Tegra Time-evolving Graph Processing on Commodity Clusters

Size: px
Start display at page:

Download "Tegra Time-evolving Graph Processing on Commodity Clusters"

Transcription

1 Tegra Time-evolving Graph Processing on ommodity lusters SIM SE 17 2 March 2017 nand Iyer Qifan Pu Joseph Gonzalez Ion Stoica

2 1 Graphs are everywhere Social Networks

3 2 Graphs are everywhere Gnutella network subgraph

4 Graphs are everywhere 3

5 4 Graphs are everywhere Metabolic network of a single cell organism Tuberculosis

6 5 Plenty of interest in processing them Graph MS 25% of all enterprises by end of Many open-source and research prototypes on distributed graph processing frameworks: Giraph, Pregel, GraphLab, GraphX, 1 Forrester Research

7 6 Real-world Graphs are ynamic Earthquake Occurrence ensity

8 Real-world Graphs are ynamic 7

9 Real-world Graphs are ynamic 8

10 9 Processing Time-evolving Graphs Many interesting business and research insights possible by processing such dynamic graphs little or no work in supporting such workloads in existing big-data graph-processing frameworks

11 10 hallenge #1: Storage Time E G 1 G 2 G 3 Redundant storage of graph entities over time

12 11 hallenge #2: omputation Time E G 1 G 2 G 3 E R 1 R 2 R 3 Wasted computation across snapshots

13 12 hallenge #3: ommunication Time E G 1 G 2 G 3 E uplicate messages sent over the network

14 13 How do we process time-evolving, Share Storage dynamically changing ommunication graphs omputation efficiently? Tegra

15 14 How do we process time-evolving, dynamically changing graphs efficiently? Share Storage ommunication omputation Tegra

16 15 Sharing Storage Time E G 1 G 2 G 3 δg 1 δg 2 Storing deltas result in the most optimal storage, but creating snapshot from deltas can be expensive! δg 3 E

17 16 etter Storage Solution Use a persistent datastructure Snapshot 1 Snapshot 2 t 1 t 2 Store snapshots in Persistent daptive Radix Trees (PRT)

18 17 Graph Snapshot Index Snapshot I Management Snapshot 1 Snapshot 2 Snapshot 1 Snapshot 2 t 1 t 1 t 2 t 2 Vertex Edge Partition Shares structure between snapshots, and enables efficient operations

19 18 How do we process time-evolving, dynamically changing graphs efficiently? Share Storage ommunication omputation Tegra

20 19 Graph Parallel bstraction - GS Gather: ccumulate information from neighborhood pply: pply the accumulated value Scatter: Update adjacent edges & vertices with updated value

21 20 Processing Multiple Snapshots Time E G 1 G 2 G 3 for (snapshot in snapshots) { for (stage in graph-parallel-computation) { } }

22 21 Reducing Redundant Messages for (step in graph-parallel-computation) { for (snapshot in snapshots) { } } Time E E G 1 G 2 G 3 an potentially avoid large number of redundant messages

23 22 How do we process time-evolving, dynamically changing graphs efficiently? Share Storage ommunication omputation Tegra

24 23 Updating Results If result from a previous snapshot is available, how can we reuse them? Three approaches in the past: Restart the algorithm Redundant computations Memoization (GraphInc 1 ) Too much state Operator-wise state (Naiad 2,3 ) Too much overhead Fault tolerance 1 Facilitating real- time graph mining, loud 12 2 Naiad: timely dataflow system, SOSP 13 3 ifferential dataflow, IR 13

25 24 Key Idea Leverage how GS model executes computation Each iteration in GS modifies the graph by a little an be seen as another time-evolving graph! Upon change to a graph: Mark parts of the graph that changed Expand the marked parts to involve regions for recomputation in every iteration orrow results from parts not changed

26 25 Incremental omputation Iterations G 0 1 G 1 1 G 2 1 Time G 0 2 G 1 2 G 2 2 Larger graphs and more iterations can yield significant improvements

27 26 Implementation & Evaluation Implemented on Spark 2.0 Extended dataframes with versioning information and iterate operator Extended GraphX PI to allow computation on multiple snapshots Preliminary evaluation on two real-world graphs Twitter: 41,652,230 vertices, 1,468,365,182 edges uk-2007: 105,896,555 vertices, 3,738,733,648 edges

28 27 enefits of Storage Sharing Storage Reduction atastructure overheads Significant improvements with more snapshots Number of Snapshots

