ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

Size: px
Start display at page:

Download "ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective"

Transcription

1 ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems Presented by Fahad Mirza

2 Part 1 Background Objectives Previous Techniques Agenda Part 2 RC File Implementation Part 3 Results Conclusion

3 Part 1

4 Background Map reduce based data-ware house system: Support big data analytics Adjust quickly the dynamics of user behavior trends Needs in typical web-service providers and social network sites (e.g., Facebook) Data placement structure is a crucial factor in warehouse performance Facebook warehouse characterized four requirements for the data placement structure: Fast data loading Fast query processing Highly efficient storage space utilization Strong adaptivity to highly dynamic workload patterns 4 (1)

5 Background Why data placement is so critical for warehouse? MapReduce framework and Hadoop provide a scalable and faulttolerant infrastructure for big data analysis on large clusters. MapReduce-based warehouse systems cannotdirectly control storage disks in clusters Utilize cluster-level distributed file system (e.g. HDFS, the Hadoop Distributed File System) to store a huge amount of table data Serious challenge-find an efficient data placement method to organize table data in the underlying HDFS. 5 (2)

6 Objectives Fast data loading Quick data loading is important for Facebook data warehouse On average, more than 20TB data are pushed daily in Facebookdata warehouse. Fast query processing Response-time critical queries such as decision support queries comprise of major workload in such applications. Data placement structure should be able to support a large number of query processing as the number of queries rapidly increases. Highly efficient storage space utilization High space utilization in disks to avoid any storage waste. Rapidly growing user activities demand scalable storage capacity. Strong adaptivity to highly dynamic workload patterns Underlying system must be highly adaptive to meet unexpected dynamics in data-processing with limited storage for both expected and unexpected 6 queries.

7 Previous Techniques Common data placement structures in conventional DBs Row-stores Column-stores Hybrid-stores in the context of large data analysis using MapReduce Not very suitable for big data processing in distributed systems Data Placement Techniques for MapReduce Conventional database system placement structures for MapReduce datawarehouse Horizontal row-store structure Vertical column-store structure Hybrid PAX store structure Importing DB structures into MapReduce data warehouse system can t meet all four objectives 7 (1)

8 Previous Techniques Horizontal Query Structure Advantages Fast data loading and strong adaptive ability to dynamic workloads Disadvantages Cannot support fast query processing Reason: It cannot skip un-necessary column reads when a query only requires only a few columns from a wide table with many columns. Compression ratio is low and hence a high storage space utilization Reason: Due to mixed columns with different data domains 8 (2)

9 Previous Techniques Vertical column-store structure Advantages High compression ratios Reason: Similar length data fields available Disadvantage Column-store can often cause high record reconstruction overhead with expensive network transfers in a cluster. Slower query processing. Reason: HDFS cannot guarantee that all fields in the same record are stored in the same cluster node. So high overhead for tuple reconstruction. 9 Alternative Pre-grouping multiple columns together can reduce the overhead Disadvantages It does not have a strong adaptivity to respond highly dynamic workload patterns. (3)

10 Previous Techniques Two schemes of vertical stores Each column in one sub-relation, such as the Decomposition Storage Model (DSM)- Column Store Organize all the columns of a relation into different column groups, and usually allow column overlapping among multiple Column Groups. 10 (4)

11 Hybrid PAX store structure A hybrid placement structure Previous Techniques Aiming to improve CPU cache performance Multiple fields, of a record, from different columns are put in a single disk page to save additional operations for record reconstructions Within each disk page, PAX uses a mini-page to store all fields belonging to each column, and uses a page header to store pointers to mini pages Advantages Strong adaptive ability for various dynamic query workloads CPU performance improved by better cache utilization Disadvantages Can t satisfy high store utilization and fast query processing speed. 11 (5)

12 Previous Techniques Drawbacks of PAX Store Architecture Not associated with data compression, which is not necessary for cache optimization Cannot improve I/O performance because it does not change the actual content of a page and hence slower query processing. Limited by the page-level data manipulation inside a traditional DBMS engine, PAX uses a fixed page as the basic unit of data record organization 12 (6)

13 Part 2

14 New Technique RC File A big data placement structure RC File ( Record Columnar File) Satisfies all 4 requirements Adopted by Hive and Pig RCFileapplies the concept of first horizontally-partition, then vertically-partition from PAX. It combines the advantages of both row-store and column-store. RCFileguarantees that data in the same row are located in the same node, thus it has low cost of tuple reconstruction. As column-store, RCFilecan exploit a column-wise data compression and skip unnecessary column reads. Utilizes a column-wise data compression within each row group. 14 Provides a lazy decompression technique to avoid unnecessary column decompression during query execution. (1)

15 Data Layout for an RC File HDFS structure New Technique RC File A table can span multiple HDFS blocks. All the records stored are partitioned into row groups. A table stored in RCFileis first horizontally partitioned into multiple row groups. Followed by each row group is vertically partitioned so that each column is stored independently. For a table, all row groups have the same size. Depending on the row group size and the HDFS block size, an HDFS block can have only one or multiple row groups. RCFileallows a flexible row group size. A default size is given considering both data compression performance and query execution performance. 15 RCFilealso allows users to select the row group size for a given table. (2)

16 New Technique RC File Data Layout for an RC File The first section Sync marker that is placed in the beginning of the row group. Sync marker is mainly used to separate two continuous row groups in an HDFS block. The second section Metadata header for the row group. Header stores the information items on how many records are in this row group, how many bytes are in each column, and how many bytes are in each field in a column. The third section The table data section that is actually a column-store. In this section, all the fields in the same column are stored continuously together 16 (3)

