parallel Pattern: Sparse Matrices Objective Learn about various sparse matrix representations Consider how input data affects run-time performance of

More information

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT JOSEPH L. GREATHOUSE, MAYANK DAGA AMD RESEARCH 11/20/2014 THIS TALK IN ONE SLIDE Demonstrate how to save space and time

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

Characterizing Dataset Dependence for Sparse Matrix-Vector Multiplication on GPUs

Characterizing Dataset Dependence for Sparse Matrix-Vector Multiplication on GPUs Characterizing Dataset Dependence for Sparse Matrix-Vector Multiplication on GPUs Naser Sedaghati Arash Ashari Louis-Noël Pouchet Srinivasan Parthasarathy P. Sadayappan Ohio State University {sedaghat,ashari,pouchet,srini,saday}@cse.ohio-state.edu

More information

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication Steve Rennich Nvidia Developer Technology - Compute Block Sparse Matrix Vector Multiplication Sparse Matrix-Vector Multiplication

More information

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

State of Art and Project Proposals Intensive Computation

State of Art and Project Proposals Intensive Computation State of Art and Project Proposals Intensive Computation Annalisa Massini - 2015/2016 Today s lecture Project proposals on the following topics: Sparse Matrix- Vector Multiplication Tridiagonal Solvers

More information

Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors

Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors Kaixi Hou, Wu-chun Feng {kaixihou, wfeng}@vt.edu Shuai Che Shuai.Che@amd.com Sparse

More information

Solving the heat equation with CUDA

Solving the heat equation with CUDA Solving the heat equation with CUDA Oliver Meister January 09 th 2013 Last Tutorial CSR kernel - scalar One row per thread No coalesced memory access Non-uniform matrices CSR kernel - vectorized One row

More information

Sparse Matrix Formats

Sparse Matrix Formats Christopher Bross Friedrich-Alexander-Universität Erlangen-Nürnberg Motivation Sparse Matrices are everywhere Sparse Matrix Formats C. Bross BGCE Research Day, Erlangen, 09.06.2016 2/16 Motivation Sparse

More information

L17: Introduction to Irregular Algorithms and MPI, cont.! November 8, 2011!

L17: Introduction to Irregular Algorithms and MPI, cont.! November 8, 2011! L17: Introduction to Irregular Algorithms and MPI, cont.! November 8, 2011! Administrative Class cancelled, Tuesday, November 15 Guest Lecture, Thursday, November 17, Ganesh Gopalakrishnan CUDA Project

More information

Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication

Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication Aydin Buluc John R. Gilbert University of California, Santa Barbara ICPP 2008 September 11, 2008 1 Support: DOE Office of Science,

More information

CUDA Toolkit 4.1 CUSPARSE Library. PG _v01 January 2012

CUDA Toolkit 4.1 CUSPARSE Library. PG _v01 January 2012 CUDA Toolkit 4.1 CUSPARSE Library PG-05329-041_v01 January 2012 Contents 1 Introduction 2 1.1 New and Legacy CUSPARSE API........................ 2 1.2 Naming Convention................................

More information

EXPOSING FINE-GRAINED PARALLELISM IN ALGEBRAIC MULTIGRID METHODS

EXPOSING FINE-GRAINED PARALLELISM IN ALGEBRAIC MULTIGRID METHODS EXPOSING FINE-GRAINED PARALLELISM IN ALGEBRAIC MULTIGRID METHODS NATHAN BELL, STEVEN DALTON, AND LUKE N. OLSON Abstract. Algebraic multigrid methods for large, sparse linear systems are a necessity in

More information

ACCELERATING MATRIX PROCESSING WITH GPUs. Nicholas Malaya, Shuai Che, Joseph Greathouse, Rene van Oostrum, and Michael Schulte AMD Research

