Tema 0: Transmisión de Datos Multimedia
|
|
- Thomasine Tate
- 11 months ago
- Views:
Transcription
1 Tema 0: Transmisión de Datos Multimedia Clases de aplicaciones multimedia Redes basadas en IP y QoS Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July Transmisión de Datos Multimedia Master IC 2007/2008
2 Definition of multimedia Hard to find a clear-cut definition What is multimedia? In general, multimedia is an integration of text, graphics, still and moving images, animation, sounds, and any other medium where every type of information can be represented, stored, transmitted and processed digitally Characteristics of multimedia Digital key concept Integration of multiple media type, usually including video or/and audio May be interactive or non-interactive 2
3 Text, Graphics, image, video, animation, sound, etc. Classifications of various media types Captured vs. synthesized media Various Media Types Captured media (natural) : information captured from the real world Example: still image, video, audio Synthesized media (artificial) : information synthesize by the computer Example: text, graphics, animation Discrete vs. continuous media Discrete media: space-based, media involve the space dimension only Text, Image, Graphics Continuous media: time-based, media involves both the space and the time dimension Video, Sound, Animation 3
4 Sound Image Continuous Video Classification of Media Type Animation Text Continuous Graphics Discrete Captured From real world Discrete Synthesized By computer 4
5 Plain text Unformatted Characters coded in binary form ASCII code All characters have the same style and font Rich text Formatted Contains format information besides codes for characters No predominant standards Characters of various size, shape and style, e.g. bold, colorful Text 5
6 6 Plain Text vs. Rich Text An example of Plain text Example of Rich text
7 Revisable document that retains structural information Consists of objects such as lines, curves, circles, etc Usually generated by graphic editor of computer programs 10 5 Graphics Example of graphics (FIG file)
8 2D matrix consisting of pixels Pixel smallest element of resolution of the image One pixel is represented by a number of bits Pixel depth the number of bits available to code the pixel Have no structural information Two categories: scanned vs. synthesized still image Computer software Digital still image Synthesized image Images Camera Capture and A/D conversion Scanned image 8
9 Examples of images Binary image pixel depth 1 Gray-scale pixel depth 8 Color image pixel depth 24 Binary image Images (cont.) Gray-scale color image 9
10 Video vs. Animation Both images and graphics can be displayed as a succession of view which create an impression of movement Video moving images or moving pictures Captured or Synthesized Consists of a series of bitmap images Each image is called a frame Frame rate: the speed to playback the video (frame per second) Animation moving graphics Generated by computer program (animation authoring tools) Consists of a set of objects The movements of the objects are calculated and the view is updated at playback 1 0
11 1-D time-based signal Speech vs. non-speech sound Speech supports spoken language and has a semantic content Non-speech does not convey semantics in general Natural vs. structured sound Natural sound Recorded/generated sound wave represented as digital signal Example: Audio in CD, WAV files Structured sound Synthesize sound in a symbolic way Example: MIDI file Sound 1 1
12 Local vs. networked multimedia Networked Multimedia Local: storage and presentation of multimedia information in standalone computers Sample applications: DVD Networked: involve transmission and distribution of multimedia information on the network Sample applications: videoconferencing, web video broadcasting, multimedia , etc. A scenario of multimedia networking Image server Video server Internet 1 2
13 Consideration of Networked Multimedia Requirements of multimedia applications on the network Typically delay sensitive end-to-end delay delay jitter: Jitter is the variability of packet delays within the same packet stream Quality requirement Satisfactory quality of media presentation Synchronization requirement Continuous requirement (no jerky video/audio) Can tolerant some degree of information loss 1 3
14 Technologies of Multimedia Networking Challenges of multimedia networking 1. Conflict between media size and bandwidth limit of the network 2. Conflict between the user requirement of multimedia application and the best-effort network 3. How to meet different requirements of different users? Media compression reduce the data volume Address the 1st challenge Image compression Video compression Audio compression Multimedia transmission technology Address the 2nd and 3rd challenges Protocols for real-time transmission Rate / congestion control Error control 1 4