17 New Technique RC File 17 (4)

18 New Technique RC File Data Compression RC File In each row group, the metadata header section and the table data section are compressed independently as follows. Metadata header section compressed using RLE (Run Length Encoding). Advantage of RLE Values of the field lengths in the same column are continuously stored The RLE algorithm can find long runs of repeated data values, especially for fixed field lengths. RLE not used for the column data because its not sorted Tabledatasectionisnotcompressedasawholeunit. Each column is independently compressed with the high end Gzip compression algorithm. 18 Due to the lazy decompression technology, does not need to decompress all the columns when processing a row group. (5)

19 New Technique RC File Allows us to use different algorithms to compress different columns. In future multiple type of compression schemes can be adopted. Data Appending RCFile does not allow arbitrary data writing operations. Only appends are allowed. Because HDFS only supports data write at the endoffile. The method of data appending in RCFile is summarized as follows: RCFilecreates and maintains an in-memorycolumn holderfor each column. When a record is appended, all its fields will be scattered, and each field will be appended into its corresponding column holder. 19 (6)

20 New Technique RC File In addition, RCFile will record corresponding metadata of each field in the metadata header. RCFile - two parameters provided to control records counts in memory before they are flushed into the disk. i. Number of records ii. Limitofthesizeofthememorybuffer. RCFile first compresses the metadata header and stores it in the disk. Then it compresses each column holder separately, and flushes compressed column holders into one row group in the underlying file system. 20 (7)

21 New Technique RC File Data Reads When processing a row group, RCFiledoes not need to fully read the whole content of the row group into memory. It only reads the metadata header and the needed columns in the row group for a given query. Advantage: it can skip unnecessary columns and gain the I/O advantages of column store. For instance: suppose we have a table with four columns tbl(c1, c2, c3, c4), and we have a query SELECT c1 FROM tblwhere c4 = 1. Then, in each row group, RCFileonly reads the content of column c1 and c4. 21 (8)

22 New Technique RC File Once the metadata header and data of the required columns are loaded they need to be decompressed. The metadata header is always decompressed and held in memory until RCFile processes the next row group. RCFiledoes not decompress all the loaded columns. Instead, it uses a lazy decompression technique. Lazy decompression Column will not be decompressed in memory until RCFilehas determined that the data in the column will be really useful for query execution. If a where condition is not satisfied by all the records in a row group then RCFile does not decompress the columns that do not occur in the where condition. 22 (9)

23 Part 3

24 Results Determining effect of row group size on compression ratio I/O performance is a major concern of RCFile. RCFileneeds to use a large and flexible row group size. Current size adopted by Facebookis 4 MB. Larger group size Advantage Better data compression efficiency than that of a small one. Disadvantage May have lower read performance than small sized one. Can undermine benefits of lazy decompression. Higher memory usage 24 (1)

25 Results 25 (2)

26 Performance Evaluation Results Effectiveness of RCFileversus other structures(row,column,pax) in three aspects: i. Data storage space ii. Data loading time iii. Query execution time Data Storage Space performance evaluation USERVISITS table from the benchmark Generated the data set whose size is about 120GB Data is all in plain text Loaded it into Hive using different data placement structures Data is compressed by the Gzip algorithm for each structure 26 (3)

27 Results Data Storage Space Results Interpretation RCFilestores data in two sections: data and the meta-data, hence different compression ratios and better compression efficiency and low storage 27 (4)

28 Results Data Loading Time Performance Evaluation Data loading time(the time required by loading the raw data into the data warehouse) Data Loading Time Results Interpretation Row-store - smallest data loading time due to minimum overhead to re-organize records in the raw text file. Column-store and column-group -due to raw data file will be written to multiple HDFS blocks for different columns (or column groups). RCFileis slightly slower than row-store due to small overhead to re-organize records inside each row group. (5) 28

29 Results Query Execution Time Performance Evaluation Executed two queries on the RANKING table, having three columns from the benchmark. For column-store, all three columns are stored independently. Q1: SELECT pagerank, pageurl FROM RANKING WHERE pagerank > 400; Q2: SELECT pagerank, pageurl FROM RANKING WHERE pagerank < 400; Q1 : RC File outperforms others utilizing lazy decompression Q2: Column store performs slightly better due to high selectivity Note that the performance advantage of column-group is not free. It relies on pre-defined column combinations before query executions. 29 (6)

30 Results Effect of different Row Group Sizes on RCFile s Performance Workload Industry standard TPC-H benchmark for warehousing system evaluations Generated by daily operations for advertisement business in Facebook Factors examined Data storage space Query execution time 30 (7)

31 Results TCP-H Workload performance evaluation RCFilecan significantly decrease storage space compared with row-store. Increasing row group size after a threshold would not help improve data compression efficiency significantly. A large row group can also decrease the advantage of lazy decompression, and cause unnecessary data decompression 31 (8)

32 Results Facebook Workload Performance Evaluation Query A: SELECT adid, userid FROM adclicks; Query B: SELECT adid, userid FROM adclickswhere userid="x ; For row-store, the average mappertime of Query B > Query A. This is due to where clause in the query causing more computations For Query B, the average mappertime significantly shorter than that of Query A. This reflects the performance benefit of lazy decompression of RCFile. 32 (9)

33 Competitive systems Conclusion Cheetah but RC File outperforms due to heavy utilization of Gzipon both meta and column data by Cheetah Big Table from Google. It s a low-level key value store for both read and write-intensive applications. But RFC is served as almost readonly data warehouse. Facebook is trying to transform its existing data to RCFile format. An integration of RCFile to Pig(Yahoo) is being developed by Yahoo. 33

34 Questions (1) What s the row-store data placement? What re the disadvantages of this data placement? (Section II-A) 34

Column Stores vs. Row Stores How Different Are They Really?