ACCELERATING MATRIX PROCESSING WITH GPUs. Nicholas Malaya, Shuai Che, Joseph Greathouse, Rene van Oostrum, and Michael Schulte AMD Research ACCELERATING MATRIX PROCESSING WITH GPUs Nicholas Malaya, Shuai Che, Joseph Greathouse, Rene van Oostrum, and Michael Schulte AMD Research ACCELERATING MATRIX PROCESSING WITH GPUS MOTIVATION Matrix operations

More information

Parallel Combinatorial BLAS and Applications in Graph Computations

Parallel Combinatorial BLAS and Applications in Graph Computations Parallel Combinatorial BLAS and Applications in Graph Computations Aydın Buluç John R. Gilbert University of California, Santa Barbara SIAM ANNUAL MEETING 2009 July 8, 2009 1 Primitives for Graph Computations

More information

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI 1 Akshay N. Panajwar, 2 Prof.M.A.Shah Department of Computer Science and Engineering, Walchand College of Engineering,

More information

Tools and Primitives for High Performance Graph Computation

Tools and Primitives for High Performance Graph Computation Tools and Primitives for High Performance Graph Computation John R. Gilbert University of California, Santa Barbara Aydin Buluç (LBNL) Adam Lugowski (UCSB) SIAM Minisymposium on Analyzing Massive Real-World

More information

CUDA math libraries APC

CUDA math libraries APC CUDA math libraries APC CUDA Libraries http://developer.nvidia.com/cuda-tools-ecosystem CUDA Toolkit CUBLAS linear algebra CUSPARSE linear algebra with sparse matrices CUFFT fast discrete Fourier transform

More information

GPU-Based Acceleration for CT Image Reconstruction

GPU-Based Acceleration for CT Image Reconstruction GPU-Based Acceleration for CT Image Reconstruction Xiaodong Yu Advisor: Wu-chun Feng Collaborators: Guohua Cao, Hao Gong Outline Introduction and Motivation Background Knowledge Challenges and Proposed

More information

Scalable GPU Graph Traversal!

Scalable GPU Graph Traversal! Scalable GPU Graph Traversal Duane Merrill, Michael Garland, and Andrew Grimshaw PPoPP '12 Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming Benwen Zhang

More information

Chapter 4. Matrix and Vector Operations

Chapter 4. Matrix and Vector Operations 1 Scope of the Chapter Chapter 4 This chapter provides procedures for matrix and vector operations. This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and

More information

BUILDING HIGH PERFORMANCE INPUT-ADAPTIVE GPU APPLICATIONS WITH NITRO

BUILDING HIGH PERFORMANCE INPUT-ADAPTIVE GPU APPLICATIONS WITH NITRO BUILDING HIGH PERFORMANCE INPUT-ADAPTIVE GPU APPLICATIONS WITH NITRO Saurav Muralidharan University of Utah nitro-tuner.github.io Disclaimers This research was funded in part by the U.S. Government. The

More information

Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply

Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply University of California, Berkeley Berkeley Benchmarking and Optimization Group (BeBOP) http://bebop.cs.berkeley.edu

More information

Lecture 13: March 25

Lecture 13: March 25 CISC 879 Software Support for Multicore Architectures Spring 2007 Lecture 13: March 25 Lecturer: John Cavazos Scribe: Ying Yu 13.1. Bryan Youse-Optimization of Sparse Matrix-Vector Multiplication on Emerging

More information

Sparse matrices: Basics

Sparse matrices: Basics Outline : Basics Bora Uçar RO:MA, LIP, ENS Lyon, France CR-08: Combinatorial scientific computing, September 201 http://perso.ens-lyon.fr/bora.ucar/cr08/ 1/28 CR09 Outline Outline 1 Course presentation

More information

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview Aim Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk What should a 2-hour PhD lecture on structure

More information

Generating Optimized Sparse Matrix Vector Product over Finite Fields

Generating Optimized Sparse Matrix Vector Product over Finite Fields Generating Optimized Sparse Matrix Vector Product over Finite Fields Pascal Giorgi 1 and Bastien Vialla 1 LIRMM, CNRS, Université Montpellier 2, pascal.giorgi@lirmm.fr, bastien.vialla@lirmm.fr Abstract.

