Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi

Size: px
Start display at page:

Download "Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi"

Transcription

1 Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi Erik Saule 1, Kamer Kaya 1 and Ümit V. Çatalyürek 1,2 esaule@uncc.edu, {kamer,umit}@bmi.osu.edu 1 Department of Biomedical Informatics 2 Department of Electrical and Computer Engineering The Ohio State University PPAM 213 Monday Sept 9 Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

2 Outline 1 The Intel MIC Architecture 2 SpMV 3 SpMM 4 Conclusion Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

3 What is Intel MIC? Intel Many integrated Core (MIC) is Intel s response to GPUs becoming popular in High Performance Computing. What GPUs do well? Get a lot of GFlops by using hundreds of cores Each core has large SIMD-like abilities Hide memory latency by using 1 cycle context switch What GPUs do not do well? Alien to program Poor support for legacy applications Inter thread communications Branching Goal of Intel MIC: do all of it well! Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

4 Overall Architecture Core Memory Controller PCI-e Controller 8 memory controllers GDDR5 2 channels (32-bit) 5.5GT/s 352GB/s aggregated peak twice the GPU s but you typically get half Ring bus at 22GB/s 5+ cores 32KB of L1 cache 512KB of L2 cache LRU 8-way associative 1 PCI-e controller to the host (2GB/s guaranteed to memory) Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

5 Core Architecture source: Intel 64-bit 4 hardware threads no context switching consecutive instr. from different threads A vectorial unit bit wide registers sqrt, rsqrt, log, exp mul, div, add, sub, fma permutation swizzling masking Two instruction pipes: 2 ALU ops ALU + MEM ops ALU + VFP ops VFP + MEM ops In-order execution Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

6 When Should I Use Intel MIC? Key points of SE1P Large memory bandwidth (peak: 22GB/s) 61 cores with mandatory use of hardware threading 512-bit wide SIMD registers: FMA: up to 2x16 SP Flop/c (2x8 DP Flop/c) otherwise: up to 16 SP Flop/c (8 DP Flop/c) On a 61-core configuration at 1.5Ghz: FMA: 2x16x61x1.5Ghz = 2.48 TFlop/s SP (1.24TFlop/s DP) otherwise: 16x61x1.5Ghz = 1.24 GFlop/s SP (512GFlop/s DP) Lots of bandwidth? Fused Multiply Add? Large vector registers? Sounds like the perfect system for Sparse Matrix operations! Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

7 Getting actual bandwidth Bandwidth (in GB/s) Ring BW Bandwidth (in GB/s) Ring BW loop-char loop-int vect vect+pref Read Write Using the appropriate vectorial instructions gives significant improvements. Read Peak: 183GB/s. Write Peak: 16GB/s. store store-nr store-nrngo Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

8 Outline 1 The Intel MIC Architecture 2 SpMV 3 SpMM 4 Conclusion Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

9 SpMV Compressed Storage by Row Test instances from UFL Sparse Matrix Collection max max # name #row #nonzero density nnz/row nnz/r nnz/c 1 shallow water1 81,92 24,8 3.5e cubes sphere 11, , e scircuit 17, , e mac econ 26,5 1,273, e cop2k A 121,192 1,362, e cant 62,451 2,34, e pdb1hys 36,417 2,19, e webbase-1m 1,,5 3,15, e hood 22,542 5,57, e bmw ,362 5,757, e pre2 659,33 5,834, e pwtk 217,918 5,871, e crankseg 2 63,838 7,16, e torso1 116,158 8,516,5 6.31e atmosmodd 1,27,432 8,814, e msdoor 415,863 9,794, e F1 343,791 13,59, e nd24k 72, 14,393, e inline 1 53,712 18,659, e mesh 248 4,194,34 2,963, e ldoor 952,23 21,723,1 2.39e cage14 1,55,785 27,13, e Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

10 Optimization levels Performance (in GFlop/s) No Vect. Comp. Vect Variable performance Variable impact of vectorization vgatherd x v[:7] = x[adj[:7]] Takes one cycle per cache line that spans x[adj[:7]] Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

11 Optimization levels Performance (in GFlop/s) No Vect. Comp. Vect Variable performance Variable impact of vectorization vgatherd x v[:7] = x[adj[:7]] Takes one cycle per cache line that spans x[adj[:7]] 25 No Vect. Comp. Vect. 2 Performance (in GFlop/s) Useful Cacheline Density Fraction of the accessed cache lines of x that is useful for computing y[i] Useful cache line density Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