Column Stores vs. Row Stores How Different Are They Really? Column Stores vs. Row Stores How Different Are They Really? Daniel J. Abadi (Yale) Samuel R. Madden (MIT) Nabil Hachem (AvantGarde) Presented By : Kanika Nagpal OUTLINE Introduction Motivation Background

More information

Making the Most of Hadoop with Optimized Data Compression (and Boost Performance) Mark Cusack. Chief Architect RainStor

Making the Most of Hadoop with Optimized Data Compression (and Boost Performance) Mark Cusack. Chief Architect RainStor Making the Most of Hadoop with Optimized Data Compression (and Boost Performance) Mark Cusack Chief Architect RainStor Agenda Importance of Hadoop + data compression Data compression techniques Compression,

More information

CIS 601 Graduate Seminar. Dr. Sunnie S. Chung Dhruv Patel ( ) Kalpesh Sharma ( )

CIS 601 Graduate Seminar. Dr. Sunnie S. Chung Dhruv Patel ( ) Kalpesh Sharma ( ) Guide: CIS 601 Graduate Seminar Presented By: Dr. Sunnie S. Chung Dhruv Patel (2652790) Kalpesh Sharma (2660576) Introduction Background Parallel Data Warehouse (PDW) Hive MongoDB Client-side Shared SQL

More information

April Copyright 2013 Cloudera Inc. All rights reserved.

April Copyright 2013 Cloudera Inc. All rights reserved. Hadoop Beyond Batch: Real-time Workloads, SQL-on- Hadoop, and the Virtual EDW Headline Goes Here Marcel Kornacker marcel@cloudera.com Speaker Name or Subhead Goes Here April 2014 Analytic Workloads on

More information

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Shark Hive on Spark Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Agenda Intro to Spark Apache Hive Shark Shark s Improvements over Hive Demo Alpha

More information

Topics. Big Data Analytics What is and Why Hadoop? Comparison to other technologies Hadoop architecture Hadoop ecosystem Hadoop usage examples

Topics. Big Data Analytics What is and Why Hadoop? Comparison to other technologies Hadoop architecture Hadoop ecosystem Hadoop usage examples Hadoop Introduction 1 Topics Big Data Analytics What is and Why Hadoop? Comparison to other technologies Hadoop architecture Hadoop ecosystem Hadoop usage examples 2 Big Data Analytics What is Big Data?

More information

I am: Rana Faisal Munir

I am: Rana Faisal Munir Self-tuning BI Systems Home University (UPC): Alberto Abelló and Oscar Romero Host University (TUD): Maik Thiele and Wolfgang Lehner I am: Rana Faisal Munir Research Progress Report (RPR) [1 / 44] Introduction

More information

An Introduction to Big Data Formats

An Introduction to Big Data Formats Introduction to Big Data Formats 1 An Introduction to Big Data Formats Understanding Avro, Parquet, and ORC WHITE PAPER Introduction to Big Data Formats 2 TABLE OF TABLE OF CONTENTS CONTENTS INTRODUCTION

More information

Caching and Buffering in HDF5

Caching and Buffering in HDF5 Caching and Buffering in HDF5 September 9, 2008 SPEEDUP Workshop - HDF5 Tutorial 1 Software stack Life cycle: What happens to data when it is transferred from application buffer to HDF5 file and from HDF5

More information

HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads

HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin and Avi Silberschatz Presented by

More information

COLUMN-STORES VS. ROW-STORES: HOW DIFFERENT ARE THEY REALLY? DANIEL J. ABADI (YALE) SAMUEL R. MADDEN (MIT) NABIL HACHEM (AVANTGARDE)

COLUMN-STORES VS. ROW-STORES: HOW DIFFERENT ARE THEY REALLY? DANIEL J. ABADI (YALE) SAMUEL R. MADDEN (MIT) NABIL HACHEM (AVANTGARDE) COLUMN-STORES VS. ROW-STORES: HOW DIFFERENT ARE THEY REALLY? DANIEL J. ABADI (YALE) SAMUEL R. MADDEN (MIT) NABIL HACHEM (AVANTGARDE) PRESENTATION BY PRANAV GOEL Introduction On analytical workloads, Column

More information

A Review Paper on Big data & Hadoop

A Review Paper on Big data & Hadoop A Review Paper on Big data & Hadoop Rupali Jagadale MCA Department, Modern College of Engg. Modern College of Engginering Pune,India rupalijagadale02@gmail.com Pratibha Adkar MCA Department, Modern College

More information

Evolving To The Big Data Warehouse

Evolving To The Big Data Warehouse Evolving To The Big Data Warehouse Kevin Lancaster 1 Copyright Director, 2012, Oracle and/or its Engineered affiliates. All rights Insert Systems, Information Protection Policy Oracle Classification from

More information

Hive SQL over Hadoop

Hive SQL over Hadoop Hive SQL over Hadoop Antonino Virgillito THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Introduction Apache Hive is a high-level abstraction on top of MapReduce Uses

More information

CISC 7610 Lecture 2b The beginnings of NoSQL

CISC 7610 Lecture 2b The beginnings of NoSQL CISC 7610 Lecture 2b The beginnings of NoSQL Topics: Big Data Google s infrastructure Hadoop: open google infrastructure Scaling through sharding CAP theorem Amazon s Dynamo 5 V s of big data Everyone

