Dynamic Resource Allocation for Distributed Dataflows. Lauritz Thamsen Technische Universität Berlin

Size: px
Start display at page:

Download "Dynamic Resource Allocation for Distributed Dataflows. Lauritz Thamsen Technische Universität Berlin"

Transcription

1 Dynamic Resource Allocation for Distributed Dataflows Lauritz Thamsen Technische Universität Berlin

2 Distributed Dataflows E.g. MapReduce, SCOPE, Spark, and Flink Used for scalable processing in many domains, e.g. Search and data aggregation Relational processing Graph analysis Machine learning Dynamic Resource Allocation for Distributed Dataflows 2

3 Distributed Dataflow Jobs Stage Synchronization barrier e.g. Map or Filter e.g. Reduce Dynamic Resource Allocation for Distributed Dataflows 3

4 Compared to HPC High-level programming abstractions Comprehensive frameworks and distributed execution engines Usable even without extensive knowledge of parallel and distributed programming Dynamic Resource Allocation for Distributed Dataflows 4

5 Yet Users Need to Allocate Resources Job and scale-out Worker Node C C Cluster Manager Worker Node C C Worker Node C C C C C C C C Dynamic Resource Allocation for Distributed Dataflows 5

6 Constraints of Production Jobs Users need to reserve resources for runtime targets: Usability constraints, Service level agreements, Cluster reservation only valid for a certain time But do not necessarily understand workload dynamics Dynamic Resource Allocation for Distributed Dataflows 6

7 Two-Fold Problem Runtime Prediction: Estimating performance upfront is difficult as it depends on many factors, e.g. programs, data, systems, and infrastructure Runtime Variance: Significant performance variance due to data locality, interference, and failures Dynamic Resource Allocation for Distributed Dataflows 7

8 Given a runtime target for a recurring batch job, how can minimal resources be allocated automatically?

9 Methods & Results

10 Scale-out Modeling Dynamic Resource Allocation Similarity Matching Resource Allocation Runtime Scale-out L. Thamsen, I. Verbitskiy, F. Schmidt, T. Renner, and O. Kao. Selecting Resources for Distributed Dataflow Systems According to Runtime Targets. IPCCC IEEE. J. Koch, L. Thamsen, F. Schmidt, and O. Kao. SMiPE: Estimating the Progress of Recurring Iterative Distributed Dataflows. PDCAT IEEE. L. Thamsen, I. Verbitskiy, J. Beilharz, T. Renner, A. Polze, and O. Kao. Ellis: Dynamically Scaling Distributed Dataflows To Meet Runtime Targets. CloudCom IEEE Dynamic Resource Allocation for Distributed Dataflows 10

11 Dynamic Resource Allocation Job + Runtime Target Workload History Similarity Matching Scale-out Models Dynamic Resource Allocation for Distributed Dataflows 11

12 Assumptions Distributed dataflow jobs with multiple stages Dedicated homogeneous clusters Recurring batch processing jobs Dynamic Resource Allocation for Distributed Dataflows 12

13 Scale-out Modeling Dynamic Resource Allocation Similarity Matching Resource Allocation Runtime Scale-out Dynamic Resource Allocation for Distributed Dataflows 13

14 Scale-out Modeling Find a function that predicts the runtimes of a job based on previous runs Example Job A: Example Job B: Runtime Runtime Scale-out Scale-out Dynamic Resource Allocation for Distributed Dataflows 14

15 Parametric Regression Non-Negative Least Squares (NNLS) for a model of distributed data-parallel processing [Ernest] Parallel portion Collect-like communication patterns!"#$%&' = ) * + ), Sequential portion 1 /0#$1%#'!2 + ) 3 log /0#$1%#'!2 + ) 7 /0#$1%#'!2 Tree-like communication patterns Dynamic Resource Allocation for Distributed Dataflows 15

16 Non-parametric Regression Assuming locally defined behavior with Local Linear Regression (LLR) Runtime Scale-out Dynamic Resource Allocation for Distributed Dataflows 16

17 Automatic Model Selection Goal: model with high accuracy when possible, otherwise use a robust fallback Approach: Use parametric model for extrapolation Dynamically select prediction model for interpolation with k-fold cross-validation Dynamic Resource Allocation for Distributed Dataflows 17

18 Evaluation Setup Using up to 60 commodity nodes (8 cores, 16 GB RAM) and exemplary distributed dataflow jobs Job System Dataset Input Size WordCount Flink Wiki 250 GB TPC-H Query 10 Flink Tables 200 GB K-Means Flink Points 50 GB Grep Spark Wiki 250 GB SGD Spark Features 10 GB PageRank Spark Graph 3.4 GB Dynamic Resource Allocation for Distributed Dataflows 18

19 Cross-Validation of Models Repeated random sub-sampling Random training selection Runtime Scale-out Dynamic Resource Allocation for Distributed Dataflows 19

20 Cross-Validation of Models Repeated random sub-sampling Runtime With increasing amounts of training data, n = Scale-out Dynamic Resource Allocation for Distributed Dataflows 20

