RStream:Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine

Size: px
Start display at page:

Download "RStream:Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine"

Transcription

1 RStream:Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine Guoqing Harry Xu Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, UCLA Nanjing University Facebook

2 Big Graph

3 Graph Datasets Big Graph

4 GraphChi Graph Datasets Big Graph GridGraph Graph Systems

5 Graph Analytical Problems

6 Graph Analytical Problems Graph Computation

7 Graph Analytical Problems PageRank Connected Component Graph Computation

8 Graph Analytical Problems PageRank Connected Component Graph Computation Iterative value computation

9 Graph Analytical Problems PageRank GraphChi Connected Component Graph Computation Iterative value computation Think Like a Vertex

10 Graph Analytical Problems PageRank GraphChi Connected Component Graph Computation Iterative value computation Think Like a Vertex Graph Mining

11 Graph Analytical Problems PageRank GraphChi Connected Component Graph Computation Iterative value computation Think Like a Vertex Frequent Subgraph Mining Clique Finding Graph Mining

12 Graph Analytical Problems PageRank GraphChi Connected Component Graph Computation Iterative value computation Think Like a Vertex Frequent Subgraph Mining Clique Finding Graph Mining Discover structural patterns

13 Graph Analytical Problems PageRank GraphChi Connected Component Graph Computation Iterative value computation Think Like a Vertex Frequent Subgraph Mining Clique Finding? Graph Mining Discover structural patterns

14 Existing Mining Systems Enumerate all possible subgraphs For each subgraph, check if it matches the pattern Pattern is application-specific (Clique finding, motif counting, frequent subgraph mining) 4

15 Existing Datalog Systems Relational predicates - TC(a, b, c) R(a, b), a < b, R(b, c), b < c, R(c, a) - count TC(a, b, c) Relation algebra enables composition of small structures into big structures 5

16 Challenges in Graph Mining # of subgraphs grows exponentially with the size of subgraphs Arabesque [CHC Teixeira et al., SOSP 5].7B 4k k Exponentially 5k 7.8M 7M # of subgraphs size of subgraphs 6

17 Problems with Distributed Mining Systems Suffer from large startup and communication overhead - Arabesque on 0-node cluster, 5s startup, s execution Need enterprise clusters with large amounts of memory - DistGraph on 8-node cluster,,768gb memory Poor load balancing due to dynamic working sets - some nodes out of memory, other nodes with memory usage < 0% 7

18 Problems with Datalog Systems Programming model is not expressive enough for complex graph mining algorithms 8

19 Thoughts and Insight Distributed mining systems drawbacks: large startup, underutilized cpus, poor load balancing Not all users have access to enterprise cluster Many users are domain experts with limited background in hosting a cluster 9

20 Thoughts and Insight Distributed mining systems drawbacks: large startup, underutilized cpus, poor load balancing Increasingly large SSDs Not all users have access to enterprise cluster Many users are domain experts with limited background in hosting a cluster 9

21 Our Proposal: RStream A single machine, out-of-core graph mining system A simple and expressive API Gather-Apply-Scatter + Relational Algebra => GRAS An efficient runtime engine implements relational algebra with streaming 0

22 GAS Gather information from neighbor vertices

23 GAS Apply and update the vertex property

24 GAS Scatter information to neighbor vertices

25 GRAS 4

26 GRAS GAS supports iterative graph processing 4

27 GRAS GAS supports iterative graph processing Relational Algebra enables composition of structures 4

28 GRAS GAS supports iterative graph processing GRAS Relational Algebra iteratively composition of structures enables composition of structures 4

29 GRAS GAS supports iterative graph processing GRAS Relational Algebra iteratively composition of structures enables composition of structures 4

30 Edge Streaming X-Stream [A Roy et al., SOSP ] Use streaming to reduce I/O costs Sequentially access (larger) datasets from disk, randomly access (smaller) datasets held in memory 5

31 Edge Streaming A graph is partitioned into streaming partitions. Each streaming partition contains Vertex Table Edge Table Update Table VID Value Src Dest 4 5 Value Dest 4 5 6

32 Streaming for Scatter/Gather Scatter Streaming Load Shuffle Streaming Partition a src dest Update Table 5 ID value a b value dest Update a Table b 5 Streaming Partition b 5 Edge Table Vertex Table Update Table Gather/Apply Streaming Load ID value value dest Update Table a a b value dest Update Table a+b Update Table Vertex Table Update Table 7

33 RStream API Scatter Scatter Relational... GatherApply Relational Relational GatherApply 8

34 Example:Triangle Counting Scatter R R 9

35 Example:Triangle Counting Scatter R R Scatter src dest 4 5 edge table VID value 4 5 vertex table 4 5 9

36 Example:Triangle Counting Scatter R R Scatter src dest 4 5 edge table VID value 4 5 vertex table 4 5 R (a, b) (b, c) c c 4 5 src dest update table edge table (a, b, c)