More information

CS 677: Parallel Programming for Many-core Processors Lecture 7

CS 677: Parallel Programming for Many-core Processors Lecture 7 1 CS 677: Parallel Programming for Many-core Processors Lecture 7 Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Logistics Midterm: March 11

More information

A Survey on Performance Modelling and Optimization Techniques for SpMV on GPUs

A Survey on Performance Modelling and Optimization Techniques for SpMV on GPUs A Survey on Performance Modelling and Optimization Techniques for SpMV on GPUs Ms. Aditi V. Kulkarni #1, Prof. C. R. Barde *2 # Student, Department of Computer Engineering, G.E.S s. R.H. Sapat College

More information

Adaptable benchmarks for register blocked sparse matrix-vector multiplication

Adaptable benchmarks for register blocked sparse matrix-vector multiplication Adaptable benchmarks for register blocked sparse matrix-vector multiplication Berkeley Benchmarking and Optimization group (BeBOP) Hormozd Gahvari and Mark Hoemmen Based on research of: Eun-Jin Im Rich

More information

A new sparse matrix vector multiplication graphics processing unit algorithm designed for finite element problems

A new sparse matrix vector multiplication graphics processing unit algorithm designed for finite element problems INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2015; 102:1784 1814 Published online 9 January 2015 in Wiley Online Library (wileyonlinelibrary.com)..4865 A new sparse

More information

Automatically Generating and Tuning GPU Code for Sparse Matrix-Vector Multiplication from a High-Level Representation

Automatically Generating and Tuning GPU Code for Sparse Matrix-Vector Multiplication from a High-Level Representation Automatically Generating and Tuning GPU Code for Sparse Matrix-Vector Multiplication from a High-Level Representation Dominik Grewe Institute for Computing Systems Architecture School of Informatics University

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker BLAS and LAPACK + Data Formats for Sparse Matrices Part of the lecture Wissenschaftliches Rechnen Hilmar Wobker Institute of Applied Mathematics and Numerics, TU Dortmund email: hilmar.wobker@math.tu-dortmund.de

More information

Exploiting Locality in Sparse Matrix-Matrix Multiplication on the Many Integrated Core Architecture

Exploiting Locality in Sparse Matrix-Matrix Multiplication on the Many Integrated Core Architecture Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Exploiting Locality in Sparse Matrix-Matrix Multiplication on the Many Integrated Core Architecture K. Akbudak a, C.Aykanat

More information

Data Structures for sparse matrices

Data Structures for sparse matrices Data Structures for sparse matrices The use of a proper data structures is critical to achieving good performance. Generate a symmetric sparse matrix A in matlab and time the operations of accessing (only)

More information

Sparse Matrix-Vector Multiplication on GPU

Sparse Matrix-Vector Multiplication on GPU Sparse Matrix-Vector Multiplication on GPU DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Arash

More information

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Accelerating GPU computation through mixed-precision methods Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Outline Motivation Truncated Precision using CUDA Solving Linear

More information

Storage Formats for Sparse Matrices in Java

Storage Formats for Sparse Matrices in Java Storage Formats for Sparse Matrices in Java Mikel Luján, Anila Usman, Patrick Hardie, T.L. Freeman, and John R. Gurd Centre for Novel Computing, The University of Manchester, Oxford Road, Manchester M13

More information

Portable, usable, and efficient sparse matrix vector multiplication

Portable, usable, and efficient sparse matrix vector multiplication Portable, usable, and efficient sparse matrix vector multiplication Albert-Jan Yzelman Parallel Computing and Big Data Huawei Technologies France 8th of July, 2016 Introduction Given a sparse m n matrix

More information

Abstractions for Specifying Sparse Matrix Data Transformations

Abstractions for Specifying Sparse Matrix Data Transformations Abstractions for Specifying Sparse Matrix Data Transformations Payal Nandy Mary Hall Eddie C. Davis Catherine Olschanowsky Mahdi S Mohammadi, Wei He Michelle Strout University of Utah Boise State University

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

Optimizing the operations with sparse matrices on Intel architecture

Optimizing the operations with sparse matrices on Intel architecture Optimizing the operations with sparse matrices on Intel architecture Gladkikh V. S. victor.s.gladkikh@intel.com Intel Xeon, Intel Itanium are trademarks of Intel Corporation in the U.S. and other countries.