15 Live media transmission system Multimedia Networking Systems Capture, compress, and transmit the media on the fly (example?) Send stored media across the network Media is pre-compressed and stored at the server. This system delivers the stored media to one or multiple receivers. (example?) Differences between the two systems For live media delivery: Real-time media capture, need hardware support Real-time compression speed is important Compression procedure can be adjusted based on network conditions For stored media delivery Offline compression better compression result is important Compression can not be adjusted during transmission 1 5
16 Streaming stored audio and video Streaming live audio and video Real-time interactive audio and video Classes of multimedia applications 1 6
17 Cumulative data 100% 1. video recorded t>0 2. video sent Streaming Stored Multimedia: What is it? network delay 3. video received, played out at client time streaming: at this time, client playing out early part of video, while server still sending later part of video 1 7
18 Streaming vs. Download of Stored Multimedia Content Download: Receive entire content before playback begins High start-up delay as media file can be large ~ 4GB for a 2 hour MPEG II movie Streaming: Play the media file while it is being received Reasonable start-up delays Reception Rate >= playback rate. Why? 1 8
19 Streaming Stored Multimedia: Interactivity VCR-like functionality: client can pause, rewind, FF, push slider bar 10 sec initial delay OK 1-2 sec until command effect OK RTSP often used (more later) timing constraint for still-to-be transmitted data: in time for playout 1 9
20 Cumulative data constant bit rate video transmission Streaming Multimedia: Client Buffering variable network delay client video reception buffered video constant bit rate video playout at client client playout delay time Client-side buffering, playout delay compensate for networkadded delay, delay jitter 2 0
21 Streaming Multimedia: Client Buffering Client-side buffering, playout delay compensate for network-added delay, delay jitter variable fill rate, x(t) constant drain rate, d buffered video 2 1
22 Interactive, Real-Time Multimedia applications: IP telephony, video conference, distributed interactive worlds end-end delay requirements: audio: < 150 msec good, < 400 msec OK includes application-level (packetization) and network delays higher delays noticeable, impair interactivity session initialization how does callee advertise its IP address, port number, encoding algorithms? 2 2
23 Internet multimedia: simplest approach audio or video stored in file files transferred as HTTP object received in entirety at client then passed to player audio, video not streamed: no, pipelining, long delays until playout! 2 3
24 Progressive Download browser GETs metafile browser launches player, passing metafile player contacts server server downloads audio/video to player 2 4
25 Streaming from a streaming server This architecture allows for non-http protocol between server and media player Can also use UDP instead of TCP. 2 5
26 TCP/UDP/IP: best-effort service no guarantees on delay, loss Multimedia Over Today s Internet But multimedia apps requires QoS and level of performance to be effective! Today s Internet multimedia applications use application-level techniques to mitigate (as best possible) effects of delay, loss 2 6
27 UDP Streaming Multimedia: UDP or TCP? server sends at rate appropriate for client (oblivious to network congestion!) often send rate = encoding rate = constant rate then, fill rate = constant rate - packet loss short playout delay (2-5 seconds) to compensate for network delay jitter error recover: time permitting TCP send at maximum possible rate under TCP fill rate fluctuates due to TCP congestion control larger playout delay: smooth TCP delivery rate HTTP/TCP passes more easily through firewalls 2 7
28 Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video ( continuous media ) QoS network provides application with level of performance needed for application to function. 2 8
29 Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential guarantees Integrated Services: firm guarantees simple model for sharing and congestion studies: 2 9
30 Principles for QOS Guarantees Example: 1Mbps IPphone, FTP share 1.5 Mbps link. bursts of FTP can congest router, cause audio loss want to give priority to audio over FTP 3 0 Principle 1 packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly
31 Principles for QOS Guarantees (more) what if applications misbehave (audio sends higher than declared rate) policing: force source adherence to bandwidth allocations marking and policing at network edge: similar to ATM UNI (User Network Interface) Principle provide protection (isolation) for one class from others