37 Example:Triangle Counting Scatter R R Scatter src dest 4 5 edge table VID value 4 5 vertex table 4 5 R (a, b) (b, c) c c 4 5 src dest update table edge table (a, b, c) R (a, b, c) (c, a) (a, b, c, a) c c c src dest update table edge table 5 8 9

38 Outline How to provide a general programming interface for graph mining algorithms? How to implement relational operators efficiently for graphs? 0

39 Streaming for Join Operator Streaming Shuffle Streaming Partition C C Load C C C 6 Src Dest Streaming Partition 6 5 Update Table Edge Table Update Table

40 Streaming for Join Operator Streaming Shuffle Streaming Partition C C Load Locality-Aware Join C C C 6 Src Dest Streaming Partition 6 5 Update Table Edge Table Update Table

41 Structural Information

42 Structural Information

43 Structural Information

44 Structural Information

45 Structural Information

46 Structural Information same update tuples 4 different subgraphs 4 4 4

47 Structural Information same update tuples 4 different subgraphs 4 4 4

48 Structural Information 4 4 Structural info is missing! 4 4 same update tuples 4 different subgraphs 4 4 4

49 Missing Structural Information Identical tuples may represent different structures Different tuples may represent identical structures

50 Adding Structural Info Encodes the history of joins in update tuples sub graph 6 8 update tuples index index () index () 5() 4

51 Is Join Enough? Join grows a subgraph from one of its vertices For Frequent Subgraph Mining, we need to explore all possibilities of existing subgraphs A different way of joining to grow a subgraph from all of its vertices 5

52 Join on All Columns Joins update table with edge table on every column 0 6

53 Join on All Columns Joins update table with edge table on every column 0 6

54 Join on All Columns Joins update table with edge table on every column 4 0 6

55 Join on All Columns Joins update table with edge table on every column

56 Join on All Columns Joins update table with edge table on every column

57 Automorphism and Isomorphism Arabesque [CHC Teixeira et al., SOSP 5] thread thread 5 ( ) Aggregation, 6 Different threads can generate identical(automorphic) update tuples Select and keep one, remove all the other duplicates 4 Aggregate to count number of each distinct shape Different tuples may belong to same isomorphism class 7

58 Evaluation Platform - 0-node cluster, 5TB SSD - Each node: Xeon(R) CPU E5-640 v processors,gb memory Application - Triangle Counting - Transitive Closure - N-Clique Finding - N-Motif Counting - Frequent Subgraph Mining Input graphs Graphs #Edges #Vertices Citeseer 4,7, Mico.M 00K Patents 4M.7M LiverJournal 69M 4.8M Orkut 7M M UK M 9.5M 8

59 Comparisons with Mining Systems Triangle Counting 5-Clique -FSM K RStream Citese 0.04 er Mico 5.8 Patent 6.7 Arabesque RStream Arabesque RStream Arabesque ScaleMine DistGraph RStream outperforms Arabesque by 60.9x ScaleMine by.x DistGraph by 7.x 9

60 Comparisons with Mining Systems FSM on patent graph running time(seconds) Rstream ScaleMine Arabesque -0K -5K -0K 4-5K 4-0K 4-5K 5-5K 5-0K 5-5K subgraph size - support 0

61 Comparisons with Datalog Systems,000 8,0 LiveJo urnal Orkut Triangle Counting RStream BigDatlog BigDatalog Time(seconds) BigDatalog SociaLite BD- BD-5 BD-0 SL RS Transitive Closure

62 Size of Intermediate Data Phase #MB Motif Counting Mico Total.49TB

63 Size of Intermediate Data Phase #MB 4-Motif Counting Mico MB initial graph 688 X Total.49TB

64 Conclusions RStream: A single machine, out-of-core graph mining system A simple and expressive API GAS + Relational Algebra => GRAS An efficient runtime engine implements relational algebra with tuple streaming

GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. Xiaowei ZHU Tsinghua University

GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. Xiaowei ZHU Tsinghua University GridGraph: Large-Scale Graph Processing on a Single Machine Using -Level Hierarchical Partitioning Xiaowei ZHU Tsinghua University Widely-Used Graph Processing Shared memory Single-node & in-memory Ligra,

More information

Arabesque. A system for distributed graph mining. Mohammed Zaki, RPI

Arabesque. A system for distributed graph mining. Mohammed Zaki, RPI rabesque system for distributed graph mining Mohammed Zaki, RPI Carlos Teixeira, lexandre Fonseca, Marco Serafini, Georgos Siganos, shraf boulnaga, Qatar Computing Research Institute (QCRI) 1 Big Data

More information

Jure Leskovec Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah

Jure Leskovec Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah Jure Leskovec (@jure) Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah 2 My research group at Stanford: Mining and modeling large social and information networks

More information

GraphQ: Graph Query Processing with Abstraction Refinement -- Scalable and Programmable Analytics over Very Large Graphs on a Single PC

GraphQ: Graph Query Processing with Abstraction Refinement -- Scalable and Programmable Analytics over Very Large Graphs on a Single PC GraphQ: Graph Query Processing with Abstraction Refinement -- Scalable and Programmable Analytics over Very Large Graphs on a Single PC Kai Wang, Guoqing Xu, University of California, Irvine Zhendong Su,