More information

Optimizing Sparse Matrix Vector Multiplication Using Cache Blocking Method on Fermi GPU

Optimizing Sparse Matrix Vector Multiplication Using Cache Blocking Method on Fermi GPU 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing Optimizing Sparse Matrix Vector Multiplication Using Cache Blocking

More information

AMS 148 Chapter 6: Histogram, Sort, and Sparse Matrices

AMS 148 Chapter 6: Histogram, Sort, and Sparse Matrices AMS 148 Chapter 6: Histogram, Sort, and Sparse Matrices Steven Reeves Now that we have completed the more fundamental parallel primitives on GPU, we will dive into more advanced topics. Histogram is a

More information

arxiv: v2 [cs.ms] 12 Nov 2018

arxiv: v2 [cs.ms] 12 Nov 2018 Format Abstraction for Sparse Tensor Algebra Compilers arxiv:804.0v [cs.ms] Nov 08 STEPHEN CHOU, MIT CSAIL, USA FREDRIK KJOLSTAD, MIT CSAIL, USA SAMAN AMARASINGHE, MIT CSAIL, USA This paper shows how to

More information

Computational Graphics: Lecture 15 SpMSpM and SpMV, or, who cares about complexity when we have a thousand processors?

Computational Graphics: Lecture 15 SpMSpM and SpMV, or, who cares about complexity when we have a thousand processors? Computational Graphics: Lecture 15 SpMSpM and SpMV, or, who cares about complexity when we have a thousand processors? The CVDLab Team Francesco Furiani Tue, April 3, 2014 ROMA TRE UNIVERSITÀ DEGLI STUDI

More information

Globally Homogeneous, Locally Adaptive Sparse Matrix-Vector Multiplication on the GPU

Globally Homogeneous, Locally Adaptive Sparse Matrix-Vector Multiplication on the GPU Globally Homogeneous, Locally Adaptive Sparse Matrix-Vector Multiplication on the GPU Markus Steinberger Max Planck Institute for Informatics Saarland Informatics Campus msteinbe@mpi-inf.mpg.de ABSTRACT

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2013 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Optimizing Sparse Matrix-Matrix Multiplication on a Heterogeneous CPU-GPU Platform

Optimizing Sparse Matrix-Matrix Multiplication on a Heterogeneous CPU-GPU Platform Georgia State University ScholarWorks @ Georgia State University Computer Science Theses Department of Computer Science 12-16-2015 Optimizing Sparse Matrix-Matrix Multiplication on a Heterogeneous CPU-GPU

More information

A Performance Prediction and Analysis Integrated Framework for SpMV on GPUs

A Performance Prediction and Analysis Integrated Framework for SpMV on GPUs Procedia Computer Science Volume 80, 2016, Pages 178 189 ICCS 2016. The International Conference on Computational Science A Performance Prediction and Analysis Integrated Framework for SpMV on GPUs Ping

More information

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI Efficient AMG on Hybrid GPU Clusters ScicomP 2012 Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann Fraunhofer SCAI Illustration: Darin McInnis Motivation Sparse iterative solvers benefit from

More information

Figure 6.1: Truss topology optimization diagram.

Figure 6.1: Truss topology optimization diagram. 6 Implementation 6.1 Outline This chapter shows the implementation details to optimize the truss, obtained in the ground structure approach, according to the formulation presented in previous chapters.