21 Relative Prediction Error Grep (Spark) SGD (Spark) Dynamic Resource Allocation for Distributed Dataflows 21

22 Scale-out Modeling Dynamic Resource Allocation Similarity Matching Resource Allocation Runtime Scale-out Addresses Problem of Runtime Prediction Problem of Runtime Variance Dynamic Resource Allocation for Distributed Dataflows 22

23 Select Executions for Model Training Recurring jobs that run on updated data, code, and parameters, yielding different runtimes Idea: Similar executions à similar runtimes ex cur Similarity Matching discard ex prev ex prev ex prev ex prev Job History use ex prev ex prev ex prev Dynamic Resource Allocation for Distributed Dataflows 23

24 Different Similarity Measures Functions s (ex current, ex previous ) ϵ [0,1] Measure Type Input size Scale-out Offline t t t Runtime of stages Convergence Online Resource utilization Dynamic Resource Allocation for Distributed Dataflows 24

25 Evaluation of Similarity Measures 1 Accuracy / Share / Average Accuracy 0 0 Similarity Dynamic Resource Allocation for Distributed Dataflows 25

26 Normalized Similarity Quality Accuracy normalized over share of selected points 1 1 Accuracy / Share / Average Accuracy Average Accuracy 0 0 Similarity % Percentage of Most Similar Runs 0% 1 Top 5% Top 25% Dynamic Resource Allocation for Distributed Dataflows 26

27 Evaluation of Similarity Measures Connected Components Page Rank Stochastic Gradient Descent 0,9 0,9 0,9 Average Accuracy 0,7 0,5 0,7 0,5 0,7 0,5 0,3 0,3 0,3 100% 0 0% 1 0,01 100% 0% 100% 0 0% % Percentage of Most Similar of Most Runs Similar Runs % of Most Similar Runs % of Most Similar Runs Input Convergence Network-I/O Dynamic Resource Allocation for Distributed Dataflows 27

28 Scale-out Modeling Dynamic Resource Allocation Similarity Matching Resource Allocation Runtime Scale-out Addresses Problem of Runtime Prediction Problem of Runtime Variance Dynamic Resource Allocation for Distributed Dataflows 28

29 Resource Allocation Search for minimal scale-out for a runtime target Runtime Scale-out Scale-out Scale-out Dynamic Resource Allocation for Distributed Dataflows 29

30 Stage-wise Dynamic Allocations Job + Runtime Target Runtime Dynamic Resource Allocation Scale-out Scale-out Scale-out Dynamic Resource Allocation for Distributed Dataflows 30

31 Prototype System: Ellis Integrated and usable on a per-job basis with YARN Cluster App Client Resource Manager Workload History Container App Master Ellis Container App Worker Container Container App Worker App Worker Dynamic Resource Allocation for Distributed Dataflows 31

32 Evaluation Setup Using up to 40 commodity nodes (8 cores, 16 GB RAM) and exemplary iterative Spark jobs (MLlib) Job Dataset Input Size Multi-Layer Perceptron (MLP) Multiclass 29 GB Gradient Boosted Trees (GBT) Vandermonde 111 GB Stochastic Gradient Descent (SGD) Tables 37 GB K-Means Points 50 GB Dynamic Resource Allocation for Distributed Dataflows 32

33 Results for Gradient Boosted Trees Ellis static (only initially): Ellis dynamic (per stage): Dynamic Resource Allocation for Distributed Dataflows 33

34 Results for All Benchmark Jobs Comparison of!""#$ %&'()#*!""#$ $+(+#* in three metrics: Job Violation Count Violation Sum Resources SGD 25% 7% 94% K-Means 35% 5% 80% GBT 47% 29% 100% MLP 69% 13% 127% Dynamic Resource Allocation for Distributed Dataflows 34

35 Scale-out Modeling Dynamic Resource Allocation Similarity Matching Resource Allocation Runtime Scale-out Addresses Problem of Runtime Prediction Problem of Runtime Variance Dynamic Resource Allocation for Distributed Dataflows 35

36 Summary New methods for dynamic resource allocation that are applicable to distributed dataflow frameworks Prototype integrated and usable with YARN Promising evaluation results Dynamic Resource Allocation for Distributed Dataflows 36

37 References [GoogleMR] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51.1 (2008). ACM [Twitter] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin. Fast Data in the Era of Big Data: Twitter s Real-time Related Query Suggestion Architecture ACM SIGMOD International Conference on Management of Data (SIGMOD 13). ACM [Google Trace] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis, Third ACM Symposium on Cloud Computing (SoCC 12). ACM [Quasar] C. Delimitrou and C. Kozyrakis, Quasar: Resource-efficient and QoS- aware Cluster Management, 19th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 14). ACM [Morpheus] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv, R. Mavlyutov, I. n. Goiri, S. Krishnan, J. Kulkarni, and S. Rao, Morpheus: Towards Automated SLOs for Enterprise Clusters, 12th USENIX Conference on Operating Systems Design and Implementation (OSDI 16). USENIX Dynamic Resource Allocation for Distributed Dataflows 38

SMiPE: Estimating the Progress of Recurring Iterative Distributed Dataflows

SMiPE: Estimating the Progress of Recurring Iterative Distributed Dataflows SMiPE: Estimating the Progress of Recurring Iterative Distributed Dataflows Jannis Koch, Lauritz Thamsen, Florian Schmidt, and Odej Kao Technische Universität Berlin, Germany {firstname.lastname}@tu-berlin.de