More information

Things To Know. When Buying for an! Alekh Jindal, Jorge Quiané, Jens Dittrich

Things To Know. When Buying for an! Alekh Jindal, Jorge Quiané, Jens Dittrich 7 Things To Know When Buying for an! Alekh Jindal, Jorge Quiané, Jens Dittrich 1 What Shoes? Why Shoes? 3 Analyzing MR Jobs (HadoopToSQL, Manimal) Generating MR Jobs (PigLatin, Hive) Executing MR Jobs

More information

Combining MapReduce with Parallel DBMS Techniques for Large-Scale Data Analytics

Combining MapReduce with Parallel DBMS Techniques for Large-Scale Data Analytics EDIC RESEARCH PROPOSAL 1 Combining MapReduce with Parallel DBMS Techniques for Large-Scale Data Analytics Ioannis Klonatos DATA, I&C, EPFL Abstract High scalability is becoming an essential requirement

More information

cstore_fdw Columnar store for analytic workloads Hadi Moshayedi & Ben Redman

cstore_fdw Columnar store for analytic workloads Hadi Moshayedi & Ben Redman cstore_fdw Columnar store for analytic workloads Hadi Moshayedi & Ben Redman What is CitusDB? CitusDB is a scalable analytics database that extends PostgreSQL Citus shards your data and automa/cally parallelizes

More information

ORC Files. Owen O June Page 1. Hortonworks Inc. 2012

ORC Files. Owen O June Page 1. Hortonworks Inc. 2012 ORC Files Owen O Malley owen@hortonworks.com @owen_omalley owen@hortonworks.com June 2013 Page 1 Who Am I? First committer added to Hadoop in 2006 First VP of Hadoop at Apache Was architect of MapReduce

More information

An Oracle White Paper April 2010

An Oracle White Paper April 2010 An Oracle White Paper April 2010 In October 2009, NEC Corporation ( NEC ) established development guidelines and a roadmap for IT platform products to realize a next-generation IT infrastructures suited

More information

The amount of data increases every day Some numbers ( 2012):

The amount of data increases every day Some numbers ( 2012): 1 The amount of data increases every day Some numbers ( 2012): Data processed by Google every day: 100+ PB Data processed by Facebook every day: 10+ PB To analyze them, systems that scale with respect

More information

2/26/2017. The amount of data increases every day Some numbers ( 2012):

2/26/2017. The amount of data increases every day Some numbers ( 2012): The amount of data increases every day Some numbers ( 2012): Data processed by Google every day: 100+ PB Data processed by Facebook every day: 10+ PB To analyze them, systems that scale with respect to

More information

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, Samuel Madden, and Michael Stonebraker SIGMOD'09. Presented by: Daniel Isaacs

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, Samuel Madden, and Michael Stonebraker SIGMOD'09. Presented by: Daniel Isaacs Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, Samuel Madden, and Michael Stonebraker SIGMOD'09 Presented by: Daniel Isaacs It all starts with cluster computing. MapReduce Why

More information

Was ist dran an einer spezialisierten Data Warehousing platform?

Was ist dran an einer spezialisierten Data Warehousing platform? Was ist dran an einer spezialisierten Data Warehousing platform? Hermann Bär Oracle USA Redwood Shores, CA Schlüsselworte Data warehousing, Exadata, specialized hardware proprietary hardware Introduction

More information

Hadoop Beyond Batch: Real-time Workloads, SQL-on- Hadoop, and thevirtual EDW Headline Goes Here

Hadoop Beyond Batch: Real-time Workloads, SQL-on- Hadoop, and thevirtual EDW Headline Goes Here Hadoop Beyond Batch: Real-time Workloads, SQL-on- Hadoop, and thevirtual EDW Headline Goes Here Marcel Kornacker marcel@cloudera.com Speaker Name or Subhead Goes Here 2013-11-12 Copyright 2013 Cloudera

More information

IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop

IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop #IDUG IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop Frank C. Fillmore, Jr. The Fillmore Group, Inc. The Baltimore/Washington DB2 Users Group December 11, 2014 Agenda The Fillmore

More information

Resource and Performance Distribution Prediction for Large Scale Analytics Queries

Resource and Performance Distribution Prediction for Large Scale Analytics Queries Resource and Performance Distribution Prediction for Large Scale Analytics Queries Prof. Rajiv Ranjan, SMIEEE School of Computing Science, Newcastle University, UK Visiting Scientist, Data61, CSIRO, Australia

More information

Tutorial Outline. Map/Reduce vs. DBMS. MR vs. DBMS [DeWitt and Stonebraker 2008] Acknowledgements. MR is a step backwards in database access

Tutorial Outline. Map/Reduce vs. DBMS. MR vs. DBMS [DeWitt and Stonebraker 2008] Acknowledgements. MR is a step backwards in database access Map/Reduce vs. DBMS Sharma Chakravarthy Information Technology Laboratory Computer Science and Engineering Department The University of Texas at Arlington, Arlington, TX 76009 Email: sharma@cse.uta.edu

More information

MixApart: Decoupled Analytics for Shared Storage Systems. Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp

MixApart: Decoupled Analytics for Shared Storage Systems. Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp MixApart: Decoupled Analytics for Shared Storage Systems Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp Hadoop Pig, Hive Hadoop + Enterprise storage?! Shared storage

More information

EsgynDB Enterprise 2.0 Platform Reference Architecture

EsgynDB Enterprise 2.0 Platform Reference Architecture EsgynDB Enterprise 2.0 Platform Reference Architecture This document outlines a Platform Reference Architecture for EsgynDB Enterprise, built on Apache Trafodion (Incubating) implementation with licensed

More information

CIS 601 Graduate Seminar Presentation Introduction to MapReduce --Mechanism and Applicatoin. Presented by: Suhua Wei Yong Yu

CIS 601 Graduate Seminar Presentation Introduction to MapReduce --Mechanism and Applicatoin. Presented by: Suhua Wei Yong Yu CIS 601 Graduate Seminar Presentation Introduction to MapReduce --Mechanism and Applicatoin Presented by: Suhua Wei Yong Yu Papers: MapReduce: Simplified Data Processing on Large Clusters 1 --Jeffrey Dean

More information

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) 4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) Benchmark Testing for Transwarp Inceptor A big data analysis system based on in-memory computing Mingang Chen1,2,a,

More information

Column-Stores vs. Row-Stores: How Different Are They Really?