More information

Graph-Processing Systems. (focusing on GraphChi)

Graph-Processing Systems. (focusing on GraphChi) Graph-Processing Systems (focusing on GraphChi) Recall: PageRank in MapReduce (Hadoop) Input: adjacency matrix H D F S (a,[c]) (b,[a]) (c,[a,b]) (c,pr(a) / out (a)), (a,[c]) (a,pr(b) / out (b)), (b,[a])

More information

Mosaic: Processing a Trillion-Edge Graph on a Single Machine

Mosaic: Processing a Trillion-Edge Graph on a Single Machine Mosaic: Processing a Trillion-Edge Graph on a Single Machine Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, Taesoo Kim Georgia Institute of Technology Best Student Paper @ EuroSys

More information

A Comparative Study on Exact Triangle Counting Algorithms on the GPU

A Comparative Study on Exact Triangle Counting Algorithms on the GPU A Comparative Study on Exact Triangle Counting Algorithms on the GPU Leyuan Wang, Yangzihao Wang, Carl Yang, John D. Owens University of California, Davis, CA, USA 31 st May 2016 L. Wang, Y. Wang, C. Yang,

More information

Arabesque: A System for Distributed Graph Mining

Arabesque: A System for Distributed Graph Mining Arabesque: A System for Distributed Graph Mining Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mohammed J. Zaki, Ashraf Aboulnaga Qatar Computing Research Institute - HBKU,

More information

GraphCEP Real-Time Data Analytics Using Parallel Complex Event and Graph Processing

GraphCEP Real-Time Data Analytics Using Parallel Complex Event and Graph Processing Institute of Parallel and Distributed Systems () Universitätsstraße 38 D-70569 Stuttgart GraphCEP Real-Time Data Analytics Using Parallel Complex Event and Graph Processing Ruben Mayer, Christian Mayer,

More information

GraFBoost: Using accelerated flash storage for external graph analytics

GraFBoost: Using accelerated flash storage for external graph analytics GraFBoost: Using accelerated flash storage for external graph analytics Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu and Arvind MIT CSAIL Funded by: 1 Large Graphs are Found Everywhere in Nature

More information

Column Stores vs. Row Stores How Different Are They Really?

Column Stores vs. Row Stores How Different Are They Really? Column Stores vs. Row Stores How Different Are They Really? Daniel J. Abadi (Yale) Samuel R. Madden (MIT) Nabil Hachem (AvantGarde) Presented By : Kanika Nagpal OUTLINE Introduction Motivation Background

More information

ASAP: Fast, Approximate Graph Pattern Mining at Scale

ASAP: Fast, Approximate Graph Pattern Mining at Scale ASAP: Fast, Approximate Graph Pattern Mining at Scale Anand Padmanabha Iyer, UC Berkeley; Zaoxing Liu and Xin Jin, Johns Hopkins University; Shivaram Venkataraman, Microsoft Research / University of Wisconsin;

More information

DRYAD: DISTRIBUTED DATA- PARALLEL PROGRAMS FROM SEQUENTIAL BUILDING BLOCKS

DRYAD: DISTRIBUTED DATA- PARALLEL PROGRAMS FROM SEQUENTIAL BUILDING BLOCKS DRYAD: DISTRIBUTED DATA- PARALLEL PROGRAMS FROM SEQUENTIAL BUILDING BLOCKS Authors: Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly Presenter: Zelin Dai WHAT IS DRYAD Combines computational

More information

CompSci 516: Database Systems

CompSci 516: Database Systems CompSci 516 Database Systems Lecture 12 Map-Reduce and Spark Instructor: Sudeepa Roy Duke CS, Fall 2017 CompSci 516: Database Systems 1 Announcements Practice midterm posted on sakai First prepare and

More information

FPGP: Graph Processing Framework on FPGA

FPGP: Graph Processing Framework on FPGA FPGP: Graph Processing Framework on FPGA Guohao DAI, Yuze CHI, Yu WANG, Huazhong YANG E.E. Dept., TNLIST, Tsinghua University dgh14@mails.tsinghua.edu.cn 1 Big graph is widely used Big graph is widely

More information

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context 1 Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes

More information

Announcements. Reading Material. Map Reduce. The Map-Reduce Framework 10/3/17. Big Data. CompSci 516: Database Systems

Announcements. Reading Material. Map Reduce. The Map-Reduce Framework 10/3/17. Big Data. CompSci 516: Database Systems Announcements CompSci 516 Database Systems Lecture 12 - and Spark Practice midterm posted on sakai First prepare and then attempt! Midterm next Wednesday 10/11 in class Closed book/notes, no electronic

More information

NUMA-aware Graph-structured Analytics

NUMA-aware Graph-structured Analytics NUMA-aware Graph-structured Analytics Kaiyuan Zhang, Rong Chen, Haibo Chen Institute of Parallel and Distributed Systems Shanghai Jiao Tong University, China Big Data Everywhere 00 Million Tweets/day 1.11