More information

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem I J C T A, 9(41) 2016, pp. 1235-1239 International Science Press Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem Hema Dubey *, Nilay Khare *, Alind Khare **

More information

Resource and Performance Distribution Prediction for Large Scale Analytics Queries

Resource and Performance Distribution Prediction for Large Scale Analytics Queries Resource and Performance Distribution Prediction for Large Scale Analytics Queries Prof. Rajiv Ranjan, SMIEEE School of Computing Science, Newcastle University, UK Visiting Scientist, Data61, CSIRO, Australia

More information

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms Candidate Andrea Spina Advisor Prof. Sonia Bergamaschi Co-Advisor Dr. Tilmann Rabl Co-Advisor

More information

PARALLELIZED IMPLEMENTATION OF LOGISTIC REGRESSION USING MPI

PARALLELIZED IMPLEMENTATION OF LOGISTIC REGRESSION USING MPI PARALLELIZED IMPLEMENTATION OF LOGISTIC REGRESSION USING MPI CSE 633 PARALLEL ALGORITHMS BY PAVAN G JOSHI What is machine learning? Machine learning is a type of artificial intelligence (AI) that provides

More information

Introduction to MapReduce

Introduction to MapReduce Basics of Cloud Computing Lecture 4 Introduction to MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed

More information

Aura: A Flexible Dataflow Engine for Scalable Data Processing

Aura: A Flexible Dataflow Engine for Scalable Data Processing Aura: A Flexible Dataflow Engine for Scalable Data Processing Tobias Herb, Lauritz Thamsen, Thomas Renner, Odej Kao Technische Universität Berlin firstname.lastname@tu-berlin.de Abstract. This paper describes

More information

Introduction to MapReduce Algorithms and Analysis

Introduction to MapReduce Algorithms and Analysis Introduction to MapReduce Algorithms and Analysis Jeff M. Phillips October 25, 2013 Trade-Offs Massive parallelism that is very easy to program. Cheaper than HPC style (uses top of the line everything)

More information

CIS : Scalable Data Analysis

CIS : Scalable Data Analysis CIS 602-01: Scalable Data Analysis Cloud Workloads Dr. David Koop Scaling Up PC [Haeberlen and Ives, 2015] 2 Scaling Up PC Server [Haeberlen and Ives, 2015] 2 Scaling Up PC Server Cluster [Haeberlen and

More information

Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization

Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization Wei Chen, Jia Rao*, and Xiaobo Zhou University of Colorado, Colorado Springs * University of Texas at Arlington Data Center

More information

Mitigating Data Skew Using Map Reduce Application

Mitigating Data Skew Using Map Reduce Application Ms. Archana P.M Mitigating Data Skew Using Map Reduce Application Mr. Malathesh S.H 4 th sem, M.Tech (C.S.E) Associate Professor C.S.E Dept. M.S.E.C, V.T.U Bangalore, India archanaanil062@gmail.com M.S.E.C,

More information

BigDataBench-MT: Multi-tenancy version of BigDataBench

BigDataBench-MT: Multi-tenancy version of BigDataBench BigDataBench-MT: Multi-tenancy version of BigDataBench Gang Lu Beijing Academy of Frontier Science and Technology BigDataBench Tutorial, ASPLOS 2016 Atlanta, GA, USA n Software perspective Multi-tenancy

More information

Considering Resource Demand Misalignments To Reduce Resource Over-Provisioning in Cloud Datacenters

Considering Resource Demand Misalignments To Reduce Resource Over-Provisioning in Cloud Datacenters Considering Resource Demand Misalignments To Reduce Resource Over-Provisioning in Cloud Datacenters Liuhua Chen Dept. of Electrical and Computer Eng. Clemson University, USA Haiying Shen Dept. of Computer

More information

Big data systems 12/8/17

Big data systems 12/8/17 Big data systems 12/8/17 Today Basic architecture Two levels of scheduling Spark overview Basic architecture Cluster Manager Cluster Cluster Manager 64GB RAM 32 cores 64GB RAM 32 cores 64GB RAM 32 cores

More information

Improving the MapReduce Big Data Processing Framework

Improving the MapReduce Big Data Processing Framework Improving the MapReduce Big Data Processing Framework Gistau, Reza Akbarinia, Patrick Valduriez INRIA & LIRMM, Montpellier, France In collaboration with Divyakant Agrawal, UCSB Esther Pacitti, UM2, LIRMM

More information

How to Implement MapReduce Using. Presented By Jamie Pitts

How to Implement MapReduce Using. Presented By Jamie Pitts How to Implement MapReduce Using Presented By Jamie Pitts A Problem Seeking A Solution Given a corpus of html-stripped financial filings: Identify and count unique subjects. Possible Solutions: 1. Use

More information

Practical Big Data Processing An Overview of Apache Flink

Practical Big Data Processing An Overview of Apache Flink Practical Big Data Processing An Overview of Apache Flink Tilmann Rabl Berlin Big Data Center www.dima.tu-berlin.de bbdc.berlin rabl@tu-berlin.de With slides from Volker Markl and data artisans 1 2013