12 A Bandwidth point of view Naive The matrix is transferred once. Bandwidth (in GB/s) Hardware 512KB cache Hardware infinite cache Application Naive Application The matrix and the vectors are transferred once. Hardware infinite cache A core that access an entry from x brings the whole cacheline in Hardware 512KB cache A cacheline might be transferred multiple times to a core if the cache is full. Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

13 A Bandwidth point of view Bandwidth (in GB/s) Hardware 512KB cache Hardware infinite cache Application Naive Provided the peak bandwidth is between 16GB/s and 18GB/s. That s close to optimal for some matrices. Naive The matrix is transferred once. Application The matrix and the vectors are transferred once. Hardware infinite cache A core that access an entry from x brings the whole cacheline in. Hardware 512KB cache A cacheline might be transferred multiple times to a core if the cache is full. Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

14 So bandwidth constraint? Bandwidth (in GB/s) Max Sustained Read BW Max Sustained Write BW 4 thr/core 3 thr/core 2 thr/core 1 thr/core crankseg 2 number of cores There is a contention inside the cores. More threads do not help. There is a hint at contention on the Xeon Phi. Scaling is similar to max bandwidth. Bandwidth constraint? Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

15 So bandwidth constraint? Bandwidth (in GB/s) Max Sustained Read BW Max Sustained Write BW 4 thr/core 3 thr/core 2 thr/core 1 thr/core Bandwidth (in GB/s) Max Sustained Read BW Max Sustained Write BW 4 thr/core 3 thr/core 2 thr/core 1 thr/core number of cores number of cores crankseg 2 There is a contention inside the cores. More threads do not help. There is a hint at contention on the Xeon Phi. Scaling is similar to max bandwidth. Bandwidth constraint? pre2 No contention inside the cores. More threads helps. No global contention. Linear scaling when adding cores. Latency constraint? Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

16 Outline 1 The Intel MIC Architecture 2 SpMV 3 SpMM 4 Conclusion Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

17 SpMM SpMV gets low GFlop/s because of the flop-to-byte ratio is SpMM 2flop 12bytes /nnz. Put k SpMV together. The ratio becomes to 2k 12. We experiment with k = 16 Applications PDE eigensolving graph based recommendations Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

18 SpMM Performance Manual Vect. + NRNGO Manual Vect. Comp. Vect Performance (in GFlop/s) Variants Basic C++. 8 columns at a time with fma. Using proper store operation. Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

19 Bandwidth Hardware 512KB cache Hardware Infinite cache Application Bandwidth (in GB/s) Bandwidth analysis Where x goes is much more important. Cache is still large enough. Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

20 Outline 1 The Intel MIC Architecture 2 SpMV 3 SpMM 4 Conclusion Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

21 Comparison with other architectures Performance (in GFlop/s) SE1P C25 K2 Dual X568 Dual E Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

22 Conclusion Xeon Phi gets good performance on Sparse Matrix kernels. Vectorization is paramount. Register blocking could improve usage, but matrices are too sparse. Because of vgatherd useful cacheline density matters. Test on plenty of sparse matrices or risk a bias. Most still use only a few. Locality is key (but ordering has little effect). Observing performance at different number of cores and thread per core hints at what is happening. Still low utilization on many matrices Blocked ELLPACK has been developed. Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

23 Thank you Support Intel for providing Xeon Phi cards. NVIDIA for providing C25 and K2 cards. OSC for providing computation infrastructure. More information contact : esaule@uncc.edu visit: or Erik Saule (OSU) Using Xeon Phi on Sparse Matrices PPAM / 2

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Flexible Batched Sparse Matrix-Vector Product on GPUs

Flexible Batched Sparse Matrix-Vector Product on GPUs ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems November 13, 217 Flexible Batched Sparse Matrix-Vector Product on GPUs Hartwig Anzt, Gary Collins, Jack Dongarra,

More information

Efficient Sparse Matrix-Vector Multiplication on x86-based Many-Core Processors

Efficient Sparse Matrix-Vector Multiplication on x86-based Many-Core Processors Efficient Sparse Matrix-Vector Multiplication on x86-based Many-Core Processors Xing Liu School of Computational Science and Engineering Georgia Institute of Technology, Atlanta, Georgia xing.liu@gatech.edu