29 28 enefits of sharing communication Time (s) Number of Snapshots GraphX Tegra

30 29 enefits of Incremental omputing 250 omputation Time (s) Only 5% of the graph modified in every snapshot 50x reduction by processing only the modified part Incremental Full omputation Snapshot I

31 30 Summary & Future Work Processing time-evolving graph efficiently can be useful Sharing storage, computation and communication key to efficient time-evolving graph analysis ode release Incremental pattern matching pproximate graph analytics Geo-distributed graph analytics

GraphX. Graph Analytics in Spark. Ankur Dave Graduate Student, UC Berkeley AMPLab. Joint work with Joseph Gonzalez, Reynold Xin, Daniel

GraphX. Graph Analytics in Spark. Ankur Dave Graduate Student, UC Berkeley AMPLab. Joint work with Joseph Gonzalez, Reynold Xin, Daniel GraphX Graph nalytics in Spark nkur ave Graduate Student, U Berkeley MPLab Joint work with Joseph Gonzalez, Reynold Xin, aniel U BRKLY rankshaw, Michael Franklin, and Ion Stoica Graphs Social Networks

More information

Big Graph Processing. Fenggang Wu Nov. 6, 2016

Big Graph Processing. Fenggang Wu Nov. 6, 2016 Big Graph Processing Fenggang Wu Nov. 6, 2016 Agenda Project Publication Organization Pregel SIGMOD 10 Google PowerGraph OSDI 12 CMU GraphX OSDI 14 UC Berkeley AMPLab PowerLyra EuroSys 15 Shanghai Jiao

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 14: Distributed Graph Processing Motivation Many applications require graph processing E.g., PageRank Some graph data sets are very large

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 14: Distributed Graph Processing Motivation Many applications require graph processing E.g., PageRank Some graph data sets are very large

More information

GraphX: Graph Processing in a Distributed Dataflow Framework

GraphX: Graph Processing in a Distributed Dataflow Framework GraphX: Graph Processing in a Distributed Dataflow Framework Joseph E. Gonzalez, University of California, Berkeley; Reynold S. Xin, University of California, Berkeley, and Databricks; Ankur Dave, Daniel

More information

modern database systems lecture 10 : large-scale graph processing

modern database systems lecture 10 : large-scale graph processing modern database systems lecture 1 : large-scale graph processing Aristides Gionis spring 18 timeline today : homework is due march 6 : homework out april 5, 9-1 : final exam april : homework due graphs

More information

GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. Xiaowei ZHU Tsinghua University

GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. Xiaowei ZHU Tsinghua University GridGraph: Large-Scale Graph Processing on a Single Machine Using -Level Hierarchical Partitioning Xiaowei ZHU Tsinghua University Widely-Used Graph Processing Shared memory Single-node & in-memory Ligra,

More information

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context 1 Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes

More information

: Gaining Command on Geo-Distributed Graph Analytics

: Gaining Command on Geo-Distributed Graph Analytics M : Gaining Command on Geo-Distributed Graph Analytics Anand Padmanabha Iyer?, Aurojit Panda, Mosharaf Chowdhury, Aditya Akella, Scott Shenker?, Ion Stoica?? University of California, Berkeley NYU University

More information

Analytic Cloud with. Shelly Garion. IBM Research -- Haifa IBM Corporation

Analytic Cloud with. Shelly Garion. IBM Research -- Haifa IBM Corporation Analytic Cloud with Shelly Garion IBM Research -- Haifa 2014 IBM Corporation Why Spark? Apache Spark is a fast and general open-source cluster computing engine for big data processing Speed: Spark is capable

More information

Graph-Processing Systems. (focusing on GraphChi)

Graph-Processing Systems. (focusing on GraphChi) Graph-Processing Systems (focusing on GraphChi) Recall: PageRank in MapReduce (Hadoop) Input: adjacency matrix H D F S (a,[c]) (b,[a]) (c,[a,b]) (c,pr(a) / out (a)), (a,[c]) (a,pr(b) / out (b)), (b,[a])

More information

Unifying Big Data Workloads in Apache Spark

Unifying Big Data Workloads in Apache Spark Unifying Big Data Workloads in Apache Spark Hossein Falaki @mhfalaki Outline What s Apache Spark Why Unification Evolution of Unification Apache Spark + Databricks Q & A What s Apache Spark What is Apache

More information

GraphX: Graph Processing in a Distributed Dataflow Framework

GraphX: Graph Processing in a Distributed Dataflow Framework GraphX: Graph Processing in a Distributed Dataflow Framework Joseph Gonzalez Postdoc, UC-Berkeley MPLab Co-founder, GraphLab Inc. Joint work with Reynold Xin, nkur Dave, Daniel Crankshaw, Michael Franklin,

More information

Why do we need graph processing?