32 Principles for QOS Guarantees (more) Allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn t use its allocation Principle While providing isolation, it is desirable to use resources as efficiently as possible
33 Principles for QOS Guarantees (more) Basic fact of life: can not support traffic demands beyond link capacity 3 3 Principle 4 Call Admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs
34 3 4 Summary of QoS Principles
9/8/2016. Characteristics of multimedia Various media types
Chapter 1 Introduction to Multimedia Networking CLO1: Define fundamentals of multimedia networking Upon completion of this chapter students should be able to define: 1- Multimedia 2- Multimedia types and
Chapter 7 Multimedia Networking
Chapter 7 Multimedia Networking Principles Classify multimedia applications Identify the network services and the requirements the apps need Making the best of best effort service Mechanisms for providing
Multimedia Networking
Multimedia Networking 1 Multimedia, Quality of Service (QoS): What is it? Multimedia applications: Network audio and video ( continuous media ) QoS Network provides application with level of performance
Outline. QoS routing in ad-hoc networks. Real-time traffic support. Classification of QoS approaches. QoS design choices
Outline QoS routing in ad-hoc networks QoS in ad-hoc networks Classifiction of QoS approaches Instantiation in IEEE 802.11 The MAC protocol (recap) DCF, PCF and QoS support IEEE 802.11e: EDCF, HCF Streaming
of-service Support on the Internet
Quality-of of-service Support on the Internet Dept. of Computer Science, University of Rochester 2008-11-24 CSC 257/457 - Fall 2008 1 Quality of Service Support Some Internet applications (i.e. multimedia)
Lecture 9: Media over IP
Lecture 9: Media over IP These slides are adapted from the slides provided by the authors of the book (to the right), available from the publisher s website. Computer Networking: A Top Down Approach 5
Quality of Service (QoS)
Quality of Service (QoS) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete
Multimedia Networking
CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose
Video Streaming and Media Session Protocols
Video Streaming and Media Session Protocols 1 Streaming Stored Multimedia Stored media streaming File containing digitized audio / video Stored at source Transmitted to client Streaming Client playout
The Transport Layer: User Datagram Protocol
The Transport Layer: User Datagram Protocol CS7025: Network Technologies and Server Side Programming http://www.scss.tcd.ie/~luzs/t/cs7025/ Lecturer: Saturnino Luz April 4, 2011 The UDP All applications
Multimedia Networking
Multimedia Networking #2 Multimedia Networking Semester Ganjil 2012 PTIIK Universitas Brawijaya #2 Multimedia Applications 1 Schedule of Class Meeting 1. Introduction 2. Applications of MN 3. Requirements
CS640: Introduction to Computer Networks. Application Classes. Application Classes (more) 11/20/2007
CS640: Introduction to Computer Networks Aditya Akella Lecture 21 - Multimedia Networking Application Classes Typically sensitive to delay, but can tolerate packet loss (would cause minor glitches that
Multimedia Networking
Multimedia Networking Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-09/
Improving QOS in IP Networks. Principles for QOS Guarantees
Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential
Real-Time Control Protocol (RTCP)
Real-Time Control Protocol (RTCP) works in conjunction with RTP each participant in RTP session periodically sends RTCP control packets to all other participants each RTCP packet contains sender and/or
Internet Services & Protocols. Quality of Service Architecture
Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Quality of Service Architecture Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:
CSC 401 Data and Computer Communications Networks
CSC 401 Data and Computer Communications Networks Application Layer Video Streaming, CDN and Sockets Sec 2.6 2.7 Prof. Lina Battestilli Fall 2017 Outline Application Layer (ch 2) 2.1 principles of network
Internet Video Delivery. Professor Hui Zhang
18-345 Internet Video Delivery Professor Hui Zhang 1 1990 2004: 1 st Generation Commercial PC/Packet Video Technologies Simple video playback, no support for rich app Not well integrated with Web browser
The Diffie-Hellman Key Exchange
ISC: SECURITY AND QOS The Diffie-Hellman Key Exchange A mechanism to establish secret keys without the need for CAs Based on the difficulty of computing discrete logarithms of large numbers Public (or
Multimedia Systems Multimedia Networking Part I Mahdi Amiri December 2015 Sharif University of Technology