More information

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication Steve Rennich Nvidia Developer Technology - Compute Block Sparse Matrix Vector Multiplication Sparse Matrix-Vector Multiplication

More information

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Juan C. Pichel Centro de Investigación en Tecnoloxías da Información (CITIUS) Universidade de Santiago de Compostela, Spain

More information

Exploiting Locality in Sparse Matrix-Matrix Multiplication on the Many Integrated Core Architecture

Exploiting Locality in Sparse Matrix-Matrix Multiplication on the Many Integrated Core Architecture Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Exploiting Locality in Sparse Matrix-Matrix Multiplication on the Many Integrated Core Architecture K. Akbudak a, C.Aykanat

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Sparse Matrix-Vector Multiplication with Wide SIMD Units: Performance Models and a Unified Storage Format

Sparse Matrix-Vector Multiplication with Wide SIMD Units: Performance Models and a Unified Storage Format ERLANGEN REGIONAL COMPUTING CENTER Sparse Matrix-Vector Multiplication with Wide SIMD Units: Performance Models and a Unified Storage Format Moritz Kreutzer, Georg Hager, Gerhard Wellein SIAM PP14 MS53

More information

Intel Architecture for HPC

Intel Architecture for HPC Intel Architecture for HPC Georg Zitzlsberger georg.zitzlsberger@vsb.cz 1st of March 2018 Agenda Salomon Architectures Intel R Xeon R processors v3 (Haswell) Intel R Xeon Phi TM coprocessor (KNC) Ohter

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know.

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know. Administrivia HW0 scores, HW1 peer-review assignments out. HW2 out, due Nov. 2. If you re having Cython trouble with HW2, let us know. Review on Wednesday: Post questions on Piazza Introduction to GPUs

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

Sparse Matrix Formats

Sparse Matrix Formats Christopher Bross Friedrich-Alexander-Universität Erlangen-Nürnberg Motivation Sparse Matrices are everywhere Sparse Matrix Formats C. Bross BGCE Research Day, Erlangen, 09.06.2016 2/16 Motivation Sparse

More information

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT JOSEPH L. GREATHOUSE, MAYANK DAGA AMD RESEARCH 11/20/2014 THIS TALK IN ONE SLIDE Demonstrate how to save space and time

More information

Optimizing Sparse Data Structures for Matrix-Vector Multiply

Optimizing Sparse Data Structures for Matrix-Vector Multiply Summary Optimizing Sparse Data Structures for Matrix-Vector Multiply William Gropp (UIUC) and Dahai Guo (NCSA) Algorithms and Data Structures need to take memory prefetch hardware into account This talk

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply

Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply University of California, Berkeley Berkeley Benchmarking and Optimization Group (BeBOP) http://bebop.cs.berkeley.edu

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

Introduction to Xeon Phi. Bill Barth January 11, 2013

Introduction to Xeon Phi. Bill Barth January 11, 2013 Introduction to Xeon Phi Bill Barth January 11, 2013 What is it? Co-processor PCI Express card Stripped down Linux operating system Dense, simplified processor Many power-hungry operations removed Wider

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 207/8 A.J.Proença The Roofline Performance Model (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 207/8 AJProença, Advanced Architectures,

More information

CS 426 Parallel Computing. Parallel Computing Platforms

CS 426 Parallel Computing. Parallel Computing Platforms CS 426 Parallel Computing Parallel Computing Platforms Ozcan Ozturk http://www.cs.bilkent.edu.tr/~ozturk/cs426/ Slides are adapted from ``Introduction to Parallel Computing'' Topic Overview Implicit Parallelism:

More information

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science Algorithms and Architecture William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp Algorithms What is an algorithm? A set of instructions to perform a task How do we evaluate an algorithm?