Column-Stores vs. Row-Stores: How Different Are They Really? Column-Stores vs. Row-Stores: How Different Are They Really? Daniel J. Abadi, Samuel Madden and Nabil Hachem SIGMOD 2008 Presented by: Souvik Pal Subhro Bhattacharyya Department of Computer Science Indian

More information

Table Compression in Oracle9i Release2. An Oracle White Paper May 2002

Table Compression in Oracle9i Release2. An Oracle White Paper May 2002 Table Compression in Oracle9i Release2 An Oracle White Paper May 2002 Table Compression in Oracle9i Release2 Executive Overview...3 Introduction...3 How It works...3 What can be compressed...4 Cost and

More information

Big Data Infrastructures & Technologies

Big Data Infrastructures & Technologies Big Data Infrastructures & Technologies SQL on Big Data THE DEBATE: DATABASE SYSTEMS VS MAPREDUCE A major step backwards? MapReduce is a step backward in database access Schemas are good Separation of

More information

An Oracle White Paper June Exadata Hybrid Columnar Compression (EHCC)

An Oracle White Paper June Exadata Hybrid Columnar Compression (EHCC) An Oracle White Paper June 2011 (EHCC) Introduction... 3 : Technology Overview... 4 Warehouse Compression... 6 Archive Compression... 7 Conclusion... 9 Introduction enables the highest levels of data compression

More information

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees Pandian Raju 1, Rohan Kadekodi 1, Vijay Chidambaram 1,2, Ittai Abraham 2 1 The University of Texas at Austin 2 VMware Research

More information

Cloud Computing & Visualization

Cloud Computing & Visualization Cloud Computing & Visualization Workflows Distributed Computation with Spark Data Warehousing with Redshift Visualization with Tableau #FIUSCIS School of Computing & Information Sciences, Florida International

More information

Shark: SQL and Rich Analytics at Scale. Michael Xueyuan Han Ronny Hajoon Ko

Shark: SQL and Rich Analytics at Scale. Michael Xueyuan Han Ronny Hajoon Ko Shark: SQL and Rich Analytics at Scale Michael Xueyuan Han Ronny Hajoon Ko What Are The Problems? Data volumes are expanding dramatically Why Is It Hard? Needs to scale out Managing hundreds of machines

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Lecture 22: File system optimizations and advanced topics There s more to filesystems J Standard Performance improvement techniques Alternative important

More information

MAPREDUCE FOR BIG DATA PROCESSING BASED ON NETWORK TRAFFIC PERFORMANCE Rajeshwari Adrakatti

MAPREDUCE FOR BIG DATA PROCESSING BASED ON NETWORK TRAFFIC PERFORMANCE Rajeshwari Adrakatti International Journal of Computer Engineering and Applications, ICCSTAR-2016, Special Issue, May.16 MAPREDUCE FOR BIG DATA PROCESSING BASED ON NETWORK TRAFFIC PERFORMANCE Rajeshwari Adrakatti 1 Department

More information

Evolution of Big Data Facebook. Architecture Summit, Shenzhen, August 2012 Ashish Thusoo

Evolution of Big Data Facebook. Architecture Summit, Shenzhen, August 2012 Ashish Thusoo Evolution of Big Data Architectures@ Facebook Architecture Summit, Shenzhen, August 2012 Ashish Thusoo About Me Currently Co-founder/CEO of Qubole Ran the Data Infrastructure Team at Facebook till 2011

More information

Juxtaposition of Apache Tez and Hadoop MapReduce on Hadoop Cluster - Applying Compression Algorithms

Juxtaposition of Apache Tez and Hadoop MapReduce on Hadoop Cluster - Applying Compression Algorithms , pp.289-295 http://dx.doi.org/10.14257/astl.2017.147.40 Juxtaposition of Apache Tez and Hadoop MapReduce on Hadoop Cluster - Applying Compression Algorithms Dr. E. Laxmi Lydia 1 Associate Professor, Department

More information

Introduction to Hadoop. Owen O Malley Yahoo!, Grid Team

Introduction to Hadoop. Owen O Malley Yahoo!, Grid Team Introduction to Hadoop Owen O Malley Yahoo!, Grid Team owen@yahoo-inc.com Who Am I? Yahoo! Architect on Hadoop Map/Reduce Design, review, and implement features in Hadoop Working on Hadoop full time since

More information

Evaluating Data Storage Structures of Map Reduce

Evaluating Data Storage Structures of Map Reduce The 8th nternational Conference on Computer Science & Education (CCSE 2013) April 26-28, 2013. Colombo, Sri Lanka MoB3.2 Evaluating Data Storage Structures of Map Reduce Haiming Lai, Ming Xu, Jian Xu,