More information

A Cross-Platform SpMV Framework on Many-Core Architectures

A Cross-Platform SpMV Framework on Many-Core Architectures A Cross-Platform SpMV Framework on Many-Core Architectures YUNQUAN ZHANG and SHIGANG LI, State Key Laboratory of Computer Architecture, Institute of Computing Technologies, Chinese Academy of Sciences

More information

Blocking Optimization Strategies for Sparse Tensor Computation

Blocking Optimization Strategies for Sparse Tensor Computation Blocking Optimization Strategies for Sparse Tensor Computation Jee Choi 1, Xing Liu 1, Shaden Smith 2, and Tyler Simon 3 1 IBM T. J. Watson Research, 2 University of Minnesota, 3 University of Maryland

More information

Iterative solution of linear systems in electromagnetics (and not only): experiences with CUDA

Iterative solution of linear systems in electromagnetics (and not only): experiences with CUDA How to cite this paper: D. De Donno, A. Esposito, G. Monti, and L. Tarricone, Iterative Solution of Linear Systems in Electromagnetics (and not only): Experiences with CUDA, Euro-Par 2010 Parallel Processing

More information

A Framework for General Sparse Matrix-Matrix Multiplication on GPUs and Heterogeneous Processors, Weifeng Liu a,, Brian Vinter a

A Framework for General Sparse Matrix-Matrix Multiplication on GPUs and Heterogeneous Processors, Weifeng Liu a,, Brian Vinter a A Framework for General Sparse Matrix-Matrix Multiplication on GPUs and Heterogeneous Processors, Weifeng Liu a,, Brian Vinter a a Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen,

More information

Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi

Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi Erik Saule 1, Kamer Kaya 1 and Ümit V. Çatalyürek 1,2 esaule@uncc.edu, {kamer,umit}@bmi.osu.edu 1 Department of Biomedical

More information

Sparse Linear Algebra in CUDA

Sparse Linear Algebra in CUDA Sparse Linear Algebra in CUDA HPC - Algorithms and Applications Alexander Pöppl Technical University of Munich Chair of Scientific Computing November 22 nd 2017 Table of Contents Homework - Worksheet 2

More information

Accelerating Sparse Matrix Vector Multiplication in Iterative Methods Using GPU

Accelerating Sparse Matrix Vector Multiplication in Iterative Methods Using GPU 2011 International Conference on Parallel Processing Accelerating Sparse Matrix Vector Multiplication in Iterative Methods Using GPU Kiran Kumar Matam CSTAR, IIIT-Hyderabad Gachibowli, Hyderabad, India

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

Multi-GPU simulations in OpenFOAM with SpeedIT technology.

Multi-GPU simulations in OpenFOAM with SpeedIT technology. Multi-GPU simulations in OpenFOAM with SpeedIT technology. Attempt I: SpeedIT GPU-based library of iterative solvers for Sparse Linear Algebra and CFD. Current version: 2.2. Version 1.0 in 2008. CMRS format

More information

GPU Sparse Graph Traversal

GPU Sparse Graph Traversal GPU Sparse Graph Traversal Duane Merrill (NVIDIA) Michael Garland (NVIDIA) Andrew Grimshaw (Univ. of Virginia) UNIVERSITY of VIRGINIA Breadth-first search (BFS) 1. Pick a source node 2. Rank every vertex

More information

arxiv: v1 [cs.ms] 2 Jun 2016

arxiv: v1 [cs.ms] 2 Jun 2016 Parallel Triangular Solvers on GPU Zhangxin Chen, Hui Liu, and Bo Yang University of Calgary 2500 University Dr NW, Calgary, AB, Canada, T2N 1N4 {zhachen,hui.j.liu,yang6}@ucalgary.ca arxiv:1606.00541v1

More information

GPU-based Parallel Reservoir Simulators

GPU-based Parallel Reservoir Simulators GPU-based Parallel Reservoir Simulators Zhangxin Chen 1, Hui Liu 1, Song Yu 1, Ben Hsieh 1 and Lei Shao 1 Key words: GPU computing, reservoir simulation, linear solver, parallel 1 Introduction Nowadays