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Accelerating GPU computation through mixed-precision methods Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Outline Motivation Truncated Precision using CUDA Solving Linear

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations D. Zheltkov, N. Zamarashkin INM RAS September 24, 2018 Scalability of Lanczos method Notations Matrix order

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Master Thesis. Master Program of Computer Science

Master Thesis. Master Program of Computer Science Hochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Informatik Computer Science Department Master Thesis Master Program of Computer Science Requirement Analysis and Realization of Efficient

More information

Introduction to the Xeon Phi programming model. Fabio AFFINITO, CINECA

Introduction to the Xeon Phi programming model. Fabio AFFINITO, CINECA Introduction to the Xeon Phi programming model Fabio AFFINITO, CINECA What is a Xeon Phi? MIC = Many Integrated Core architecture by Intel Other names: KNF, KNC, Xeon Phi... Not a CPU (but somewhat similar

More information

Fujitsu s new supercomputer, delivering the next step in Exascale capability

Fujitsu s new supercomputer, delivering the next step in Exascale capability Fujitsu s new supercomputer, delivering the next step in Exascale capability Toshiyuki Shimizu November 19th, 2014 0 Past, PRIMEHPC FX100, and roadmap for Exascale 2011 2012 2013 2014 2015 2016 2017 2018

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Memory hierarchy, locality, caches Instructor: Markus Püschel TA: Alen Stojanov, Georg Ofenbeck, Gagandeep Singh Organization Temporal and spatial locality Memory

More information

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Anas Abu-Doleh 1,2, Erik Saule 1, Kamer Kaya 1 and Ümit V. Çatalyürek 1,2 1 Department of Biomedical Informatics 2 Department of Electrical

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Accelerator cards are typically PCIx cards that supplement a host processor, which they require to operate Today, the most common accelerators include

Accelerator cards are typically PCIx cards that supplement a host processor, which they require to operate Today, the most common accelerators include 3.1 Overview Accelerator cards are typically PCIx cards that supplement a host processor, which they require to operate Today, the most common accelerators include GPUs (Graphics Processing Units) AMD/ATI

More information

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it Lab 1 Starts Today Already posted on Canvas (under Assignment) Let s look at it CS 590: High Performance Computing Parallel Computer Architectures Fengguang Song Department of Computer Science IUPUI 1

More information

Case study: OpenMP-parallel sparse matrix-vector multiplication

Case study: OpenMP-parallel sparse matrix-vector multiplication Case study: OpenMP-parallel sparse matrix-vector multiplication A simple (but sometimes not-so-simple) example for bandwidth-bound code and saturation effects in memory Sparse matrix-vector multiply (spmvm)

More information

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors Edgar Gabriel Fall 2018 References Intel Larrabee: [1] L. Seiler, D. Carmean, E.

More information

Automated Finite Element Computations in the FEniCS Framework using GPUs

Automated Finite Element Computations in the FEniCS Framework using GPUs Automated Finite Element Computations in the FEniCS Framework using GPUs Florian Rathgeber (f.rathgeber10@imperial.ac.uk) Advanced Modelling and Computation Group (AMCG) Department of Earth Science & Engineering

More information

Contour Detection on Mobile Platforms

Contour Detection on Mobile Platforms Contour Detection on Mobile Platforms Bor-Yiing Su, subrian@eecs.berkeley.edu Prof. Kurt Keutzer, keutzer@eecs.berkeley.edu Parallel Computing Lab, University of California, Berkeley 1/26 Diagnosing Power/Performance

More information

SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision

SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision Toshiaki Hishinuma 1, Hidehiko Hasegawa 12, and Teruo Tanaka 2 1 University of Tsukuba, Tsukuba, Japan 2 Kogakuin

More information

When MPPDB Meets GPU:

When MPPDB Meets GPU: When MPPDB Meets GPU: An Extendible Framework for Acceleration Laura Chen, Le Cai, Yongyan Wang Background: Heterogeneous Computing Hardware Trend stops growing with Moore s Law Fast development of GPU

More information

Effect of memory latency

Effect of memory latency CACHE AWARENESS Effect of memory latency Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a latency of 100 ns. Assume that the processor has two ALU units and it is capable

More information

Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature. Intel Software Developer Conference London, 2017

Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature. Intel Software Developer Conference London, 2017 Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature Intel Software Developer Conference London, 2017 Agenda Vectorization is becoming more and more important What is

More information

Accelerator Programming Lecture 1

Accelerator Programming Lecture 1 Accelerator Programming Lecture 1 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de January 11, 2016 Accelerator Programming

More information

Parallel and Distributed Programming Introduction. Kenjiro Taura

Parallel and Distributed Programming Introduction. Kenjiro Taura Parallel and Distributed Programming Introduction Kenjiro Taura 1 / 21 Contents 1 Why Parallel Programming? 2 What Parallel Machines Look Like, and Where Performance Come From? 3 How to Program Parallel