More information

MapReduce. Stony Brook University CSE545, Fall 2016

MapReduce. Stony Brook University CSE545, Fall 2016 MapReduce Stony Brook University CSE545, Fall 2016 Classical Data Mining CPU Memory Disk Classical Data Mining CPU Memory (64 GB) Disk Classical Data Mining CPU Memory (64 GB) Disk Classical Data Mining

More information

Big Graph Processing. Fenggang Wu Nov. 6, 2016

Big Graph Processing. Fenggang Wu Nov. 6, 2016 Big Graph Processing Fenggang Wu Nov. 6, 2016 Agenda Project Publication Organization Pregel SIGMOD 10 Google PowerGraph OSDI 12 CMU GraphX OSDI 14 UC Berkeley AMPLab PowerLyra EuroSys 15 Shanghai Jiao

More information

June 27, Real-Time Analytics through Convergence. of User-Defined Functions. Vinay Deolalikar. HP-Autonomy Research. Sunnyvale, CA.

June 27, Real-Time Analytics through Convergence. of User-Defined Functions. Vinay Deolalikar. HP-Autonomy Research. Sunnyvale, CA. June 27, 2013 Outline 1 2 3 are Measurements 4 Results Example 20 Newsgroups 5 Explosive growth in unstructured data Already comprises about 80% enterprise data Growing faster than structured data Enterprises

More information

X-Stream: A Case Study in Building a Graph Processing System. Amitabha Roy (LABOS)

X-Stream: A Case Study in Building a Graph Processing System. Amitabha Roy (LABOS) X-Stream: A Case Study in Building a Graph Processing System Amitabha Roy (LABOS) 1 X-Stream Graph processing system Single Machine Works on graphs stored Entirely in RAM Entirely in SSD Entirely on Magnetic

More information

Interruptible Tasks: Treating Memory Pressure as Interrupts for Highly Scalable Data-Parallel Programs

Interruptible Tasks: Treating Memory Pressure as Interrupts for Highly Scalable Data-Parallel Programs Interruptible s: Treating Pressure as Interrupts for Highly Scalable Data-Parallel Programs Lu Fang 1, Khanh Nguyen 1, Guoqing(Harry) Xu 1, Brian Demsky 1, Shan Lu 2 1 University of California, Irvine

More information

Fast and Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration

Fast and Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration Fast and Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration JIAXIN SHI, YOUYANG YAO, RONG CHEN, HAIBO CHEN, FEIFEI LI PRESENTED BY ANDREW XIA APRIL 25, 2018 Wukong Overview of Wukong

More information

2/26/2017. Originally developed at the University of California - Berkeley's AMPLab

2/26/2017. Originally developed at the University of California - Berkeley's AMPLab Apache is a fast and general engine for large-scale data processing aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes Low latency: sub-second

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

MATE-EC2: A Middleware for Processing Data with Amazon Web Services

MATE-EC2: A Middleware for Processing Data with Amazon Web Services MATE-EC2: A Middleware for Processing Data with Amazon Web Services Tekin Bicer David Chiu* and Gagan Agrawal Department of Compute Science and Engineering Ohio State University * School of Engineering

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models RCFile: A Fast and Space-efficient Data

More information

FREQUENT PATTERN MINING IN BIG DATA USING MAVEN PLUGIN. School of Computing, SASTRA University, Thanjavur , India

FREQUENT PATTERN MINING IN BIG DATA USING MAVEN PLUGIN. School of Computing, SASTRA University, Thanjavur , India Volume 115 No. 7 2017, 105-110 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu FREQUENT PATTERN MINING IN BIG DATA USING MAVEN PLUGIN Balaji.N 1,

More information

Automatic Scaling Iterative Computations. Aug. 7 th, 2012

Automatic Scaling Iterative Computations. Aug. 7 th, 2012 Automatic Scaling Iterative Computations Guozhang Wang Cornell University Aug. 7 th, 2012 1 What are Non-Iterative Computations? Non-iterative computation flow Directed Acyclic Examples Batch style analytics

More information

modern database systems lecture 10 : large-scale graph processing

modern database systems lecture 10 : large-scale graph processing modern database systems lecture 1 : large-scale graph processing Aristides Gionis spring 18 timeline today : homework is due march 6 : homework out april 5, 9-1 : final exam april : homework due graphs

More information

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross Track Join Distributed Joins with Minimal Network Traffic Orestis Polychroniou Rajkumar Sen Kenneth A. Ross Local Joins Algorithms Hash Join Sort Merge Join Index Join Nested Loop Join Spilling to disk

More information

Batch & Stream Graph Processing with Apache Flink. Vasia

Batch & Stream Graph Processing with Apache Flink. Vasia Batch & Stream Graph Processing with Apache Flink Vasia Kalavri vasia@apache.org @vkalavri Outline Distributed Graph Processing Gelly: Batch Graph Processing with Flink Gelly-Stream: Continuous Graph

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia MapReduce Spark Some slides are adapted from those of Jeff Dean and Matei Zaharia What have we learnt so far? Distributed storage systems consistency semantics protocols for fault tolerance Paxos, Raft,

More information

Data Platforms and Pattern Mining

Data Platforms and Pattern Mining Morteza Zihayat Data Platforms and Pattern Mining IBM Corporation About Myself IBM Software Group Big Data Scientist 4Platform Computing, IBM (2014 Now) PhD Candidate (2011 Now) 4Lassonde School of Engineering,

More information

A Clustering Approach to the Bounded Diameter Minimum Spanning Tree Problem Using Ants. Outline. Tyler Derr. Thesis Adviser: Dr. Thang N.