Why do we need graph processing? Why do we need graph processing? Community detection: suggest followers? Determine what products people will like Count how many people are in different communities (polling?) Graphs are Everywhere Group

More information

GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

GraphX: Unifying Data-Parallel and Graph-Parallel Analytics GraphX: Unifying ata-parallel and Graph-Parallel nalytics Presented by aniel rankshaw Joint work with Reynold Xin, Joseph Gonzalez, nkur ave, Michael Franklin, and Ion Stoica Spark Meetup 3/25/2014 U BERKELEY

More information

Survey on Incremental MapReduce for Data Mining

Survey on Incremental MapReduce for Data Mining Survey on Incremental MapReduce for Data Mining Trupti M. Shinde 1, Prof.S.V.Chobe 2 1 Research Scholar, Computer Engineering Dept., Dr. D. Y. Patil Institute of Engineering &Technology, 2 Associate Professor,

More information

Graph Processing. Connor Gramazio Spiros Boosalis

Graph Processing. Connor Gramazio Spiros Boosalis Graph Processing Connor Gramazio Spiros Boosalis Pregel why not MapReduce? semantics: awkward to write graph algorithms efficiency: mapreduces serializes state (e.g. all nodes and edges) while pregel keeps

More information

Apache Flink Big Data Stream Processing

Apache Flink Big Data Stream Processing Apache Flink Big Data Stream Processing Tilmann Rabl Berlin Big Data Center www.dima.tu-berlin.de bbdc.berlin rabl@tu-berlin.de XLDB 11.10.2017 1 2013 Berlin Big Data Center All Rights Reserved DIMA 2017

More information

The GraphX Graph Processing System

The GraphX Graph Processing System The GraphX Graph Processing System Daniel Crankshaw Ankur Dave Reynold S. Xin Joseph E. Gonzalez Michael J. Franklin Ion Stoica UC Berkeley AMPLab {crankshaw, ankurd, rxin, jegonzal, franklin, istoica@cs.berkeley.edu

More information

ASAP: Fast, Approximate Graph Pattern Mining at Scale

ASAP: Fast, Approximate Graph Pattern Mining at Scale ASAP: Fast, Approximate Graph Pattern Mining at Scale Anand Padmanabha Iyer, UC Berkeley; Zaoxing Liu and Xin Jin, Johns Hopkins University; Shivaram Venkataraman, Microsoft Research / University of Wisconsin;

More information

Resilient Distributed Datasets

Resilient Distributed Datasets Resilient Distributed Datasets A Fault- Tolerant Abstraction for In- Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,

More information

Large Scale Graph Processing Pregel, GraphLab and GraphX

Large Scale Graph Processing Pregel, GraphLab and GraphX Large Scale Graph Processing Pregel, GraphLab and GraphX Amir H. Payberah amir@sics.se KTH Royal Institute of Technology Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 1 / 76 Amir H. Payberah

More information

Distributed Graph Algorithms

Distributed Graph Algorithms Distributed Graph Algorithms Alessio Guerrieri University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Contents 1 Introduction

More information

Twitter data Analytics using Distributed Computing

Twitter data Analytics using Distributed Computing Twitter data Analytics using Distributed Computing Uma Narayanan Athrira Unnikrishnan Dr. Varghese Paul Dr. Shelbi Joseph Research Scholar M.tech Student Professor Assistant Professor Dept. of IT, SOE

More information

Fast, Interactive, Language-Integrated Cluster Computing

Fast, Interactive, Language-Integrated Cluster Computing Spark Fast, Interactive, Language-Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica www.spark-project.org

More information

GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

GraphX: Unifying Data-Parallel and Graph-Parallel Analytics GraphX: Unifying Data-Parallel and Graph-Parallel Analytics Reynold S. Xin Daniel Crankshaw Ankur Dave Joseph E. Gonzalez Michael J. Franklin Ion Stoica UC Berkeley AMPLab {rxin, crankshaw, ankurd, jegonzal,

More information

Analyzing Flight Data

Analyzing Flight Data IBM Analytics Analyzing Flight Data Jeff Carlson Rich Tarro July 21, 2016 2016 IBM Corporation Agenda Spark Overview a quick review Introduction to Graph Processing and Spark GraphX GraphX Overview Demo