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA

Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA Kazuhiko Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa, T. Aoyama, M. Sato, H. Kobayashi Tohoku University 14 November,

More information

Spring 2010 Prof. Hyesoon Kim. AMD presentations from Richard Huddy and Michael Doggett

Spring 2010 Prof. Hyesoon Kim. AMD presentations from Richard Huddy and Michael Doggett Spring 2010 Prof. Hyesoon Kim AMD presentations from Richard Huddy and Michael Doggett Radeon 2900 2600 2400 Stream Processors 320 120 40 SIMDs 4 3 2 Pipelines 16 8 4 Texture Units 16 8 4 Render Backens

More information

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 04 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

Profiling GPU Code. Jeremy Appleyard, February 2016

Profiling GPU Code. Jeremy Appleyard, February 2016 Profiling GPU Code Jeremy Appleyard, February 2016 What is Profiling? Measuring Performance Measuring application performance Usually the aim is to reduce runtime Simple profiling: How long does an operation

More information

Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors

Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors Kaixi Hou, Wu-chun Feng {kaixihou, wfeng}@vt.edu Shuai Che Shuai.Che@amd.com Sparse

More information

Introduction to GPGPU and GPU-architectures

Introduction to GPGPU and GPU-architectures Introduction to GPGPU and GPU-architectures Henk Corporaal Gert-Jan van den Braak http://www.es.ele.tue.nl/ Contents 1. What is a GPU 2. Programming a GPU 3. GPU thread scheduling 4. GPU performance bottlenecks

More information

CE 431 Parallel Computer Architecture Spring Graphics Processor Units (GPU) Architecture

CE 431 Parallel Computer Architecture Spring Graphics Processor Units (GPU) Architecture CE 431 Parallel Computer Architecture Spring 2017 Graphics Processor Units (GPU) Architecture Nikos Bellas Computer and Communications Engineering Department University of Thessaly Some slides borrowed

More information

Vector Engine Processor of SX-Aurora TSUBASA

Vector Engine Processor of SX-Aurora TSUBASA Vector Engine Processor of SX-Aurora TSUBASA Shintaro Momose, Ph.D., NEC Deutschland GmbH 9 th October, 2018 WSSP 1 NEC Corporation 2018 Contents 1) Introduction 2) VE Processor Architecture 3) Performance

More information

Advanced Parallel Programming I

Advanced Parallel Programming I Advanced Parallel Programming I Alexander Leutgeb, RISC Software GmbH RISC Software GmbH Johannes Kepler University Linz 2016 22.09.2016 1 Levels of Parallelism RISC Software GmbH Johannes Kepler University

More information

Near Memory Computing Spectral and Sparse Accelerators

Near Memory Computing Spectral and Sparse Accelerators Near Memory Computing Spectral and Sparse Accelerators Franz Franchetti ECE, Carnegie Mellon University www.ece.cmu.edu/~franzf Co-Founder, SpiralGen www.spiralgen.com The work was sponsored by Defense

More information

Code Optimizations for High Performance GPU Computing

Code Optimizations for High Performance GPU Computing Code Optimizations for High Performance GPU Computing Yi Yang and Huiyang Zhou Department of Electrical and Computer Engineering North Carolina State University 1 Question to answer Given a task to accelerate

More information

Accelerating High Performance Computing.

Accelerating High Performance Computing. Accelerating High Performance Computing http://www.nvidia.com/tesla Computing The 3 rd Pillar of Science Drug Design Molecular Dynamics Seismic Imaging Reverse Time Migration Automotive Design Computational

More information

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Jianting Zhang 1,2 Simin You 2, Le Gruenwald 3 1 Depart of Computer Science, CUNY City College (CCNY) 2 Department of Computer

More information

CUDA OPTIMIZATIONS ISC 2011 Tutorial

CUDA OPTIMIZATIONS ISC 2011 Tutorial CUDA OPTIMIZATIONS ISC 2011 Tutorial Tim C. Schroeder, NVIDIA Corporation Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Automatic Performance Tuning. Jeremy Johnson Dept. of Computer Science Drexel University