A Clustering Approach to the Bounded Diameter Minimum Spanning Tree Problem Using Ants. Outline. Tyler Derr. Thesis Adviser: Dr. Thang N. A Clustering Approach to the Bounded Diameter Minimum Spanning Tree Problem Using Ants Tyler Derr Thesis Adviser: Dr. Thang N. Bui Department of Math & Computer Science Penn State Harrisburg Spring 2015

More information

X-Stream: Edge-centric Graph Processing using Streaming Partitions

X-Stream: Edge-centric Graph Processing using Streaming Partitions X-Stream: Edge-centric Graph Processing using Streaming Partitions Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel {amitabha.roy, ivo.mihailovic, willy.zwaenepoel}@epfl.ch EPFL Abstract X-Stream is a system

More information

Copyright 2012, Oracle and/or its affiliates. All rights reserved.

Copyright 2012, Oracle and/or its affiliates. All rights reserved. 1 Big Data Connectors: High Performance Integration for Hadoop and Oracle Database Melli Annamalai Sue Mavris Rob Abbott 2 Program Agenda Big Data Connectors: Brief Overview Connecting Hadoop with Oracle

More information

Announcements. Database Systems CSE 414. Why compute in parallel? Big Data 10/11/2017. Two Kinds of Parallel Data Processing

Announcements. Database Systems CSE 414. Why compute in parallel? Big Data 10/11/2017. Two Kinds of Parallel Data Processing Announcements Database Systems CSE 414 HW4 is due tomorrow 11pm Lectures 18: Parallel Databases (Ch. 20.1) 1 2 Why compute in parallel? Multi-cores: Most processors have multiple cores This trend will

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

Parallel DBMS. Parallel Database Systems. PDBS vs Distributed DBS. Types of Parallelism. Goals and Metrics Speedup. Types of Parallelism

Parallel DBMS. Parallel Database Systems. PDBS vs Distributed DBS. Types of Parallelism. Goals and Metrics Speedup. Types of Parallelism Parallel DBMS Parallel Database Systems CS5225 Parallel DB 1 Uniprocessor technology has reached its limit Difficult to build machines powerful enough to meet the CPU and I/O demands of DBMS serving large

More information

Chapter 17: Parallel Databases

Chapter 17: Parallel Databases Chapter 17: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery Parallelism Intraoperation Parallelism Interoperation Parallelism Design of Parallel Systems Database Systems

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

Distributed Sampling in a Big Data Management System

Distributed Sampling in a Big Data Management System Distributed Sampling in a Big Data Management System Dan Radion University of Washington Department of Computer Science and Engineering Undergraduate Departmental Honors Thesis Advised by Dan Suciu Contents

More information

CSE 344 MAY 7 TH EXAM REVIEW

CSE 344 MAY 7 TH EXAM REVIEW CSE 344 MAY 7 TH EXAM REVIEW EXAMINATION STATIONS Exam Wednesday 9:30-10:20 One sheet of notes, front and back Practice solutions out after class Good luck! EXAM LENGTH Production v. Verification Practice

More information

Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing

Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing Laxman Dhulipala Joint work with Guy Blelloch and Julian Shun SPAA 07 Giant graph datasets Graph V E (symmetrized) com-orkut

More information

Apache Spark Graph Performance with Memory1. February Page 1 of 13

Apache Spark Graph Performance with Memory1. February Page 1 of 13 Apache Spark Graph Performance with Memory1 February 2017 Page 1 of 13 Abstract Apache Spark is a powerful open source distributed computing platform focused on high speed, large scale data processing

More information

Practical Near-Data Processing for In-Memory Analytics Frameworks

Practical Near-Data Processing for In-Memory Analytics Frameworks Practical Near-Data Processing for In-Memory Analytics Frameworks Mingyu Gao, Grant Ayers, Christos Kozyrakis Stanford University http://mast.stanford.edu PACT Oct 19, 2015 Motivating Trends End of Dennard

More information

Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU

Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU Lifan Xu Wei Wang Marco A. Alvarez John Cavazos Dongping Zhang Department of Computer and Information Science University of Delaware

More information

A Fast and High Throughput SQL Query System for Big Data

A Fast and High Throughput SQL Query System for Big Data A Fast and High Throughput SQL Query System for Big Data Feng Zhu, Jie Liu, and Lijie Xu Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China 100190