More information

GPU Sparse Graph Traversal. Duane Merrill

GPU Sparse Graph Traversal. Duane Merrill GPU Sparse Graph Traversal Duane Merrill Breadth-first search of graphs (BFS) 1. Pick a source node 2. Rank every vertex by the length of shortest path from source Or label every vertex by its predecessor

More information

Understanding the performances of sparse compression formats using data parallel programming model

Understanding the performances of sparse compression formats using data parallel programming model 2017 International Conference on High Performance Computing & Simulation Understanding the performances of sparse compression formats using data parallel programming model Ichrak MEHREZ, Olfa HAMDI-LARBI,

More information

Iterative Sparse Triangular Solves for Preconditioning

Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015, Vienna Aug 24-28, 2015 Iterative Sparse Triangular Solves for Preconditioning Hartwig Anzt, Edmond Chow and Jack Dongarra Incomplete Factorization Preconditioning Incomplete LU factorizations

More information

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Distributed NVAMG Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Istvan Reguly (istvan.reguly at oerc.ox.ac.uk) Oxford e-research Centre NVIDIA Summer Internship

More information

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms H. Anzt, V. Heuveline Karlsruhe Institute of Technology, Germany

More information

Sparse Matrix-Matrix Multiplication on the GPU. Julien Demouth, NVIDIA

Sparse Matrix-Matrix Multiplication on the GPU. Julien Demouth, NVIDIA Sparse Matrix-Matrix Multiplication on the GPU Julien Demouth, NVIDIA Introduction: Problem Two sparse matrices A and B, compute: Sparse matrix: Many zeroes C = AB x Non-zero Zero Only non-zero elements

More information

Design of efficient sparse matrix-vector multiplication for Fermi GPUs

Design of efficient sparse matrix-vector multiplication for Fermi GPUs Design of efficient sparse matrix-vector multiplication for Fermi GPUs ABSTRACT The evaluation of sparse matrix-vector products is an integral part of a great variety of scientific algorithms. Several

More information

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager Intel Math Kernel Library (Intel MKL) BLAS Victor Kostin Intel MKL Dense Solvers team manager Intel MKL BLAS/Sparse BLAS Original ( dense ) BLAS available from www.netlib.org Additionally Intel MKL provides

More information

Automatic Tuning of Sparse Matrix Kernels

Automatic Tuning of Sparse Matrix Kernels Automatic Tuning of Sparse Matrix Kernels Kathy Yelick U.C. Berkeley and Lawrence Berkeley National Laboratory Richard Vuduc, Lawrence Livermore National Laboratory James Demmel, U.C. Berkeley Berkeley

More information

c 2014 Society for Industrial and Applied Mathematics

c 2014 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 36, No. 2, pp. C29 C239 c 204 Society for Industrial and Applied Mathematics COMPRESSED MULTIROW STORAGE FORMAT FOR SPARSE MATRICES ON GRAPHICS PROCESSING UNITS ZBIGNIEW KOZA,

More information

Three Storage Formats for Sparse Matrices on GPGPUs

Three Storage Formats for Sparse Matrices on GPGPUs Three Storage Formats for Sparse Matrices on GPGPUs Davide Barbieri Valeria Cardellini Alessandro Fanfarillo Salvatore Filippone Dipartimento di Ingegneria Civile e Ingegneria Informatica Università di

More information

Large and Sparse Mass Spectrometry Data Processing in the GPU Jose de Corral 2012 GPU Technology Conference

Large and Sparse Mass Spectrometry Data Processing in the GPU Jose de Corral 2012 GPU Technology Conference Large and Sparse Mass Spectrometry Data Processing in the GPU Jose de Corral 2012 GPU Technology Conference 2012 Waters Corporation 1 Agenda Overview of LC/IMS/MS 3D Data Processing 4D Data Processing