Automatic Performance Tuning. Jeremy Johnson Dept. of Computer Science Drexel University Automatic Performance Tuning Jeremy Johnson Dept. of Computer Science Drexel University Outline Scientific Computation Kernels Matrix Multiplication Fast Fourier Transform (FFT) Automated Performance Tuning

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson adrianj@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past, computers

More information

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA 3D ADI Method for Fluid Simulation on Multiple GPUs Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA Introduction Fluid simulation using direct numerical methods Gives the most accurate result Requires

More information

Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform

Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform J Supercomput (2013) 63:710 721 DOI 10.1007/s11227-011-0626-0 Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform Shiming Xu Wei Xue Hai Xiang Lin Published

More information

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA SUDHEER CHUNDURI, SCOTT PARKER, KEVIN HARMS, VITALI MOROZOV, CHRIS KNIGHT, KALYAN KUMARAN Performance Engineering Group Argonne Leadership Computing Facility

More information

A Hardware Multithreaded SpMV Kernel for the Convey HC-2ex

A Hardware Multithreaded SpMV Kernel for the Convey HC-2ex Technical Report UCR-CSE-2013-02011 A Hardware Multithreaded SpMV Kernel for the Convey HC-2ex Robert Halstead and Walid Najjar Computer Science & Engineering UC Riverside Riverside, CA 92521 (rhalstea,najjar)@cs.ucr.edu

More information

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez. The University of Texas at Austin

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez. The University of Texas at Austin EE382 (20): Computer Architecture - ism and Locality Spring 2015 Lecture 09 GPUs (II) Mattan Erez The University of Texas at Austin 1 Recap 2 Streaming model 1. Use many slimmed down cores to run in parallel

More information

Hybrid Architectures Why Should I Bother?

Hybrid Architectures Why Should I Bother? Hybrid Architectures Why Should I Bother? CSCS-FoMICS-USI Summer School on Computer Simulations in Science and Engineering Michael Bader July 8 19, 2013 Computer Simulations in Science and Engineering,

More information

Linear Algebra for Modern Computers. Jack Dongarra

Linear Algebra for Modern Computers. Jack Dongarra Linear Algebra for Modern Computers Jack Dongarra Tuning for Caches 1. Preserve locality. 2. Reduce cache thrashing. 3. Loop blocking when out of cache. 4. Software pipelining. 2 Indirect Addressing d

More information

COMP 635: Seminar on Heterogeneous Processors. Lecture 7: ClearSpeed CSX600 Processor.

COMP 635: Seminar on Heterogeneous Processors. Lecture 7: ClearSpeed CSX600 Processor. COMP 635: Seminar on Heterogeneous Processors Lecture 7: ClearSpeed CSX600 Processor www.cs.rice.edu/~vsarkar/comp635 Vivek Sarkar Department of Computer Science Rice University vsarkar@rice.edu October

More information

COMP Parallel Computing. SMM (1) Memory Hierarchies and Shared Memory

COMP Parallel Computing. SMM (1) Memory Hierarchies and Shared Memory COMP 633 - Parallel Computing Lecture 6 September 6, 2018 SMM (1) Memory Hierarchies and Shared Memory 1 Topics Memory systems organization caches and the memory hierarchy influence of the memory hierarchy

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 12

More information

NVidia s GPU Microarchitectures. By Stephen Lucas and Gerald Kotas

NVidia s GPU Microarchitectures. By Stephen Lucas and Gerald Kotas NVidia s GPU Microarchitectures By Stephen Lucas and Gerald Kotas Intro Discussion Points - Difference between CPU and GPU - Use s of GPUS - Brie f History - Te sla Archite cture - Fermi Architecture -

More information

Efficient sparse matrix-vector multiplication on cache-based GPUs

Efficient sparse matrix-vector multiplication on cache-based GPUs Efficient sparse matrix-vector multiplication on cache-based GPUs ABSTRACT István Reguly Faculty of Information Technology Pázmány Péter Catholic University Hungary reguly.istvan@itk.ppke.hu Sparse matrix-vector

More information

Cache Memories. Topics. Next time. Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance

Cache Memories. Topics. Next time. Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance Cache Memories Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance Next time Dynamic memory allocation and memory bugs Fabián E. Bustamante,

More information

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca Distributed Dense Linear Algebra on Heterogeneous Architectures George Bosilca bosilca@eecs.utk.edu Centraro, Italy June 2010 Factors that Necessitate to Redesign of Our Software» Steepness of the ascent