More information

SCALABLE DISTRIBUTED DEEP LEARNING

SCALABLE DISTRIBUTED DEEP LEARNING SEOUL Oct.7, 2016 SCALABLE DISTRIBUTED DEEP LEARNING Han Hee Song, PhD Soft On Net 10/7/2016 BATCH PROCESSING FRAMEWORKS FOR DL Data parallelism provides efficient big data processing: data collecting,

More information

Using Existing Numerical Libraries on Spark

Using Existing Numerical Libraries on Spark Using Existing Numerical Libraries on Spark Brian Spector Chicago Spark Users Meetup June 24 th, 2015 Experts in numerical algorithms and HPC services How to use existing libraries on Spark Call algorithm

More information

Play2SDG: Bridging the Gap between Serving and Analytics in Scalable Web Applications

Play2SDG: Bridging the Gap between Serving and Analytics in Scalable Web Applications Play2SDG: Bridging the Gap between Serving and Analytics in Scalable Web Applications Panagiotis Garefalakis M.Res Thesis Presentation, 7 September 2015 Outline Motivation Challenges Scalable web app design

More information

Research challenges in data-intensive computing The Stratosphere Project Apache Flink

Research challenges in data-intensive computing The Stratosphere Project Apache Flink Research challenges in data-intensive computing The Stratosphere Project Apache Flink Seif Haridi KTH/SICS haridi@kth.se e2e-clouds.org Presented by: Seif Haridi May 2014 Research Areas Data-intensive

More information

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context 1 Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes

More information

Survey Paper on Traditional Hadoop and Pipelined Map Reduce

Survey Paper on Traditional Hadoop and Pipelined Map Reduce International Journal of Computational Engineering Research Vol, 03 Issue, 12 Survey Paper on Traditional Hadoop and Pipelined Map Reduce Dhole Poonam B 1, Gunjal Baisa L 2 1 M.E.ComputerAVCOE, Sangamner,

More information

Distributed Computing with Spark and MapReduce

Distributed Computing with Spark and MapReduce Distributed Computing with Spark and MapReduce Reza Zadeh @Reza_Zadeh http://reza-zadeh.com Traditional Network Programming Message-passing between nodes (e.g. MPI) Very difficult to do at scale:» How

More information

MapReduce: A Programming Model for Large-Scale Distributed Computation

MapReduce: A Programming Model for Large-Scale Distributed Computation CSC 258/458 MapReduce: A Programming Model for Large-Scale Distributed Computation University of Rochester Department of Computer Science Shantonu Hossain April 18, 2011 Outline Motivation MapReduce Overview

More information

Batch Processing Basic architecture

Batch Processing Basic architecture Batch Processing Basic architecture in big data systems COS 518: Distributed Systems Lecture 10 Andrew Or, Mike Freedman 2 1 2 64GB RAM 32 cores 64GB RAM 32 cores 64GB RAM 32 cores 64GB RAM 32 cores 3

More information

Introduction to MapReduce

Introduction to MapReduce Basics of Cloud Computing Lecture 4 Introduction to MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed

More information

Parallel learning of content recommendations using map- reduce

Parallel learning of content recommendations using map- reduce Parallel learning of content recommendations using map- reduce Michael Percy Stanford University Abstract In this paper, machine learning within the map- reduce paradigm for ranking

More information

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros Data Clustering on the Parallel Hadoop MapReduce Model Dimitrios Verraros Overview The purpose of this thesis is to implement and benchmark the performance of a parallel K- means clustering algorithm on

More information

Apache Flink. Alessandro Margara

Apache Flink. Alessandro Margara Apache Flink Alessandro Margara alessandro.margara@polimi.it http://home.deib.polimi.it/margara Recap: scenario Big Data Volume and velocity Process large volumes of data possibly produced at high rate

More information

COMP6237 Data Mining Data Mining & Machine Learning with Big Data. Jonathon Hare

COMP6237 Data Mining Data Mining & Machine Learning with Big Data. Jonathon Hare COMP6237 Data Mining Data Mining & Machine Learning with Big Data Jonathon Hare jsh2@ecs.soton.ac.uk Contents Going to look at two case-studies looking at how we can make machine-learning algorithms work

More information

DON T CRY OVER SPILLED RECORDS Memory elasticity of data-parallel applications and its application to cluster scheduling

DON T CRY OVER SPILLED RECORDS Memory elasticity of data-parallel applications and its application to cluster scheduling DON T CRY OVER SPILLED RECORDS Memory elasticity of data-parallel applications and its application to cluster scheduling Călin Iorgulescu (EPFL), Florin Dinu (EPFL), Aunn Raza (NUST Pakistan), Wajih Ul

More information

An Adaptive Scheduling Technique for Improving the Efficiency of Hadoop

An Adaptive Scheduling Technique for Improving the Efficiency of Hadoop An Adaptive Scheduling Technique for Improving the Efficiency of Hadoop Ms Punitha R Computer Science Engineering M.S Engineering College, Bangalore, Karnataka, India. Mr Malatesh S H Computer Science