More information

Overview. Prerequisites. Course Outline. Course Outline :: Apache Spark Development::

Overview. Prerequisites. Course Outline. Course Outline :: Apache Spark Development:: Title Duration : Apache Spark Development : 4 days Overview Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized

More information

2/26/2017. Originally developed at the University of California - Berkeley's AMPLab

2/26/2017. Originally developed at the University of California - Berkeley's AMPLab Apache is a fast and general engine for large-scale data processing aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes Low latency: sub-second

More information

GraFBoost: Using accelerated flash storage for external graph analytics

GraFBoost: Using accelerated flash storage for external graph analytics GraFBoost: Using accelerated flash storage for external graph analytics Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu and Arvind MIT CSAIL Funded by: 1 Large Graphs are Found Everywhere in Nature

More information

FINE-GRAIN INCREMENTAL PROCESSING OF MAPREDUCE AND MINING IN BIG DATA ENVIRONMENT

FINE-GRAIN INCREMENTAL PROCESSING OF MAPREDUCE AND MINING IN BIG DATA ENVIRONMENT FINE-GRAIN INCREMENTAL PROCESSING OF MAPREDUCE AND MINING IN BIG DATA ENVIRONMENT S.SURESH KUMAR, Jay Shriram Group of Institutions Tirupur sureshmecse25@gmail.com Mr.A.M.RAVISHANKKAR M.E., Assistant Professor,

More information

PREDICTIVE DATACENTER ANALYTICS WITH STRYMON

PREDICTIVE DATACENTER ANALYTICS WITH STRYMON PREDICTIVE DATACENTER ANALYTICS WITH STRYMON Vasia Kalavri kalavriv@inf.ethz.ch QCon San Francisco 14 November 2017 Support: ABOUT ME Postdoc at ETH Zürich Systems Group: https://www.systems.ethz.ch/ PMC

More information

Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao Yi Ong, Swaroop Ramaswamy, and William Song.

Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao Yi Ong, Swaroop Ramaswamy, and William Song. CME 323: Distributed Algorithms and Optimization, Spring 2015 http://stanford.edu/~rezab/dao. Instructor: Reza Zadeh, Databricks and Stanford. Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao

More information

The age of Big Data Big Data for Oracle Database Professionals

The age of Big Data Big Data for Oracle Database Professionals The age of Big Data Big Data for Oracle Database Professionals Oracle OpenWorld 2017 #OOW17 SessionID: SUN5698 Tom S. Reddy tom.reddy@datareddy.com About the Speaker COLLABORATE & OpenWorld Speaker IOUG

More information

A Hierarchical Synchronous Parallel Model for Wide-Area Graph Analytics

A Hierarchical Synchronous Parallel Model for Wide-Area Graph Analytics A Hierarchical Synchronous Parallel Model for Wide-Area Graph Analytics Shuhao Liu*, Li Chen, Baochun Li, Aiden Carnegie University of Toronto April 17, 2018 Graph Analytics What is Graph Analytics? 2

More information

Graph Data Management

Graph Data Management Graph Data Management Analysis and Optimization of Graph Data Frameworks presented by Fynn Leitow Overview 1) Introduction a) Motivation b) Application for big data 2) Choice of algorithms 3) Choice of

More information

Jure Leskovec Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah

Jure Leskovec Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah Jure Leskovec (@jure) Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah 2 My research group at Stanford: Mining and modeling large social and information networks

More information

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 3, Ver. IV (May-Jun. 2016), PP 125-129 www.iosrjournals.org I ++ Mapreduce: Incremental Mapreduce for

More information

Pregel. Ali Shah

Pregel. Ali Shah Pregel Ali Shah s9alshah@stud.uni-saarland.de 2 Outline Introduction Model of Computation Fundamentals of Pregel Program Implementation Applications Experiments Issues with Pregel 3 Outline Costs of Computation

More information

15-388/688 - Practical Data Science: Big data and MapReduce. J. Zico Kolter Carnegie Mellon University Spring 2018

15-388/688 - Practical Data Science: Big data and MapReduce. J. Zico Kolter Carnegie Mellon University Spring 2018 15-388/688 - Practical Data Science: Big data and MapReduce J. Zico Kolter Carnegie Mellon University Spring 2018 1 Outline Big data Some context in distributed computing map + reduce MapReduce MapReduce

More information

Sub-millisecond Stateful Stream Querying over Fast-evolving Linked Data

Sub-millisecond Stateful Stream Querying over Fast-evolving Linked Data Sub-millisecond Stateful Stream Querying over Fast-evolving Linked Data Yunhao Zhang, Rong Chen, Haibo Chen Institute of Parallel and Distributed Systems (IPADS) Shanghai Jiao Tong University Stream Query

More information

Naiad (Timely Dataflow) & Streaming Systems

Naiad (Timely Dataflow) & Streaming Systems Naiad (Timely Dataflow) & Streaming Systems CS 848: Models and Applications of Distributed Data Systems Mon, Nov 7th 2016 Amine Mhedhbi What is Timely Dataflow?! What is its significance? Dataflow?! Dataflow?!