More information

Large Scale Graph Processing Pregel, GraphLab and GraphX

Large Scale Graph Processing Pregel, GraphLab and GraphX Large Scale Graph Processing Pregel, GraphLab and GraphX Amir H. Payberah amir@sics.se KTH Royal Institute of Technology Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 1 / 76 Amir H. Payberah

More information

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa Camdoop Exploiting In-network Aggregation for Big Data Applications costa@imperial.ac.uk joint work with Austin Donnelly, Antony Rowstron, and Greg O Shea (MSR Cambridge) MapReduce Overview Input file

More information

! Parallel machines are becoming quite common and affordable. ! Databases are growing increasingly large

! Parallel machines are becoming quite common and affordable. ! Databases are growing increasingly large Chapter 20: Parallel Databases Introduction! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems!

More information

Chapter 20: Parallel Databases

Chapter 20: Parallel Databases Chapter 20: Parallel Databases! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems 20.1 Introduction!

More information

Chapter 20: Parallel Databases. Introduction

Chapter 20: Parallel Databases. Introduction Chapter 20: Parallel Databases! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems 20.1 Introduction!

More information

Notes. Some of these slides are based on a slide set provided by Ulf Leser. CS 640 Query Processing Winter / 30. Notes

Notes. Some of these slides are based on a slide set provided by Ulf Leser. CS 640 Query Processing Winter / 30. Notes uery Processing Olaf Hartig David R. Cheriton School of Computer Science University of Waterloo CS 640 Principles of Database Management and Use Winter 2013 Some of these slides are based on a slide set

More information

Introduction to Query Processing and Query Optimization Techniques. Copyright 2011 Ramez Elmasri and Shamkant Navathe

Introduction to Query Processing and Query Optimization Techniques. Copyright 2011 Ramez Elmasri and Shamkant Navathe Introduction to Query Processing and Query Optimization Techniques Outline Translating SQL Queries into Relational Algebra Algorithms for External Sorting Algorithms for SELECT and JOIN Operations Algorithms

More information

The case against specialized graph engines

The case against specialized graph engines The case against specialized graph engines Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel University of Wisconsin Madison 01/06/2015 University of Wisconsin Madison 1 Motivation Graph analytics

More information

Large Scale Complex Network Analysis using the Hybrid Combination of a MapReduce Cluster and a Highly Multithreaded System

Large Scale Complex Network Analysis using the Hybrid Combination of a MapReduce Cluster and a Highly Multithreaded System Large Scale Complex Network Analysis using the Hybrid Combination of a MapReduce Cluster and a Highly Multithreaded System Seunghwa Kang David A. Bader 1 A Challenge Problem Extracting a subgraph from

More information

HANA Performance. Efficient Speed and Scale-out for Real-time BI

HANA Performance. Efficient Speed and Scale-out for Real-time BI HANA Performance Efficient Speed and Scale-out for Real-time BI 1 HANA Performance: Efficient Speed and Scale-out for Real-time BI Introduction SAP HANA enables organizations to optimize their business

More information

High-Level Data Models on RAMCloud

High-Level Data Models on RAMCloud High-Level Data Models on RAMCloud An early status report Jonathan Ellithorpe, Mendel Rosenblum EE & CS Departments, Stanford University Talk Outline The Idea Data models today Graph databases Experience

More information

Data Modeling and Databases Ch 10: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich

Data Modeling and Databases Ch 10: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Data Modeling and Databases Ch 10: Query Processing - Algorithms Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Transactions (Locking, Logging) Metadata Mgmt (Schema, Stats) Application

More information

Databases 2 (VU) ( )

Databases 2 (VU) ( ) Databases 2 (VU) (707.030) Map-Reduce Denis Helic KMI, TU Graz Nov 4, 2013 Denis Helic (KMI, TU Graz) Map-Reduce Nov 4, 2013 1 / 90 Outline 1 Motivation 2 Large Scale Computation 3 Map-Reduce 4 Environment

More information

Chapter 18: Parallel Databases

Chapter 18: Parallel Databases Chapter 18: Parallel Databases Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 18: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery

More information

Chapter 18: Parallel Databases. Chapter 18: Parallel Databases. Parallelism in Databases. Introduction

Chapter 18: Parallel Databases. Chapter 18: Parallel Databases. Parallelism in Databases. Introduction Chapter 18: Parallel Databases Chapter 18: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery Parallelism Intraoperation Parallelism Interoperation Parallelism Design of

More information

Data Modeling and Databases Ch 9: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich

Data Modeling and Databases Ch 9: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Data Modeling and Databases Ch 9: Query Processing - Algorithms Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Transactions (Locking, Logging) Metadata Mgmt (Schema, Stats) Application

More information

Report. X-Stream Edge-centric Graph processing

Report. X-Stream Edge-centric Graph processing Report X-Stream Edge-centric Graph processing Yassin Hassan hassany@student.ethz.ch Abstract. X-Stream is an edge-centric graph processing system, which provides an API for scatter gather algorithms. The