More information

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis Apache Giraph for applications in Machine Learning & Recommendation Systems Maria Stylianou @marsty5 Novartis Züri Machine Learning Meetup #5 June 16, 2014 Apache Giraph for applications in Machine Learning

More information

Linear Regression Optimization

Linear Regression Optimization Gradient Descent Linear Regression Optimization Goal: Find w that minimizes f(w) f(w) = Xw y 2 2 Closed form solution exists Gradient Descent is iterative (Intuition: go downhill!) n w * w Scalar objective:

More information

Building A Data-center Scale Analytics Platform. Sriram Rao Scientist/Manager, CISL

Building A Data-center Scale Analytics Platform. Sriram Rao Scientist/Manager, CISL Building A Data-center Scale Analytics Platform Sriram Rao Scientist/Manager, CISL CISL: Cloud and Information Services Lab Started in May 2012 Mission Statement: Applied research lab working on Systems

More information

Distributed Computing with Spark

Distributed Computing with Spark Distributed Computing with Spark Reza Zadeh Thanks to Matei Zaharia Outline Data flow vs. traditional network programming Limitations of MapReduce Spark computing engine Numerical computing on Spark Ongoing

More information

SparkBench: A Comprehensive Spark Benchmarking Suite Characterizing In-memory Data Analytics

SparkBench: A Comprehensive Spark Benchmarking Suite Characterizing In-memory Data Analytics SparkBench: A Comprehensive Spark Benchmarking Suite Characterizing In-memory Data Analytics Min LI,, Jian Tan, Yandong Wang, Li Zhang, Valentina Salapura, Alan Bivens IBM TJ Watson Research Center * A

More information

Hadoop 2.x Core: YARN, Tez, and Spark. Hortonworks Inc All Rights Reserved

Hadoop 2.x Core: YARN, Tez, and Spark. Hortonworks Inc All Rights Reserved Hadoop 2.x Core: YARN, Tez, and Spark YARN Hadoop Machine Types top-of-rack switches core switch client machines have client-side software used to access a cluster to process data master nodes run Hadoop

More information

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Nikos Zacheilas, Vana Kalogeraki Department of Informatics Athens University of Economics and Business 1 Big Data era has arrived!

More information

1. Introduction to MapReduce

1. Introduction to MapReduce Processing of massive data: MapReduce 1. Introduction to MapReduce 1 Origins: the Problem Google faced the problem of analyzing huge sets of data (order of petabytes) E.g. pagerank, web access logs, etc.

More information

CoLoc: Distributed Data and Container Colocation for Data-Intensive Applications

CoLoc: Distributed Data and Container Colocation for Data-Intensive Applications CoLoc: Distributed Data and Container Colocation for Data-Intensive Applications Thomas Renner, Lauritz Thamsen, Odej Kao Technische Universität Berlin, Germany {firstname.lastname}@tu-berlin.de Abstract

More information

Apache Flink. Fuchkina Ekaterina with Material from Andreas Kunft -TU Berlin / DIMA; dataartisans slides

Apache Flink. Fuchkina Ekaterina with Material from Andreas Kunft -TU Berlin / DIMA; dataartisans slides Apache Flink Fuchkina Ekaterina with Material from Andreas Kunft -TU Berlin / DIMA; dataartisans slides What is Apache Flink Massive parallel data flow engine with unified batch-and streamprocessing CEP

More information

IBM Data Science Experience White paper. SparkR. Transforming R into a tool for big data analytics

IBM Data Science Experience White paper. SparkR. Transforming R into a tool for big data analytics IBM Data Science Experience White paper R Transforming R into a tool for big data analytics 2 R Executive summary This white paper introduces R, a package for the R statistical programming language that

More information

Why do we need graph processing?

Why do we need graph processing? Why do we need graph processing? Community detection: suggest followers? Determine what products people will like Count how many people are in different communities (polling?) Graphs are Everywhere Group

More information

Introducing Microsoft SQL Server 2016 R Services. Julian Lee Advanced Analytics Lead Global Black Belt Asia Timezone

Introducing Microsoft SQL Server 2016 R Services. Julian Lee Advanced Analytics Lead Global Black Belt Asia Timezone Introducing Microsoft SQL Server 2016 R Services Julian Lee Advanced Analytics Lead Global Black Belt Asia Timezone SQL Server 2016: Everything built-in built-in built-in built-in built-in built-in $2,230

More information

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu G(B)enchmark GraphBench: Towards a Universal Graph Benchmark Khaled Ammar M. Tamer Özsu Bioinformatics Software Engineering Social Network Gene Co-expression Protein Structure Program Flow Big Graphs o

More information

A Survey on Job Scheduling in Big Data

A Survey on Job Scheduling in Big Data BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 3 Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2016-0033 A Survey on Job Scheduling in

More information

Bolt: I Know What You Did Last Summer In the Cloud

Bolt: I Know What You Did Last Summer In the Cloud Bolt: I Know What You Did Last Summer In the Cloud Christina Delimitrou 1 and Christos Kozyrakis 2 1 Cornell University, 2 Stanford University ASPLOS April 12 th 2017 Executive Summary Problem: cloud resource

More information

Large-Scale GPU programming

Large-Scale GPU programming Large-Scale GPU programming Tim Kaldewey Research Staff Member Database Technologies IBM Almaden Research Center tkaldew@us.ibm.com Assistant Adjunct Professor Computer and Information Science Dept. University