More information

Rocksteady: Fast Migration for Low-Latency In-memory Storage. Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman

Rocksteady: Fast Migration for Low-Latency In-memory Storage. Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman Rocksteady: Fast Migration for Low-Latency In-memory Storage Chinmay Kulkarni, niraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman 1 Introduction Distributed low-latency in-memory key-value stores are

More information

Computational Social Choice in the Cloud

Computational Social Choice in the Cloud Computational Social Choice in the Cloud Theresa Csar, Martin Lackner, Emanuel Sallinger, Reinhard Pichler Technische Universität Wien Oxford University PPI, Stuttgart, March 2017 By Sam Johnston [CC BY-SA

More information

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Presented by: Dishant Mittal Authors: Juwei Shi, Yunjie Qiu, Umar Firooq Minhas, Lemei Jiao, Chen Wang, Berthold Reinwald and Fatma

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications Spark In- Memory Cluster Computing for Iterative and Interactive Applications Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,

More information

Experimental Analysis of Distributed Graph Systems

Experimental Analysis of Distributed Graph Systems Experimental Analysis of Distributed Graph ystems Khaled Ammar, M. Tamer Özsu David R. Cheriton chool of Computer cience University of Waterloo, Waterloo, Ontario, Canada {khaled.ammar, tamer.ozsu}@uwaterloo.ca

More information

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. by Google Research. presented by Weichen Wang

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. by Google Research. presented by Weichen Wang TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS by Google Research presented by Weichen Wang 2016.11.28 OUTLINE Introduction The Programming Model The Implementation Single

More information

Chapter 4: Apache Spark

Chapter 4: Apache Spark Chapter 4: Apache Spark Lecture Notes Winter semester 2016 / 2017 Ludwig-Maximilians-University Munich PD Dr. Matthias Renz 2015, Based on lectures by Donald Kossmann (ETH Zürich), as well as Jure Leskovec,

More information

TI2736-B Big Data Processing. Claudia Hauff

TI2736-B Big Data Processing. Claudia Hauff TI2736-B Big Data Processing Claudia Hauff ti2736b-ewi@tudelft.nl Intro Streams Streams Map Reduce HDFS Pig Ctd. Graphs Pig Design Patterns Hadoop Ctd. Giraph Zoo Keeper Spark Spark Ctd. Learning objectives

More information

Research challenges in data-intensive computing The Stratosphere Project Apache Flink

Research challenges in data-intensive computing The Stratosphere Project Apache Flink Research challenges in data-intensive computing The Stratosphere Project Apache Flink Seif Haridi KTH/SICS haridi@kth.se e2e-clouds.org Presented by: Seif Haridi May 2014 Research Areas Data-intensive

More information

Dynamic Large-Scale Graph Processing over Data Streams with Community Detection as a Case Study

Dynamic Large-Scale Graph Processing over Data Streams with Community Detection as a Case Study Dynamic Large-Scale Graph Processing over Data Streams with Community Detection as a Case Study by Tariq Abughofa A thesis submitted to the School of Computing in conformity with the requirements for the

More information

Naiad. a timely dataflow model

Naiad. a timely dataflow model Naiad a timely dataflow model What s it hoping to achieve? 1. high throughput 2. low latency 3. incremental computation Why? So much data! Problems with other, contemporary dataflow systems: 1. Too specific

More information

RStream:Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine

RStream:Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine RStream:Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine Guoqing Harry Xu Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, UCLA Nanjing University Facebook

More information

DISTRIBUTED graph processing systems are widely employed

DISTRIBUTED graph processing systems are widely employed 1 Zorro: Zero-Cost Reactive Failure Recovery in Distributed Graph Processing Mayank Pundir, Luke M. Leslie, Indranil Gupta, Roy H. Campbell Abstract Distributed graph processing systems are an emerging