Course Presentation Multimedia Systems Multimedia Networking Part I Mahdi Amiri December 2015 Sharif University of Technology Multimedia Networking Motivation The ever-growing needs for various multimedia
Chapter 7 Multimedia Networking
Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify,
Multimedia Networking. Network Support for Multimedia Applications
Multimedia Networking Network Support for Multimedia Applications Protocols for Real Time Interactive Applications Differentiated Services (DiffServ) Per Connection Quality of Services Guarantees (IntServ)
Multimedia in the Internet
Protocols for multimedia in the Internet Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ > 4 4 3 < 2 Applications and protocol stack DNS Telnet
Chapter 20: Multimedia Systems. Operating System Concepts 8 th Edition,
Chapter 20: Multimedia Systems, Silberschatz, Galvin and Gagne 2009 Chapter 20: Multimedia Systems What is Multimedia? Compression Requirements of Multimedia Kernels CPU Scheduling Disk Scheduling Network
Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Link layer,
Networking Quality of service
System i Networking Quality of service Version 6 Release 1 System i Networking Quality of service Version 6 Release 1 Note Before using this information and the product it supports, read the information
Data Networks. Lecture 1: Introduction. September 4, 2008
Data Networks Lecture 1: Introduction September 4, 2008 Slide 1 Learning Objectives Fundamental aspects of network Design and Analysis: Architecture: layering, topology design, switching mechanisms Protocols:
Streaming Video and Throughput Uplink and Downlink
Streaming Video and Throughput Uplink and Downlink IPTV IPTV - Digital TV delivered using technologies used for computer network. Internet Protocols (HTTP, RTP, RTSP, IGMP) Copyright 2017 Cambium Networks,
Multimedia Networking. Protocols for Real-Time Interactive Applications
Multimedia Networking Protocols for Real-Time Interactive Applications Real Time Protocol Real Time Control Protocol Session Initiation Protocol H.323 Real-Time Protocol (RTP) RTP is companion protocol
Data Communications & Networks. Session 10 Main Theme Multimedia Networking. Dr. Jean-Claude Franchitti
Data Communications & Networks Session 10 Main Theme Multimedia Networking Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted
Chapter 19: Multimedia
Ref. Page Slide 1/16 Learning Objectives In this chapter you will learn about: Multimedia Multimedia computer system Main components of multimedia and their associated technologies Common multimedia applications
Chapter 7 Multimedia Networking
Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify,
Chapter 7 Multimedia Networking
Chapter 7 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 7: Multimedia Networking 7-1 Multimedia,
Multimedia Systems. Part 1. Mahdi Vasighi
Multimedia Systems Part 1 Mahdi Vasighi www.iasbs.ac.ir/~vasighi Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran Teaching Plan
MPEG-4. Today we'll talk about...
INF5081 Multimedia Coding and Applications Vårsemester 2007, Ifi, UiO MPEG-4 Wolfgang Leister Knut Holmqvist Today we'll talk about... MPEG-4 / ISO/IEC 14496...... is more than a new audio-/video-codec...
Compression and File Formats
Compression and File Formats 1 Compressing Moving Images Methods: Motion JPEG, Cinepak, Indeo, MPEG Known as CODECs compression / decompression algorithms hardware and software implementations symmetrical
What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control
Chapter 12 Congestion in Data Networks Effect of Congestion Control Ideal Performance Practical Performance Congestion Control Mechanisms Backpressure Choke Packet Implicit Congestion Signaling Explicit
Multicast and Quality of Service. Internet Technologies and Applications
Multicast and Quality of Service Internet Technologies and Applications Aims and Contents Aims Introduce the multicast and the benefits it offers Explain quality of service and basic techniques for delivering
How to achieve low latency audio/video streaming over IP network?
February 2018 How to achieve low latency audio/video streaming over IP network? Jean-Marie Cloquet, Video Division Director, Silex Inside Gregory Baudet, Marketing Manager, Silex Inside Standard audio
Chapter 7 Multimedia Operating Systems
MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 7 Multimedia Operating Systems Introduction To Multimedia (1) Figure 7-1. Video on demand using different local distribution technologies.
Ch 4: Multimedia. Fig.4.1 Internet Audio/Video
Ch 4: Multimedia Recent advances in technology have changed our use of audio and video. In the past, we listened to an audio broadcast through a radio and watched a video program broadcast through a TV.