More information

Master Thesis. Master Program of Computer Science

Master Thesis. Master Program of Computer Science Hochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Informatik Computer Science Department Master Thesis Master Program of Computer Science Requirement Analysis and Realization of Efficient

More information

Semi-External Memory Sparse Matrix Multiplication for Billion-Node Graphs

Semi-External Memory Sparse Matrix Multiplication for Billion-Node Graphs Semi-External Memory Sparse Matrix Multiplication for Billion-Node Graphs Da Zheng, Disa Mhembere, Vince Lyzinski 2, Joshua T. Vogelstein 3, Carey E. Priebe 2, and Randal Burns Department of Computer Science,

More information

GREAT PERFORMANCE FOR TINY PROBLEMS: BATCHED PRODUCTS OF SMALL MATRICES. Nikolay Markovskiy Peter Messmer

GREAT PERFORMANCE FOR TINY PROBLEMS: BATCHED PRODUCTS OF SMALL MATRICES. Nikolay Markovskiy Peter Messmer GREAT PERFORMANCE FOR TINY PROBLEMS: BATCHED PRODUCTS OF SMALL MATRICES Nikolay Markovskiy Peter Messmer ABOUT CP2K Atomistic and molecular simulations of solid state From ab initio DFT and Hartree-Fock

More information

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography 1 A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography He Huang, Liqiang Wang, Po Chen(University of Wyoming) John Dennis (NCAR) 2 LSQR in Seismic Tomography

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Memory bound computation, sparse linear algebra, OSKI Instructor: Markus Püschel TA: Alen Stojanov, Georg Ofenbeck, Gagandeep Singh ATLAS Mflop/s Compile Execute

More information

From Biological Cells to Populations of Individuals: Complex Systems Simulations with CUDA (S5133)

From Biological Cells to Populations of Individuals: Complex Systems Simulations with CUDA (S5133) From Biological Cells to Populations of Individuals: Complex Systems Simulations with CUDA (S5133) Dr Paul Richmond Research Fellow University of Sheffield (NVIDIA CUDA Research Centre) Overview Complex

More information

Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform

Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform J Supercomput (2013) 63:710 721 DOI 10.1007/s11227-011-0626-0 Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform Shiming Xu Wei Xue Hai Xiang Lin Published

More information

Performance Optimization Using Partitioned SpMV on GPUs and Multicore CPUs

Performance Optimization Using Partitioned SpMV on GPUs and Multicore CPUs IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 9, SEPTEMBER 2015 2623 Performance Optimization Using Partitioned SpMV on GPUs and Multicore CPUs Wangdong Yang, Kenli Li, Zeyao Mo, and Keqin Li, Fellow, IEEE

More information

Data parallel algorithms, algorithmic building blocks, precision vs. accuracy

Data parallel algorithms, algorithmic building blocks, precision vs. accuracy Data parallel algorithms, algorithmic building blocks, precision vs. accuracy Robert Strzodka Architecture of Computing Systems GPGPU and CUDA Tutorials Dresden, Germany, February 25 2008 2 Overview Parallel

More information

Efficient sparse matrix-vector multiplication on cache-based GPUs

Efficient sparse matrix-vector multiplication on cache-based GPUs Efficient sparse matrix-vector multiplication on cache-based GPUs ABSTRACT István Reguly Faculty of Information Technology Pázmány Péter Catholic University Hungary reguly.istvan@itk.ppke.hu Sparse matrix-vector

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

Tree Accumulations on GPU

Tree Accumulations on GPU Tree Accumulations on GPU With Applications to Sparse Linear Algera Scott Rostrup, Shweta Srivastava, Kishore Singhal, Synopsys Inc. Synopsys 0 Applications Tree Structure Computations i.e. sutree size,

More information

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA GPU-Accelerated Algebraic Multigrid for Commercial Applications Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA ANSYS Fluent 2 Fluent control flow Accelerate this first Non-linear iterations Assemble

More information