More information

Cloud, Big Data & Linear Algebra

Cloud, Big Data & Linear Algebra Cloud, Big Data & Linear Algebra Shelly Garion IBM Research -- Haifa 2014 IBM Corporation What is Big Data? 2 Global Data Volume in Exabytes What is Big Data? 2005 2012 2017 3 Global Data Volume in Exabytes

More information

PROJECT PROPOSALS: COMMUNITY DETECTION AND ENTITY RESOLUTION. Donatella Firmani

PROJECT PROPOSALS: COMMUNITY DETECTION AND ENTITY RESOLUTION. Donatella Firmani PROJECT PROPOSALS: COMMUNITY DETECTION AND ENTITY RESOLUTION Donatella Firmani donatella.firmani@uniroma3.it PROJECT 1: COMMUNITY DETECTION What is Community Detection? What Social Network Analysis is?

More information

AN EXPERIMENTAL COMPARISON OF PARTITIONING STRATEGIES IN DISTRIBUTED GRAPH PROCESSING SHIV VERMA THESIS

AN EXPERIMENTAL COMPARISON OF PARTITIONING STRATEGIES IN DISTRIBUTED GRAPH PROCESSING SHIV VERMA THESIS c 2017 Shiv Verma AN EXPERIMENTAL COMPARISON OF PARTITIONING STRATEGIES IN DISTRIBUTED GRAPH PROCESSING BY SHIV VERMA THESIS Submitted in partial fulfillment of the requirements for the degree of Master

More information

DRIZZLE: FAST AND Adaptable STREAM PROCESSING AT SCALE

DRIZZLE: FAST AND Adaptable STREAM PROCESSING AT SCALE DRIZZLE: FAST AND Adaptable STREAM PROCESSING AT SCALE Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi, Michael Franklin, Benjamin Recht, Ion Stoica STREAMING WORKLOADS

More information

Data Platforms and Pattern Mining

Data Platforms and Pattern Mining Morteza Zihayat Data Platforms and Pattern Mining IBM Corporation About Myself IBM Software Group Big Data Scientist 4Platform Computing, IBM (2014 Now) PhD Candidate (2011 Now) 4Lassonde School of Engineering,

More information

Batch & Stream Graph Processing with Apache Flink. Vasia

Batch & Stream Graph Processing with Apache Flink. Vasia Batch & Stream Graph Processing with Apache Flink Vasia Kalavri vasia@apache.org @vkalavri Outline Distributed Graph Processing Gelly: Batch Graph Processing with Flink Gelly-Stream: Continuous Graph

More information

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications Spark In- Memory Cluster Computing for Iterative and Interactive Applications Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,

More information

Apache Spark Graph Performance with Memory1. February Page 1 of 13

Apache Spark Graph Performance with Memory1. February Page 1 of 13 Apache Spark Graph Performance with Memory1 February 2017 Page 1 of 13 Abstract Apache Spark is a powerful open source distributed computing platform focused on high speed, large scale data processing

More information

refers to the preparation of the next to-be-processed Such a procedure can be arbitrary, because the sequence

refers to the preparation of the next to-be-processed Such a procedure can be arbitrary, because the sequence Version Traveler: Fast and Memory-Efficient Version Switching in Graph Processing Systems Xiaoen Ju Dan Williams Hani Jamjoom Kang G. Shin University of Michigan IBM T.J. Watson Research Center Abstract

More information

Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety

Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety Abhishek

More information

Data-Intensive Distributed Computing

Data-Intensive Distributed Computing Data-Intensive Distributed Computing CS 451/651 431/631 (Winter 2018) Part 8: Analyzing Graphs, Redux (1/2) March 20, 2018 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

More information

Hadoop 2.x Core: YARN, Tez, and Spark. Hortonworks Inc All Rights Reserved

Hadoop 2.x Core: YARN, Tez, and Spark. Hortonworks Inc All Rights Reserved Hadoop 2.x Core: YARN, Tez, and Spark YARN Hadoop Machine Types top-of-rack switches core switch client machines have client-side software used to access a cluster to process data master nodes run Hadoop

More information

IMPROVING MAPREDUCE FOR MINING EVOLVING BIG DATA USING TOP K RULES

IMPROVING MAPREDUCE FOR MINING EVOLVING BIG DATA USING TOP K RULES IMPROVING MAPREDUCE FOR MINING EVOLVING BIG DATA USING TOP K RULES Vishakha B. Dalvi 1, Ranjit R. Keole 2 1CSIT, HVPM s College of Engineering & Technology, SGB Amravati University, Maharashtra, INDIA