Quality of Service (QoS) Computer network and QoS ATM. QoS parameters. QoS ATM QoS implementations Integrated Services Differentiated Services
1 Computer network and QoS QoS ATM QoS implementations Integrated Services Differentiated Services Quality of Service (QoS) The data transfer requirements are defined with different QoS parameters + e.g.,
Multimedia networked applications: standards, protocols and research trends
Multimedia networked applications: standards, protocols and research trends Maria Teresa Andrade FEUP / INESC Porto mandrade@fe.up.pt ; maria.andrade@inescporto.pt http://www.fe.up.pt/~mandrade/ ; http://www.inescporto.pt
VoIP Protocols and QoS
Announcements I. Times have been posted for demo slots VoIP Protocols and QoS II. HW5 and HW6 solutions have been posted HW6 being graded Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University
Streaming Technologies Delivering Multimedia into the Future. May 2014
Streaming Technologies Delivering Multimedia into the Future May 2014 TABLE OF CONTENTS Abstract... 3 Abbreviations... 4 How it started?... 6 Technology Overview... 7 Streaming Challenges... 15 Solutions...
PESIT Bangalore South Campus
PESIT Bangalore South Campus 15CS52: Computer Networks Faculty: Dr. Sarasvathi V, Ms. Bidisha Goswami and Ms. Kanthimathi No. Of Sessions: 70 Course objectives: This course will enable students to Demonstration
RTP. Prof. C. Noronha RTP. Real-Time Transport Protocol RFC 1889
RTP Real-Time Transport Protocol RFC 1889 1 What is RTP? Primary objective: stream continuous media over a best-effort packet-switched network in an interoperable way. Protocol requirements: Payload Type
Adaptive Playout Buffering for H.323 Voice over IP Applications
Adaptive Playout Buffering for H.323 Voice over IP Applications M. Narbutt and L. Murphy Department of Computer Science University College Dublin Belfield, Dublin 4 Abstract In this paper we investigate
Chapter 2: Application Layer. Chapter 2 Application Layer. Some network apps. Application architectures. Chapter 2: Application layer
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 2: Application Layer Our goals: conceptual, implementation
Telematics 2 & Performance Evaluation
Telematics 2 & Performance Evaluation Chapter 2 Quality of Service in the Internet (Acknowledgement: These slides have been compiled from Kurose & Ross, and other sources) 1 Improving QoS in IP Networks
Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture
Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,
CSC 401 Data and Computer Communications Networks
CSC 401 Data and Computer Communications Networks Computer Networks and The Inter Sec 1.3 Prof. Lina Battestilli Fall 2017 Outline Computer Networks and the Inter (Ch 1) 1.1 What is the Inter? 1.2 work
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 5: Network Layer (cont ) Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall, 2003. 2
CSE 461 Quality of Service. David Wetherall
CSE 461 Quality of Service David Wetherall djw@cs.washington.edu QOS Focus: How to provide better than best effort Fair queueing Application Application needs Transport Traffic shaping Guarantees IntServ
Cobalt Digital Inc Galen Drive Champaign, IL USA
Cobalt Digital White Paper IP Video Transport Protocols Knowing What To Use When and Why Cobalt Digital Inc. 2506 Galen Drive Champaign, IL 61821 USA 1-217-344-1243 www.cobaltdigital.com support@cobaltdigital.com
An evaluation tool for Wireless Digital Audio applications
An evaluation tool for Wireless Digital Audio applications Nicolas-Alexander Tatlas 1, Andreas Floros 2, and John Mourjopoulos 3 1 Audiogroup, Electrical Engineering and Computer Technology Department,
Chapter 3 Transport Layer
Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete
COMP 249 Advanced Distributed Systems Multimedia Networking. Multimedia Applications & User Requirements
COMP 249 Advanced Distributed Systems Multimedia Networking Multimedia Applications & User Requirements Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu
Application and Desktop Sharing. Omer Boyaci November 1, 2007
Application and Desktop Sharing Omer Boyaci November 1, 2007 Overview Introduction Demo Architecture Challenges Features Conclusion Application Sharing Models Application specific + Efficient - Participants
CS 3516: Advanced Computer Networks
Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook
EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture
EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,
Real Time Protocols. Overview. Introduction. Tarik Cicic University of Oslo December IETF-suite of real-time protocols data transport:
Real Time Protocols Tarik Cicic University of Oslo December 2001 Overview IETF-suite of real-time protocols data transport: Real-time Transport Protocol (RTP) connection establishment and control: Real
Technical and Functional Standards for Digital Court Recording
Technical and Functional Standards for Digital Court Recording As of February 2015 Overview This document provides detailed specifications for Digital Court Recording (DCR) systems which meet the court
Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.
Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete
EPL606. Quality of Service and Traffic Classification
EPL606 Quality of Service and Traffic Classification 1 Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video ( continuous media ) QoS network provides application
Chapter 6: Congestion Control and Resource Allocation
Chapter 6: Congestion Control and Resource Allocation CS/ECPE 5516: Comm. Network Prof. Abrams Spring 2000 1 Section 6.1: Resource Allocation Issues 2 How to prevent traffic jams Traffic lights on freeway
Chapter 2 Application Layer
Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Application Layer 2-1 Some network apps e-mail web text messaging remote
Chapter 3 Transport Layer
Chapter 3 Transport Layer Lec 8: Transport Layer Service Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose
Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications:
Chapter 11.3 MPEG-2 MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Simple, Main, SNR scalable, Spatially scalable, High, 4:2:2,
Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management
Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management Table of Contents INTRODUCTION... 4 DSCP CLASSIFICATION... 5 QUALITY OF SERVICE ON GWN7000... 6 USING QOS TO PRIORITIZE VOIP TRAFFIC...
CS 268: Integrated Services
Limitations of IP Architecture in Supporting Resource Management CS 268: Integrated Services Ion Stoica February 23, 2004 IP provides only best effort service IP does not participate in resource management
Protocol Layers, Security Sec: Application Layer: Sec 2.1 Prof Lina Battestilli Fall 2017
CSC 401 Data and Computer Communications Networks Protocol Layers, Security Sec:1.5-1.6 Application Layer: Sec 2.1 Prof Lina Battestilli Fall 2017 Outline Computer Networks and the Internet (Ch 1) 1.1
Theoretical and Practical Aspects of Triple Play
Theoretical and Practical Aspects of Triple Play 1. Introduction 2. Network and Protocol Architecture for Triple Play 3. Characteristics and Parameters of Triple Play 4. Main QoS and QoE Methods and Standards
TCOM 370 NOTES 99-1 NETWORKING AND COMMUNICATIONS
TCOM 370 NOTES 99-1 NETWORKING AND COMMUNICATIONS Communication Networks Allow Exchange of Information between Users telephone network for voice communication interconnected computers and peripherals,
Inserting multimedia objects in Dreamweaver
Inserting multimedia objects in Dreamweaver To insert a multimedia object in a page, do one of the following: Place the insertion point in the Document window where you want to insert the object, then
II. Principles of Computer Communications Network and Transport Layer
II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part
The Environment Key windows often used in Director MX 2004 : Stage, Cast, Score, Properties Inspector, Control panel and message window.
SM3117 Interactive Installation and Physical Computing Director Workshop I 26th January, 2005 Introducing Macromedia Director MX 2004 The Environment Key windows often used in Director MX 2004 : Stage,
Adaptive Real-time Monitoring Mechanism for Replicated Distributed Video Player Systems
Adaptive Real-time Monitoring Mechanism for Replicated Distributed Player Systems Chris C.H. Ngan, Kam-Yiu Lam and Edward Chan Department of Computer Science City University of Hong Kong 83 Tat Chee Avenue,
Application Layer Protocols
SC250 Computer Networking I Application Layer Protocols Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Today's Objectives Conceptual, implementation
Variable Bitrate Stream in Set top Box device
Variable Bitrate Stream in Set top Box device Preeti Chourasia Student M.Tech (CS) United Institute of Technology And Research Greater Noida (UP) Priyank Chourasia MCA (MITS Gwalior) ABSTRACT Video processing
HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins
HW3 and Quiz v HW3 (Chapter 3): R1, R2, R5, R6, R7, R8, R15, P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) v Quiz: 10/30/2013, Wednesday,
Simulation-Based Performance Comparison of Queueing Disciplines for Differentiated Services Using OPNET