More information

Actian Vector Benchmarks. Cloud Benchmarking Summary Report

Actian Vector Benchmarks. Cloud Benchmarking Summary Report Actian Vector Benchmarks Cloud Benchmarking Summary Report April 2018 The Cloud Database Performance Benchmark Executive Summary The table below shows Actian Vector as evaluated against Amazon Redshift,

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung SOSP 2003 presented by Kun Suo Outline GFS Background, Concepts and Key words Example of GFS Operations Some optimizations in

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff and Shun Tak Leung Google* Shivesh Kumar Sharma fl4164@wayne.edu Fall 2015 004395771 Overview Google file system is a scalable distributed file system

More information

Scalable Web Programming. CS193S - Jan Jannink - 2/25/10

Scalable Web Programming. CS193S - Jan Jannink - 2/25/10 Scalable Web Programming CS193S - Jan Jannink - 2/25/10 Weekly Syllabus 1.Scalability: (Jan.) 2.Agile Practices 3.Ecology/Mashups 4.Browser/Client 7.Analytics 8.Cloud/Map-Reduce 9.Published APIs: (Mar.)*

More information

Embedded Technosolutions

Embedded Technosolutions Hadoop Big Data An Important technology in IT Sector Hadoop - Big Data Oerie 90% of the worlds data was generated in the last few years. Due to the advent of new technologies, devices, and communication

More information

Bigtable: A Distributed Storage System for Structured Data. Andrew Hon, Phyllis Lau, Justin Ng

Bigtable: A Distributed Storage System for Structured Data. Andrew Hon, Phyllis Lau, Justin Ng Bigtable: A Distributed Storage System for Structured Data Andrew Hon, Phyllis Lau, Justin Ng What is Bigtable? - A storage system for managing structured data - Used in 60+ Google services - Motivation:

More information

A Fast and High Throughput SQL Query System for Big Data

A Fast and High Throughput SQL Query System for Big Data A Fast and High Throughput SQL Query System for Big Data Feng Zhu, Jie Liu, and Lijie Xu Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China 100190

More information

Exadata X3 in action: Measuring Smart Scan efficiency with AWR. Franck Pachot Senior Consultant

Exadata X3 in action: Measuring Smart Scan efficiency with AWR. Franck Pachot Senior Consultant Exadata X3 in action: Measuring Smart Scan efficiency with AWR Franck Pachot Senior Consultant 16 March 2013 1 Exadata X3 in action: Measuring Smart Scan efficiency with AWR Exadata comes with new statistics

More information

Shark: SQL and Rich Analytics at Scale. Reynold Xin UC Berkeley

Shark: SQL and Rich Analytics at Scale. Reynold Xin UC Berkeley Shark: SQL and Rich Analytics at Scale Reynold Xin UC Berkeley Challenges in Modern Data Analysis Data volumes expanding. Faults and stragglers complicate parallel database design. Complexity of analysis:

More information

Fusion iomemory PCIe Solutions from SanDisk and Sqrll make Accumulo Hypersonic

Fusion iomemory PCIe Solutions from SanDisk and Sqrll make Accumulo Hypersonic WHITE PAPER Fusion iomemory PCIe Solutions from SanDisk and Sqrll make Accumulo Hypersonic Western Digital Technologies, Inc. 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Executive

More information

Automating Information Lifecycle Management with

Automating Information Lifecycle Management with Automating Information Lifecycle Management with Oracle Database 2c The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

More information

Deep Dive Into Storage Optimization When And How To Use Adaptive Compression. Thomas Fanghaenel IBM Bill Minor IBM

Deep Dive Into Storage Optimization When And How To Use Adaptive Compression. Thomas Fanghaenel IBM Bill Minor IBM Deep Dive Into Storage Optimization When And How To Use Adaptive Compression Thomas Fanghaenel IBM Bill Minor IBM Agenda Recap: Compression in DB2 9 for Linux, Unix and Windows New in DB2 10 for Linux,

More information

Toward Energy-efficient and Fault-tolerant Consistent Hashing based Data Store. Wei Xie TTU CS Department Seminar, 3/7/2017

Toward Energy-efficient and Fault-tolerant Consistent Hashing based Data Store. Wei Xie TTU CS Department Seminar, 3/7/2017 Toward Energy-efficient and Fault-tolerant Consistent Hashing based Data Store Wei Xie TTU CS Department Seminar, 3/7/2017 1 Outline General introduction Study 1: Elastic Consistent Hashing based Store

More information

Column-Stores vs. Row-Stores. How Different are they Really? Arul Bharathi

Column-Stores vs. Row-Stores. How Different are they Really? Arul Bharathi Column-Stores vs. Row-Stores How Different are they Really? Arul Bharathi Authors Daniel J.Abadi Samuel R. Madden Nabil Hachem 2 Contents Introduction Row Oriented Execution Column Oriented Execution Column-Store

More information

Big Data Analytics. Rasoul Karimi

Big Data Analytics. Rasoul Karimi Big Data Analytics Rasoul Karimi Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 1 Outline

More information

V Conclusions. V.1 Related work

V Conclusions. V.1 Related work V Conclusions V.1 Related work Even though MapReduce appears to be constructed specifically for performing group-by aggregations, there are also many interesting research work being done on studying critical

More information

Shark: Hive (SQL) on Spark

Shark: Hive (SQL) on Spark Shark: Hive (SQL) on Spark Reynold Xin UC Berkeley AMP Camp Aug 21, 2012 UC BERKELEY SELECT page_name, SUM(page_views) views FROM wikistats GROUP BY page_name ORDER BY views DESC LIMIT 10; Stage 0: Map-Shuffle-Reduce