More information

Asynchronous Distributed Incremental Computation on Evolving Graphs

Asynchronous Distributed Incremental Computation on Evolving Graphs Asynchronous Distributed Incremental Computation on Evolving Graphs Jiangtao Yin( ) and Lixin Gao University of Massachusetts Amherst, USA {yin, lgao}@ecs.umass.edu Abstract. Graph algorithms have become

More information

DATA SCIENCE USING SPARK: AN INTRODUCTION

DATA SCIENCE USING SPARK: AN INTRODUCTION DATA SCIENCE USING SPARK: AN INTRODUCTION TOPICS COVERED Introduction to Spark Getting Started with Spark Programming in Spark Data Science with Spark What next? 2 DATA SCIENCE PROCESS Exploratory Data

More information

Cloudline Autonomous Driving Solutions. Accelerating insights through a new generation of Data and Analytics October, 2018

Cloudline Autonomous Driving Solutions. Accelerating insights through a new generation of Data and Analytics October, 2018 Cloudline Autonomous Driving Solutions Accelerating insights through a new generation of Data and Analytics October, 2018 HPE big data analytics solutions power the data-driven enterprise Secure, workload-optimized

More information

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 60 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Pregel: A System for Large-Scale Graph Processing

More information

Latency-Tolerant Software Distributed Shared Memory

Latency-Tolerant Software Distributed Shared Memory Latency-Tolerant Software Distributed Shared Memory Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin University of Washington USENIX ATC 2015 July 9, 2015 25

More information

A Hybrid Solution for Mixed Workloads on Dynamic Graphs

A Hybrid Solution for Mixed Workloads on Dynamic Graphs A Hybrid Solution for Mixed Workloads on Dynamic Graphs Mahashweta Das, Alkis Simitsis, Kevin Wilkinson GRADES2016: Graph Data-management Experiences & Systems June 24, 2016 Background Graphs are everywhere!

More information

Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges

Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Abhishek Santra 1 and Sanjukta Bhowmick 2 1 Information Technology Laboratory, CSE Department, University of

More information

Dell In-Memory Appliance for Cloudera Enterprise

Dell In-Memory Appliance for Cloudera Enterprise Dell In-Memory Appliance for Cloudera Enterprise Spark Technology Overview and Streaming Workload Use Cases Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert Armando_Acosta@Dell.com/

More information

CSE 701: LARGE-SCALE GRAPH MINING. A. Erdem Sariyuce

CSE 701: LARGE-SCALE GRAPH MINING. A. Erdem Sariyuce CSE 701: LARGE-SCALE GRAPH MINING A. Erdem Sariyuce WHO AM I? My name is Erdem Office: 323 Davis Hall Office hours: Wednesday 2-4 pm Research on graph (network) mining & management Practical algorithms

More information

Active Archive and the State of the Industry

Active Archive and the State of the Industry Active Archive and the State of the Industry Taking Data Archiving to the Next Level Abstract This report describes the state of the active archive market. New Applications Fuel Digital Archive Market

More information

An Exascale Programming, Multi objective Optimisation and Resilience Management Environment Based on Nested Recursive Parallelism.

An Exascale Programming, Multi objective Optimisation and Resilience Management Environment Based on Nested Recursive Parallelism. This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No. 671603 An Exascale Programming, ulti objective Optimisation and Resilience

More information

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan Coflow Recent Advances and What s Next? Mosharaf Chowdhury University of Michigan Rack-Scale Computing Datacenter-Scale Computing Geo-Distributed Computing Coflow Networking Open Source Apache Spark Open

More information

Spark. Cluster Computing with Working Sets. Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica.

Spark. Cluster Computing with Working Sets. Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica. Spark Cluster Computing with Working Sets Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica UC Berkeley Background MapReduce and Dryad raised level of abstraction in cluster

More information

gspan: Graph-Based Substructure Pattern Mining

gspan: Graph-Based Substructure Pattern Mining University of Illinois at Urbana-Champaign February 3, 2017 Agenda What motivated the development of gspan? Technical Preliminaries Exploring the gspan algorithm Experimental Performance Evaluation Introduction

More information

Apache Flink. Alessandro Margara

Apache Flink. Alessandro Margara Apache Flink Alessandro Margara alessandro.margara@polimi.it http://home.deib.polimi.it/margara Recap: scenario Big Data Volume and velocity Process large volumes of data possibly produced at high rate

More information

Optimistic Recovery for Iterative Dataflows in Action

Optimistic Recovery for Iterative Dataflows in Action Optimistic Recovery for Iterative Dataflows in Action Sergey Dudoladov 1 Asterios Katsifodimos 1 Chen Xu 1 Stephan Ewen 2 Volker Markl 1 Sebastian Schelter 1 Kostas Tzoumas 2 1 Technische Universität Berlin