More information

Scaling Distributed Machine Learning

Scaling Distributed Machine Learning Scaling Distributed Machine Learning with System and Algorithm Co-design Mu Li Thesis Defense CSD, CMU Feb 2nd, 2017 nx min w f i (w) Distributed systems i=1 Large scale optimization methods Large-scale

More information

Cloud, Big Data & Linear Algebra

Cloud, Big Data & Linear Algebra Cloud, Big Data & Linear Algebra Shelly Garion IBM Research -- Haifa 2014 IBM Corporation What is Big Data? 2 Global Data Volume in Exabytes What is Big Data? 2005 2012 2017 3 Global Data Volume in Exabytes

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Motivation And Intro Programming Model Spark Data Transformation Model Construction Model Training Model Inference Execution Model Data Parallel Training

More information

Multi-tenancy version of BigDataBench

Multi-tenancy version of BigDataBench Multi-tenancy version of BigDataBench Gang Lu Institute of Computing Technology, Chinese Academy of Sciences BigDataBench Tutorial MICRO 2014 Cambridge, UK INSTITUTE OF COMPUTING TECHNOLOGY 1 Multi-tenancy

More information

Optimizing the use of the Hard Disk in MapReduce Frameworks for Multi-core Architectures*

Optimizing the use of the Hard Disk in MapReduce Frameworks for Multi-core Architectures* Optimizing the use of the Hard Disk in MapReduce Frameworks for Multi-core Architectures* Tharso Ferreira 1, Antonio Espinosa 1, Juan Carlos Moure 2 and Porfidio Hernández 2 Computer Architecture and Operating

More information

Thesis Report: Resource Utilization Provisioning in MapReduce

Thesis Report: Resource Utilization Provisioning in MapReduce Thesis Report: Resource Utilization Provisioning in MapReduce Hamidreza Barati, Nasrin Jaberi Department of IT and Computer Engineering Payame Noor University Nasrinjaberi@yahoo.com Abstract- In this thesis

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

Data Analytics on RAMCloud

Data Analytics on RAMCloud Data Analytics on RAMCloud Jonathan Ellithorpe jdellit@stanford.edu Abstract MapReduce [1] has already become the canonical method for doing large scale data processing. However, for many algorithms including

More information

MapReduce, Hadoop and Spark. Bompotas Agorakis

MapReduce, Hadoop and Spark. Bompotas Agorakis MapReduce, Hadoop and Spark Bompotas Agorakis Big Data Processing Most of the computations are conceptually straightforward on a single machine but the volume of data is HUGE Need to use many (1.000s)

More information

HPC in Cloud. Presenter: Naresh K. Sehgal Contributors: Billy Cox, John M. Acken, Sohum Sohoni

HPC in Cloud. Presenter: Naresh K. Sehgal Contributors: Billy Cox, John M. Acken, Sohum Sohoni HPC in Cloud Presenter: Naresh K. Sehgal Contributors: Billy Cox, John M. Acken, Sohum Sohoni 2 Agenda What is HPC? Problem Statement(s) Cloud Workload Characterization Translation from High Level Issues

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

CS MapReduce. Vitaly Shmatikov

CS MapReduce. Vitaly Shmatikov CS 5450 MapReduce Vitaly Shmatikov BackRub (Google), 1997 slide 2 NEC Earth Simulator, 2002 slide 3 Conventional HPC Machine ucompute nodes High-end processors Lots of RAM unetwork Specialized Very high

More information

732A54/TDDE31 Big Data Analytics

732A54/TDDE31 Big Data Analytics 732A54/TDDE31 Big Data Analytics Lecture 10: Machine Learning with MapReduce Jose M. Peña IDA, Linköping University, Sweden 1/27 Contents MapReduce Framework Machine Learning with MapReduce Neural Networks

More information

15-388/688 - Practical Data Science: Big data and MapReduce. J. Zico Kolter Carnegie Mellon University Spring 2018

15-388/688 - Practical Data Science: Big data and MapReduce. J. Zico Kolter Carnegie Mellon University Spring 2018 15-388/688 - Practical Data Science: Big data and MapReduce J. Zico Kolter Carnegie Mellon University Spring 2018 1 Outline Big data Some context in distributed computing map + reduce MapReduce MapReduce

More information

MRBench : A Benchmark for Map-Reduce Framework

MRBench : A Benchmark for Map-Reduce Framework MRBench : A Benchmark for Map-Reduce Framework Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin-gyu Kim, Hyungsoo Jung, Heon Y. Yeom School of Computer Science and Engineering Seoul National University Seoul

More information

StreamBox: Modern Stream Processing on a Multicore Machine

StreamBox: Modern Stream Processing on a Multicore Machine StreamBox: Modern Stream Processing on a Multicore Machine Hongyu Miao and Heejin Park, Purdue ECE; Myeongjae Jeon and Gennady Pekhimenko, Microsoft Research; Kathryn S. McKinley, Google; Felix Xiaozhu