More information

Pregel. Ali Shah

Pregel. Ali Shah Pregel Ali Shah s9alshah@stud.uni-saarland.de 2 Outline Introduction Model of Computation Fundamentals of Pregel Program Implementation Applications Experiments Issues with Pregel 3 Outline Costs of Computation

More information

A Comparative study of Clustering Algorithms using MapReduce in Hadoop

A Comparative study of Clustering Algorithms using MapReduce in Hadoop A Comparative study of Clustering Algorithms using MapReduce in Hadoop Dweepna Garg 1, Khushboo Trivedi 2, B.B.Panchal 3 1 Department of Computer Science and Engineering, Parul Institute of Engineering

More information

CSE 414 Database Systems section 10: Final Review. Joseph Xu 6/6/2013

CSE 414 Database Systems section 10: Final Review. Joseph Xu 6/6/2013 CSE 414 Database Systems section 10: Final Review Joseph Xu 6/6/2013 Final Exam The final exam is Monday, June 10 from 2:30-4:20 Materials:You may bring your textbook plus one sheet of 8.5x11" paper with

More information

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age Presented by Dennis Grishin What is the problem? Efficient computation requires distribution of processing between

More information

CHAPTER 4 K-MEANS AND UCAM CLUSTERING ALGORITHM

CHAPTER 4 K-MEANS AND UCAM CLUSTERING ALGORITHM CHAPTER 4 K-MEANS AND UCAM CLUSTERING 4.1 Introduction ALGORITHM Clustering has been used in a number of applications such as engineering, biology, medicine and data mining. The most popular clustering

More information

Why do we need graph processing?

Why do we need graph processing? Why do we need graph processing? Community detection: suggest followers? Determine what products people will like Count how many people are in different communities (polling?) Graphs are Everywhere Group

More information

Distributed Systems. 21. Graph Computing Frameworks. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 21. Graph Computing Frameworks. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 21. Graph Computing Frameworks Paul Krzyzanowski Rutgers University Fall 2016 November 21, 2016 2014-2016 Paul Krzyzanowski 1 Can we make MapReduce easier? November 21, 2016 2014-2016

More information

FuxiSort. Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv, Bin Lu, Yangyu Tao, Chao Li, Jingren Zhou, Hong Tang Alibaba Group Inc

FuxiSort. Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv, Bin Lu, Yangyu Tao, Chao Li, Jingren Zhou, Hong Tang Alibaba Group Inc Fuxi Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv, Bin Lu, Yangyu Tao, Chao Li, Jingren Zhou, Hong Tang Alibaba Group Inc {jiamang.wang, yongjun.wyj, hua.caihua, zhipeng.tzp, zhiqiang.lv,

More information

Principles of Database Management Systems

Principles of Database Management Systems Principles of Database Management Systems 5: Query Processing Pekka Kilpeläinen (partially based on Stanford CS245 slide originals by Hector Garcia-Molina, Jeff Ullman and Jennifer Widom) Query Processing

More information

CSE 544: Principles of Database Systems

CSE 544: Principles of Database Systems CSE 544: Principles of Database Systems Anatomy of a DBMS, Parallel Databases 1 Announcements Lecture on Thursday, May 2nd: Moved to 9am-10:30am, CSE 403 Paper reviews: Anatomy paper was due yesterday;

More information

Data Partitioning and MapReduce

Data Partitioning and MapReduce Data Partitioning and MapReduce Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Intelligent Decision Support Systems Master studies,

More information

CSE 544 Principles of Database Management Systems. Alvin Cheung Fall 2015 Lecture 10 Parallel Programming Models: Map Reduce and Spark

CSE 544 Principles of Database Management Systems. Alvin Cheung Fall 2015 Lecture 10 Parallel Programming Models: Map Reduce and Spark CSE 544 Principles of Database Management Systems Alvin Cheung Fall 2015 Lecture 10 Parallel Programming Models: Map Reduce and Spark Announcements HW2 due this Thursday AWS accounts Any success? Feel

More information

Frequent Pattern Mining in Data Streams. Raymond Martin

Frequent Pattern Mining in Data Streams. Raymond Martin Frequent Pattern Mining in Data Streams Raymond Martin Agenda -Breakdown & Review -Importance & Examples -Current Challenges -Modern Algorithms -Stream-Mining Algorithm -How KPS Works -Combing KPS and

More information

Research in Middleware Systems For In-Situ Data Analytics and Instrument Data Analysis

Research in Middleware Systems For In-Situ Data Analytics and Instrument Data Analysis Research in Middleware Systems For In-Situ Data Analytics and Instrument Data Analysis Gagan Agrawal The Ohio State University (Joint work with Yi Wang, Yu Su, Tekin Bicer and others) Outline Middleware

More information

HaLoop Efficient Iterative Data Processing on Large Clusters

HaLoop Efficient Iterative Data Processing on Large Clusters HaLoop Efficient Iterative Data Processing on Large Clusters Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst University of Washington Department of Computer Science & Engineering Presented