More information

Programming Models and Tools for Distributed Graph Processing

Programming Models and Tools for Distributed Graph Processing Programming Models and Tools for Distributed Graph Processing Vasia Kalavri kalavriv@inf.ethz.ch 31st British International Conference on Databases 10 July 2017, London, UK ABOUT ME Postdoctoral Fellow

More information

Automatic Scaling Iterative Computations. Aug. 7 th, 2012

Automatic Scaling Iterative Computations. Aug. 7 th, 2012 Automatic Scaling Iterative Computations Guozhang Wang Cornell University Aug. 7 th, 2012 1 What are Non-Iterative Computations? Non-iterative computation flow Directed Acyclic Examples Batch style analytics

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

hyperx: scalable hypergraph processing

hyperx: scalable hypergraph processing hyperx: scalable hypergraph processing Jin Huang November 15, 2015 The University of Melbourne overview Research Outline Scalable Hypergraph Processing Problem and Challenge Idea Solution Implementation

More information

Similarities and Differences Between Parallel Systems and Distributed Systems

Similarities and Differences Between Parallel Systems and Distributed Systems Similarities and Differences Between Parallel Systems and Distributed Systems Pulasthi Wickramasinghe, Geoffrey Fox School of Informatics and Computing,Indiana University, Bloomington, IN 47408, USA In

More information

Zorro: Zero-Cost Reactive Failure Recovery in Distributed Graph Processing

Zorro: Zero-Cost Reactive Failure Recovery in Distributed Graph Processing Zorro: Zero-Cost Reactive Failure Recovery in Distributed Graph Processing Mayank Pundir, Luke M. Leslie, Indranil Gupta and Roy H. Campbell University of Illinois at Urbana-Champaign {pundir2, lmlesli2,

More information

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia MapReduce Spark Some slides are adapted from those of Jeff Dean and Matei Zaharia What have we learnt so far? Distributed storage systems consistency semantics protocols for fault tolerance Paxos, Raft,

More information

A Relaxed Consistency based DSM for Asynchronous Parallelism. Keval Vora, Sai Charan Koduru, Rajiv Gupta

A Relaxed Consistency based DSM for Asynchronous Parallelism. Keval Vora, Sai Charan Koduru, Rajiv Gupta A Relaxed Consistency based DSM for Asynchronous Parallelism Keval Vora, Sai Charan Koduru, Rajiv Gupta SoCal PLS - Spring 2014 Motivation Graphs are popular Graph Mining: Community Detection, Coloring

More information

One Trillion Edges. Graph processing at Facebook scale

One Trillion Edges. Graph processing at Facebook scale One Trillion Edges Graph processing at Facebook scale Introduction Platform improvements Compute model extensions Experimental results Operational experience How Facebook improved Apache Giraph Facebook's

More information

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model Today s content Resilient Distributed Datasets(RDDs) ------ Spark and its data model Resilient Distributed Datasets: A Fault- Tolerant Abstraction for In-Memory Cluster Computing -- Spark By Matei Zaharia,

More information

Asymmetry in Large-Scale Graph Analysis, Explained

Asymmetry in Large-Scale Graph Analysis, Explained symmetry in Large-cale Graph nalysis, Explained Vasiliki Kalavri* tephan Ewen Kostas Tzoumas Vladimir Vlassov* 4 Volker Markl eif Haridi* 6 *KTH Royal Institute of Technology Technische Universität erlin

More information

Khadija Souissi. Auf z Systems November IBM z Systems Mainframe Event 2016

Khadija Souissi. Auf z Systems November IBM z Systems Mainframe Event 2016 Khadija Souissi Auf z Systems 07. 08. November 2016 @ IBM z Systems Mainframe Event 2016 Acknowledgements Apache Spark, Spark, Apache, and the Spark logo are trademarks of The Apache Software Foundation.

More information

An Introduction to Apache Spark

An Introduction to Apache Spark An Introduction to Apache Spark 1 History Developed in 2009 at UC Berkeley AMPLab. Open sourced in 2010. Spark becomes one of the largest big-data projects with more 400 contributors in 50+ organizations

More information

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing King Abdullah University of Science and Technology CS348: Cloud Computing Large-Scale Graph Processing Zuhair Khayyat 10/March/2013 The Importance of Graphs A graph is a mathematical structure that represents

More information