More information

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu Database Architecture 2 & Storage Instructor: Matei Zaharia cs245.stanford.edu Summary from Last Time System R mostly matched the architecture of a modern RDBMS» SQL» Many storage & access methods» Cost-based

More information

Databases 2 (VU) ( / )

Databases 2 (VU) ( / ) Databases 2 (VU) (706.711 / 707.030) MapReduce (Part 3) Mark Kröll ISDS, TU Graz Nov. 27, 2017 Mark Kröll (ISDS, TU Graz) MapReduce Nov. 27, 2017 1 / 42 Outline 1 Problems Suited for Map-Reduce 2 MapReduce:

More information

IBM DB2 BLU Acceleration vs. SAP HANA vs. Oracle Exadata

IBM DB2 BLU Acceleration vs. SAP HANA vs. Oracle Exadata Research Report IBM DB2 BLU Acceleration vs. SAP HANA vs. Oracle Exadata Executive Summary The problem: how to analyze vast amounts of data (Big Data) most efficiently. The solution: the solution is threefold:

More information

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa Camdoop Exploiting In-network Aggregation for Big Data Applications costa@imperial.ac.uk joint work with Austin Donnelly, Antony Rowstron, and Greg O Shea (MSR Cambridge) MapReduce Overview Input file

More information

Shark: SQL and Rich Analytics at Scale. Yash Thakkar ( ) Deeksha Singh ( )

Shark: SQL and Rich Analytics at Scale. Yash Thakkar ( ) Deeksha Singh ( ) Shark: SQL and Rich Analytics at Scale Yash Thakkar (2642764) Deeksha Singh (2641679) RDDs as foundation for relational processing in Shark: Resilient Distributed Datasets (RDDs): RDDs can be written at

More information

Hadoop/MapReduce Computing Paradigm

Hadoop/MapReduce Computing Paradigm Hadoop/Reduce Computing Paradigm 1 Large-Scale Data Analytics Reduce computing paradigm (E.g., Hadoop) vs. Traditional database systems vs. Database Many enterprises are turning to Hadoop Especially applications

More information

Big Data Facebook

Big Data Facebook Big Data Architectures@ Facebook QCon London 2012 Ashish Thusoo Outline Big Data @ Facebook - Scope & Scale Evolution of Big Data Architectures @ FB Past, Present and Future Questions Big Data @ FB: Scale

More information

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2011 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007.

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007. Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS Marcin Zukowski Sandor Heman, Niels Nes, Peter Boncz CWI, Amsterdam VLDB 2007 Outline Scans in a DBMS Cooperative Scans Benchmarks DSM version VLDB,

More information

Presented by Nanditha Thinderu

Presented by Nanditha Thinderu Presented by Nanditha Thinderu Enterprise systems are highly distributed and heterogeneous which makes administration a complex task Application Performance Management tools developed to retrieve information

More information

Skipping-oriented Partitioning for Columnar Layouts

Skipping-oriented Partitioning for Columnar Layouts Skipping-oriented Partitioning for Columnar Layouts Liwen Sun, Michael J. Franklin, Jiannan Wang and Eugene Wu University of California Berkeley, Simon Fraser University, Columbia University {liwen, franklin}@berkeley.edu,

More information

Copyright 2012, Oracle and/or its affiliates. All rights reserved.

Copyright 2012, Oracle and/or its affiliates. All rights reserved. 1 Big Data Connectors: High Performance Integration for Hadoop and Oracle Database Melli Annamalai Sue Mavris Rob Abbott 2 Program Agenda Big Data Connectors: Brief Overview Connecting Hadoop with Oracle

More information

The Google File System

The Google File System The Google File System By Ghemawat, Gobioff and Leung Outline Overview Assumption Design of GFS System Interactions Master Operations Fault Tolerance Measurements Overview GFS: Scalable distributed file

More information

HadoopDB: An open source hybrid of MapReduce

HadoopDB: An open source hybrid of MapReduce HadoopDB: An open source hybrid of MapReduce and DBMS technologies Azza Abouzeid, Kamil Bajda-Pawlikowski Daniel J. Abadi, Avi Silberschatz Yale University http://hadoopdb.sourceforge.net October 2, 2009

More information

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Indexing Week 14, Spring 2005 Edited by M. Naci Akkøk, 5.3.2004, 3.3.2005 Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Overview Conventional indexes B-trees Hashing schemes

More information

Accelerating Big Data: Using SanDisk SSDs for Apache HBase Workloads

Accelerating Big Data: Using SanDisk SSDs for Apache HBase Workloads WHITE PAPER Accelerating Big Data: Using SanDisk SSDs for Apache HBase Workloads December 2014 Western Digital Technologies, Inc. 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents

More information

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros Data Clustering on the Parallel Hadoop MapReduce Model Dimitrios Verraros Overview The purpose of this thesis is to implement and benchmark the performance of a parallel K- means clustering algorithm on

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance VLDB 2001, Rome, Italy Best Paper Award Weaving Relations for Cache Performance Anastassia Ailamaki David J. DeWitt Mark D. Hill Marios Skounakis Presented by: Ippokratis Pandis Bottleneck in DBMSs Processor

More information

Crossing the Chasm: Sneaking a parallel file system into Hadoop

Crossing the Chasm: Sneaking a parallel file system into Hadoop Crossing the Chasm: Sneaking a parallel file system into Hadoop Wittawat Tantisiriroj Swapnil Patil, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University In this work Compare and contrast large