More information

Real-Time Support for GPU. GPU Management Heechul Yun

Real-Time Support for GPU. GPU Management Heechul Yun Real-Time Support for GPU GPU Management Heechul Yun 1 This Week Topic: Real-Time Support for General Purpose Graphic Processing Unit (GPGPU) Today Background Challenges Real-Time GPU Management Frameworks

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #11 2/21/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline Midterm 1:

More information

OpenStaPLE, an OpenACC Lattice QCD Application

OpenStaPLE, an OpenACC Lattice QCD Application OpenStaPLE, an OpenACC Lattice QCD Application Enrico Calore Postdoctoral Researcher Università degli Studi di Ferrara INFN Ferrara Italy GTC Europe, October 10 th, 2018 E. Calore (Univ. and INFN Ferrara)

More information

A Study of SpMV Implementation using MPI and OpenMP on Intel Many-Core Architecture

A Study of SpMV Implementation using MPI and OpenMP on Intel Many-Core Architecture A Study of SpMV Implementation using MPI and OpenMP on Intel Many-Core Architecture Fan Ye 1,2, Christophe Calvin 1, Serge Petiton 2,3 1 CEA/DEN/DANS/DM2S, CEA Saclay, France 2 LIFL, Université de Lille

More information

CUDA Performance Considerations (2 of 2)

CUDA Performance Considerations (2 of 2) Administrivia CUDA Performance Considerations (2 of 2) Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Friday 03/04, 11:59pm Assignment 4 due Presentation date change due via email Not bonus

More information

QR Decomposition on GPUs

QR Decomposition on GPUs QR Decomposition QR Algorithms Block Householder QR Andrew Kerr* 1 Dan Campbell 1 Mark Richards 2 1 Georgia Tech Research Institute 2 School of Electrical and Computer Engineering Georgia Institute of

More information

Dynamic Sparse Matrix Allocation on GPUs. James King

Dynamic Sparse Matrix Allocation on GPUs. James King Dynamic Sparse Matrix Allocation on GPUs James King Graph Applications Dynamic updates to graphs Adding edges add entries to sparse matrix representation Motivation Graph operations (adding edges) (e.g.

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

Intel Xeon Phi Coprocessors

Intel Xeon Phi Coprocessors Intel Xeon Phi Coprocessors Reference: Parallel Programming and Optimization with Intel Xeon Phi Coprocessors, by A. Vladimirov and V. Karpusenko, 2013 Ring Bus on Intel Xeon Phi Example with 8 cores Xeon

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

Anatomy of AMD s TeraScale Graphics Engine

Anatomy of AMD s TeraScale Graphics Engine Anatomy of AMD s TeraScale Graphics Engine Mike Houston Design Goals Focus on Efficiency f(perf/watt, Perf/$) Scale up processing power and AA performance Target >2x previous generation Enhance stream

More information

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation 1 Cheng-Han Du* I-Hsin Chung** Weichung Wang* * I n s t i t u t e o f A p p l i e d M

More information

From Shader Code to a Teraflop: How GPU Shader Cores Work. Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian)

From Shader Code to a Teraflop: How GPU Shader Cores Work. Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian) From Shader Code to a Teraflop: How GPU Shader Cores Work Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian) 1 This talk Three major ideas that make GPU processing cores run fast Closer look at real

More information

c 2014 Society for Industrial and Applied Mathematics

c 2014 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 36, No. 2, pp. C29 C239 c 204 Society for Industrial and Applied Mathematics COMPRESSED MULTIROW STORAGE FORMAT FOR SPARSE MATRICES ON GRAPHICS PROCESSING UNITS ZBIGNIEW KOZA,

More information

Modern CPU Architectures

Modern CPU Architectures Modern CPU Architectures Alexander Leutgeb, RISC Software GmbH RISC Software GmbH Johannes Kepler University Linz 2014 16.04.2014 1 Motivation for Parallelism I CPU History RISC Software GmbH Johannes

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

Introduc)on to Xeon Phi

Introduc)on to Xeon Phi Introduc)on to Xeon Phi ACES Aus)n, TX Dec. 04 2013 Kent Milfeld, Luke Wilson, John McCalpin, Lars Koesterke TACC What is it? Co- processor PCI Express card Stripped down Linux opera)ng system Dense, simplified

More information