More information

Using Numerical Libraries on Spark

Using Numerical Libraries on Spark Using Numerical Libraries on Spark Brian Spector London Spark Users Meetup August 18 th, 2015 Experts in numerical algorithms and HPC services How to use existing libraries on Spark Call algorithm with

More information

DeepConf: Automating Data Center Network Topologies Management with Machine Learning

DeepConf: Automating Data Center Network Topologies Management with Machine Learning DeepConf: Automating Data Center Network Topologies Management with Machine Learning Saim Salman, Theophilus Benson, Asim Kadav Brown University NEC Labs Abstract Recent work on improving performance and

More information

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia MapReduce Spark Some slides are adapted from those of Jeff Dean and Matei Zaharia What have we learnt so far? Distributed storage systems consistency semantics protocols for fault tolerance Paxos, Raft,

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 3 ISS: 2456-3307 Hadoop Periodic Jobs Using Data Blocks to Achieve

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [MAPREDUCE] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Bit Torrent What is the right chunk/piece

More information

Twitter data Analytics using Distributed Computing

Twitter data Analytics using Distributed Computing Twitter data Analytics using Distributed Computing Uma Narayanan Athrira Unnikrishnan Dr. Varghese Paul Dr. Shelbi Joseph Research Scholar M.tech Student Professor Assistant Professor Dept. of IT, SOE

More information

Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds

Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds Kevin Hsieh Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R. Ganger, Phillip B. Gibbons, Onur Mutlu Machine Learning and Big

More information

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Presented by: Dishant Mittal Authors: Juwei Shi, Yunjie Qiu, Umar Firooq Minhas, Lemei Jiao, Chen Wang, Berthold Reinwald and Fatma

More information

CS6030 Cloud Computing. Acknowledgements. Today s Topics. Intro to Cloud Computing 10/20/15. Ajay Gupta, WMU-CS. WiSe Lab

CS6030 Cloud Computing. Acknowledgements. Today s Topics. Intro to Cloud Computing 10/20/15. Ajay Gupta, WMU-CS. WiSe Lab CS6030 Cloud Computing Ajay Gupta B239, CEAS Computer Science Department Western Michigan University ajay.gupta@wmich.edu 276-3104 1 Acknowledgements I have liberally borrowed these slides and material

More information

Model-Driven Geo-Elasticity In Database Clouds

Model-Driven Geo-Elasticity In Database Clouds Model-Driven Geo-Elasticity In Database Clouds Tian Guo, Prashant Shenoy College of Information and Computer Sciences University of Massachusetts, Amherst This work is supported by NSF grant 1345300, 1229059

More information

Big Data com Hadoop. VIII Sessão - SQL Bahia. Impala, Hive e Spark. Diógenes Pires 03/03/2018

Big Data com Hadoop. VIII Sessão - SQL Bahia. Impala, Hive e Spark. Diógenes Pires 03/03/2018 Big Data com Hadoop Impala, Hive e Spark VIII Sessão - SQL Bahia 03/03/2018 Diógenes Pires Connect with PASS Sign up for a free membership today at: pass.org #sqlpass Internet Live http://www.internetlivestats.com/

More information

Bolt: I Know What You Did Last Summer In the Cloud

Bolt: I Know What You Did Last Summer In the Cloud Bolt: I Know What You Did Last Summer In the Cloud Christina Delimitrou1 and Christos Kozyrakis2 1Cornell University, 2Stanford University Platform Lab Review February 2018 Executive Summary Problem: cloud

More information

Maximum Sustainable Throughput Prediction for Large-Scale Data Streaming Systems

Maximum Sustainable Throughput Prediction for Large-Scale Data Streaming Systems JOURNAL OF L A T E X CLASS FILES, VOL. 14, NO. 8, AUGUST 215 1 Maximum Sustainable Throughput Prediction for Large-Scale Data Streaming Systems Abstract In cloud-based stream processing services, the maximum

More information

Big Data Hadoop Stack

Big Data Hadoop Stack Big Data Hadoop Stack Lecture #1 Hadoop Beginnings What is Hadoop? Apache Hadoop is an open source software framework for storage and large scale processing of data-sets on clusters of commodity hardware

More information

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management SigHPC BigData BoF (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

LeanBench: comparing software stacks for batch and query processing of IoT data

LeanBench: comparing software stacks for batch and query processing of IoT data Available online at www.sciencedirect.com Procedia Computer Science (216) www.elsevier.com/locate/procedia The 9th International Conference on Ambient Systems, Networks and Technologies (ANT 218) LeanBench:

More information

Practice Questions for Midterm

Practice Questions for Midterm Practice Questions for Midterm - 10-605 Oct 14, 2015 (version 1) 10-605 Name: Fall 2015 Sample Questions Andrew ID: Time Limit: n/a Grade Table (for teacher use only) Question Points Score 1 6 2 6 3 15

More information

Toward Scalable Deep Learning

Toward Scalable Deep Learning 한국정보과학회 인공지능소사이어티 머신러닝연구회 두번째딥러닝워크샵 2015.10.16 Toward Scalable Deep Learning 윤성로 Electrical and Computer Engineering Seoul National University http://data.snu.ac.kr Breakthrough: Big Data + Machine Learning

More information

An Introduction to Apache Spark

An Introduction to Apache Spark An Introduction to Apache Spark 1 History Developed in 2009 at UC Berkeley AMPLab. Open sourced in 2010. Spark becomes one of the largest big-data projects with more 400 contributors in 50+ organizations

More information

CSE 444: Database Internals. Lecture 23 Spark

CSE 444: Database Internals. Lecture 23 Spark CSE 444: Database Internals Lecture 23 Spark References Spark is an open source system from Berkeley Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei

More information

a Spark in the cloud iterative and interactive cluster computing

a Spark in the cloud iterative and interactive cluster computing a Spark in the cloud iterative and interactive cluster computing Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica UC Berkeley Background MapReduce and Dryad raised level of

More information

Big Data Programming: an Introduction. Spring 2015, X. Zhang Fordham Univ.