More information

IMPROVING THE PERFORMANCE, INTEGRITY, AND MANAGEABILITY OF PHYSICAL STORAGE IN DB2 DATABASES

IMPROVING THE PERFORMANCE, INTEGRITY, AND MANAGEABILITY OF PHYSICAL STORAGE IN DB2 DATABASES IMPROVING THE PERFORMANCE, INTEGRITY, AND MANAGEABILITY OF PHYSICAL STORAGE IN DB2 DATABASES Ram Narayanan August 22, 2003 VERITAS ARCHITECT NETWORK TABLE OF CONTENTS The Database Administrator s Challenge

More information

Large-Scale Data Engineering

Large-Scale Data Engineering Large-Scale Data Engineering SQL on Big Data THE DEBATE: DATABASE SYSTEMS VS MAPREDUCE A major step backwards? MapReduce is a step backward in database access Schemas are good Separation of the schema

More information

A BigData Tour HDFS, Ceph and MapReduce

A BigData Tour HDFS, Ceph and MapReduce A BigData Tour HDFS, Ceph and MapReduce These slides are possible thanks to these sources Jonathan Drusi - SCInet Toronto Hadoop Tutorial, Amir Payberah - Course in Data Intensive Computing SICS; Yahoo!

More information

Crossing the Chasm: Sneaking a parallel file system into Hadoop

Crossing the Chasm: Sneaking a parallel file system into Hadoop Crossing the Chasm: Sneaking a parallel file system into Hadoop Wittawat Tantisiriroj Swapnil Patil, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University In this work Compare and contrast large

More information

The Fusion Distributed File System

The Fusion Distributed File System Slide 1 / 44 The Fusion Distributed File System Dongfang Zhao February 2015 Slide 2 / 44 Outline Introduction FusionFS System Architecture Metadata Management Data Movement Implementation Details Unique

More information

Introduction to Database Services

Introduction to Database Services Introduction to Database Services Shaun Pearce AWS Solutions Architect 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved Today s agenda Why managed database services? A non-relational

More information

In-Memory Data Management

In-Memory Data Management In-Memory Data Management Martin Faust Research Assistant Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University of Potsdam Agenda 2 1. Changed Hardware 2.

More information

Approaching the Petabyte Analytic Database: What I learned

Approaching the Petabyte Analytic Database: What I learned Disclaimer This document is for informational purposes only and is subject to change at any time without notice. The information in this document is proprietary to Actian and no part of this document may

More information

MapReduce, Hadoop and Spark. Bompotas Agorakis

MapReduce, Hadoop and Spark. Bompotas Agorakis MapReduce, Hadoop and Spark Bompotas Agorakis Big Data Processing Most of the computations are conceptually straightforward on a single machine but the volume of data is HUGE Need to use many (1.000s)

More information

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Administrivia Final Exam. Administrivia Final Exam

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Administrivia Final Exam. Administrivia Final Exam Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#28: Modern Database Systems Administrivia Final Exam Who: You What: R&G Chapters 15-22 When: Tuesday

More information

BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE

BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE BRETT WENINGER, MANAGING DIRECTOR 10/21/2014 ADURANT APPROACH TO BIG DATA Align to Un/Semi-structured Data Instead of Big Scale out will become Big Greatest

More information

Part 1: Indexes for Big Data

Part 1: Indexes for Big Data JethroData Making Interactive BI for Big Data a Reality Technical White Paper This white paper explains how JethroData can help you achieve a truly interactive interactive response time for BI on big data,

More information

CONSOLIDATING RISK MANAGEMENT AND REGULATORY COMPLIANCE APPLICATIONS USING A UNIFIED DATA PLATFORM

CONSOLIDATING RISK MANAGEMENT AND REGULATORY COMPLIANCE APPLICATIONS USING A UNIFIED DATA PLATFORM CONSOLIDATING RISK MANAGEMENT AND REGULATORY COMPLIANCE APPLICATIONS USING A UNIFIED PLATFORM Executive Summary Financial institutions have implemented and continue to implement many disparate applications

More information

OLTP vs. OLAP Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications

OLTP vs. OLAP Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications OLTP vs. OLAP Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#25: OldSQL vs. NoSQL vs. NewSQL On-line Transaction Processing: Short-lived txns.

More information

NEC Express5800 A2040b 22TB Data Warehouse Fast Track. Reference Architecture with SW mirrored HGST FlashMAX III

NEC Express5800 A2040b 22TB Data Warehouse Fast Track. Reference Architecture with SW mirrored HGST FlashMAX III NEC Express5800 A2040b 22TB Data Warehouse Fast Track Reference Architecture with SW mirrored HGST FlashMAX III Based on Microsoft SQL Server 2014 Data Warehouse Fast Track (DWFT) Reference Architecture

More information

CS / Cloud Computing. Recitation 3 September 9 th & 11 th, 2014

CS / Cloud Computing. Recitation 3 September 9 th & 11 th, 2014 CS15-319 / 15-619 Cloud Computing Recitation 3 September 9 th & 11 th, 2014 Overview Last Week s Reflection --Project 1.1, Quiz 1, Unit 1 This Week s Schedule --Unit2 (module 3 & 4), Project 1.2 Questions

More information

Implementation Techniques

Implementation Techniques V Implementation Techniques 34 Efficient Evaluation of the Valid-Time Natural Join 35 Efficient Differential Timeslice Computation 36 R-Tree Based Indexing of Now-Relative Bitemporal Data 37 Light-Weight

More information

Cloud Computing CS

Cloud Computing CS Cloud Computing CS 15-319 Programming Models- Part III Lecture 6, Feb 1, 2012 Majd F. Sakr and Mohammad Hammoud 1 Today Last session Programming Models- Part II Today s session Programming Models Part

More information

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context 1 Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes

More information