More information

Evaluating Use of Data Flow Systems for Large Graph Analysis

Evaluating Use of Data Flow Systems for Large Graph Analysis Evaluating Use of Data Flow Systems for Large Graph Analysis Andy Yoo and Ian Kaplan, P. O. Box 808, Livermore, CA 94551 This work performed under the auspices of the U.S. Department of Energy by under

More information

Biology, Physics, Mathematics, Sociology, Engineering, Computer Science, Etc

Biology, Physics, Mathematics, Sociology, Engineering, Computer Science, Etc Motivation Motifs Algorithms G-Tries Parallelism Complex Networks Networks are ubiquitous! Biology, Physics, Mathematics, Sociology, Engineering, Computer Science, Etc Images: UK Highways Agency, Uriel

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Chaos: Scale-out Graph Processing from Secondary Storage

Chaos: Scale-out Graph Processing from Secondary Storage Chaos: Scale-out Graph Processing from Secondary Storage Amitabha Roy Laurent Bindschaedler Jasmina Malicevic Willy Zwaenepoel Intel EPFL, Switzerland firstname.lastname@{intel.com, epfl.ch } Abstract

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Piccolo: Building Fast, Distributed Programs

More information

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, Samuel Madden, and Michael Stonebraker SIGMOD'09. Presented by: Daniel Isaacs

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, Samuel Madden, and Michael Stonebraker SIGMOD'09. Presented by: Daniel Isaacs Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, Samuel Madden, and Michael Stonebraker SIGMOD'09 Presented by: Daniel Isaacs It all starts with cluster computing. MapReduce Why

More information

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP TITLE: Implement sort algorithm and run it using HADOOP PRE-REQUISITE Preliminary knowledge of clusters and overview of Hadoop and its basic functionality. THEORY 1. Introduction to Hadoop The Apache Hadoop

More information

Detecting and Fixing Memory-Related Performance Problems in Managed Languages

Detecting and Fixing Memory-Related Performance Problems in Managed Languages Detecting and Fixing -Related Performance Problems in Managed Languages Lu Fang Committee: Prof. Guoqing Xu (Chair), Prof. Alex Nicolau, Prof. Brian Demsky University of California, Irvine May 26, 2017,

More information

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi Giraph: Large-scale graph processing infrastructure on Hadoop Qu Zhi Why scalable graph processing? Web and social graphs are at immense scale and continuing to grow In 2008, Google estimated the number

More information

6.830 Problem Set 3 Assigned: 10/28 Due: 11/30

6.830 Problem Set 3 Assigned: 10/28 Due: 11/30 6.830 Problem Set 3 1 Assigned: 10/28 Due: 11/30 6.830 Problem Set 3 The purpose of this problem set is to give you some practice with concepts related to query optimization and concurrency control and

More information

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Presented by: Dishant Mittal Authors: Juwei Shi, Yunjie Qiu, Umar Firooq Minhas, Lemei Jiao, Chen Wang, Berthold Reinwald and Fatma

More information

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344 Where We Are Introduction to Data Management CSE 344 Lecture 22: MapReduce We are talking about parallel query processing There exist two main types of engines: Parallel DBMSs (last lecture + quick review)

More information

Parallel SQL and Streaming Expressions in Apache Solr 6. Shalin Shekhar Lucidworks Inc.

Parallel SQL and Streaming Expressions in Apache Solr 6. Shalin Shekhar Lucidworks Inc. Parallel SQL and Streaming Expressions in Apache Solr 6 Shalin Shekhar Mangar @shalinmangar Lucidworks Inc. Introduction Shalin Shekhar Mangar Lucene/Solr Committer PMC Member Senior Solr Consultant with

More information

CSE 344 Final Review. August 16 th

CSE 344 Final Review. August 16 th CSE 344 Final Review August 16 th Final In class on Friday One sheet of notes, front and back cost formulas also provided Practice exam on web site Good luck! Primary Topics Parallel DBs parallel join

More information

A Graph-Based Approach for Mining Closed Large Itemsets

A Graph-Based Approach for Mining Closed Large Itemsets A Graph-Based Approach for Mining Closed Large Itemsets Lee-Wen Huang Dept. of Computer Science and Engineering National Sun Yat-Sen University huanglw@gmail.com Ye-In Chang Dept. of Computer Science and

More information

CS 564 Final Exam Fall 2015 Answers

CS 564 Final Exam Fall 2015 Answers CS 564 Final Exam Fall 015 Answers A: STORAGE AND INDEXING [0pts] I. [10pts] For the following questions, clearly circle True or False. 1. The cost of a file scan is essentially the same for a heap file

More information

Introduction to Data Management CSE 344

Introduction to Data Management CSE 344 Introduction to Data Management CSE 344 Lecture 26: Parallel Databases and MapReduce CSE 344 - Winter 2013 1 HW8 MapReduce (Hadoop) w/ declarative language (Pig) Cluster will run in Amazon s cloud (AWS)

More information