Big Data Programming: an Introduction. Spring 2015, X. Zhang Fordham Univ. Big Data Programming: an Introduction Spring 2015, X. Zhang Fordham Univ. Outline What the course is about? scope Introduction to big data programming Opportunity and challenge of big data Origin of Hadoop

More information

Apache Flink- A System for Batch and Realtime Stream Processing

Apache Flink- A System for Batch and Realtime Stream Processing Apache Flink- A System for Batch and Realtime Stream Processing Lecture Notes Winter semester 2016 / 2017 Ludwig-Maximilians-University Munich Prof Dr. Matthias Schubert 2016 Introduction to Apache Flink

More information

Available online at ScienceDirect. Procedia Computer Science 89 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 89 (2016 ) 203 208 Twelfth International Multi-Conference on Information Processing-2016 (IMCIP-2016) Tolhit A Scheduling

More information

Clustering Lecture 8: MapReduce

Clustering Lecture 8: MapReduce Clustering Lecture 8: MapReduce Jing Gao SUNY Buffalo 1 Divide and Conquer Work Partition w 1 w 2 w 3 worker worker worker r 1 r 2 r 3 Result Combine 4 Distributed Grep Very big data Split data Split data

More information

Distributed Machine Learning: An Intro. Chen Huang

Distributed Machine Learning: An Intro. Chen Huang : An Intro. Chen Huang Feature Engineering Group, Data Mining Lab, Big Data Research Center, UESTC Contents Background Some Examples Model Parallelism & Data Parallelism Parallelization Mechanisms Synchronous

More information

Isolation Forest for Anomaly Detection

Isolation Forest for Anomaly Detection Isolation Forest for Anomaly Detection Sahand Hariri PhD Student, MechSE UIUC Matias Carrasco Kind Senior Research Scientist, NCSA LSST Workshop 2018, June 21, NCSA, UIUC Overview Goal: Build a resilient

More information

MapReduce & Resilient Distributed Datasets. Yiqing Hua, Mengqi(Mandy) Xia

MapReduce & Resilient Distributed Datasets. Yiqing Hua, Mengqi(Mandy) Xia MapReduce & Resilient Distributed Datasets Yiqing Hua, Mengqi(Mandy) Xia Outline - MapReduce: - - Resilient Distributed Datasets (RDD) - - Motivation Examples The Design and How it Works Performance Motivation

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

Scaling Distributed Machine Learning with the Parameter Server

Scaling Distributed Machine Learning with the Parameter Server Scaling Distributed Machine Learning with the Parameter Server Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su Presented

More information

AN EFFECTIVE DETECTION OF SATELLITE IMAGES VIA K-MEANS CLUSTERING ON HADOOP SYSTEM. Mengzhao Yang, Haibin Mei and Dongmei Huang

AN EFFECTIVE DETECTION OF SATELLITE IMAGES VIA K-MEANS CLUSTERING ON HADOOP SYSTEM. Mengzhao Yang, Haibin Mei and Dongmei Huang International Journal of Innovative Computing, Information and Control ICIC International c 2017 ISSN 1349-4198 Volume 13, Number 3, June 2017 pp. 1037 1046 AN EFFECTIVE DETECTION OF SATELLITE IMAGES VIA

More information

Cross-layer Optimization for Virtual Machine Resource Management

Cross-layer Optimization for Virtual Machine Resource Management Cross-layer Optimization for Virtual Machine Resource Management Ming Zhao, Arizona State University Lixi Wang, Amazon Yun Lv, Beihang Universituy Jing Xu, Google http://visa.lab.asu.edu Virtualized Infrastructures,

More information

EFFICIENT ALLOCATION OF DYNAMIC RESOURCES IN A CLOUD

EFFICIENT ALLOCATION OF DYNAMIC RESOURCES IN A CLOUD EFFICIENT ALLOCATION OF DYNAMIC RESOURCES IN A CLOUD S.THIRUNAVUKKARASU 1, DR.K.P.KALIYAMURTHIE 2 Assistant Professor, Dept of IT, Bharath University, Chennai-73 1 Professor& Head, Dept of IT, Bharath

More information

Similarities and Differences Between Parallel Systems and Distributed Systems

Similarities and Differences Between Parallel Systems and Distributed Systems Similarities and Differences Between Parallel Systems and Distributed Systems Pulasthi Wickramasinghe, Geoffrey Fox School of Informatics and Computing,Indiana University, Bloomington, IN 47408, USA In

More information