Simulation-Based Performance Comparison of Queueing Disciplines for Differentiated Services Using OPNET Hafiz M. Asif and El-Sayed M. El-Alfy College of Computer Science and Engineering King Fahd University
Lecture 4 Wide Area Networks - Congestion in Data Networks
DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Congestion in Data Networks Mei Yang Based on Lecture slides by William Stallings 1 WHAT IS CONGESTION? congestion occurs when the number
TDDD82 Secure Mobile Systems Lecture 6: Quality of Service
TDDD82 Secure Mobile Systems Lecture 6: Quality of Service Mikael Asplund Real-time Systems Laboratory Department of Computer and Information Science Linköping University Based on slides by Simin Nadjm-Tehrani
IP QOS Theory and Practice. eng. Nikolay Milovanov CCIE SP# 20094
IP QOS Theory and Practice eng. Nikolay Milovanov CCIE SP# 20094 QoS Architectures QoS Architecture Models Best Effort Service Integrated Service Differentiated Service 3 Best Effort Service What exactly
CS 4390 Computer Networks. Transport Services and Protocols
CS 4390 Computer Networks UT D data Session 07 Transport Layer Overview and UDP Adapted from Computer Networking a Top-Down Approach 1996-2012 by J.F Kurose and K.W. Ross, All Rights Reserved Transport
Multimedia networking: outline
Computer Network Architectures and Multimedia Guy Leduc Chapter 4 Multimedia Applications & Transport Sections 9.1 to 9.4 from Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith
CCNA 1 Chapter 7 v5.0 Exam Answers 2013
CCNA 1 Chapter 7 v5.0 Exam Answers 2013 1 A PC is downloading a large file from a server. The TCP window is 1000 bytes. The server is sending the file using 100-byte segments. How many segments will the
Introduction to ATM Traffic Management on the Cisco 7200 Series Routers
CHAPTER 1 Introduction to ATM Traffic Management on the Cisco 7200 Series Routers In the latest generation of IP networks, with the growing implementation of Voice over IP (VoIP) and multimedia applications,
Multicast. Introduction Group management Routing Real-time transfer and control protocols Resource reservation Session management MBone
Multicast Introduction Group management Routing Real-time transfer and control protocols Resource reservation Session management MBone Petri Vuorimaa 1 Introduction There are three ways to transport data
different problems from other networks ITU-T specified restricted initial set Limited number of overhead bits ATM forum Traffic Management
Traffic and Congestion Management in ATM 3BA33 David Lewis 3BA33 D.Lewis 2007 1 Traffic Control Objectives Optimise usage of network resources Network is a shared resource Over-utilisation -> congestion
Multimedia Systems Giorgio Leonardi A.A Lecture 1: General information and Introduction
Multimedia Systems Giorgio Leonardi A.A.2014-2015 Lecture 1: General information and Introduction Overview Course page (D.I.R.): https://disit.dir.unipmn.it/course/view.php?id=639 Consulting: Office hours
Lecture 22: Buffering & Scheduling. CSE 123: Computer Networks Alex C. Snoeren
Lecture 22: Buffering & Scheduling CSE 123: Computer Networks Alex C. Snoeren Lecture 23 Overview Buffer Management FIFO RED Traffic Policing/Scheduling 2 Key Router Challenges Buffer management: which
MEDIA TRANSPORT USING RTP
AW001-Perkins03 5/12/03 8:32 AM Page 49 PART II MEDIA TRANSPORT USING RTP 3 The Real-time Transport Protocol 4 RTP Data Transfer Protocol 5 RTP Control Protocol 6 Media Capture, Playout, and Timing 7 Lip
AT&T Collaborate TM. Network Assessment Tool
AT&T Collaborate TM Network Assessment Tool 2016 AT&T Intellectual Property. All rights reserved. AT&T, Globe logo, Mobilizing Your World and DIRECTV are registered trademarks and service marks of AT&T
Why Shaping Traffic at the Sender is Important. By Chuck Meyer, CTO, Production December 2017
Why Shaping Traffic at the Sender is Important By Chuck Meyer, CTO, Production December 2017 It s human nature to want to utilize a resource or tool to its fullest capacity. So, it stands to reason that
Lecture 3 Protocol Stacks and Layering
Lecture 3 Protocol Stacks and ing Hui Zhang School of Computer Science Carnegie Mellon University 15-441 Networking, Fall 2007 http://www.cs.cmu.edu/~srini/15-441/f07/ 1 What is a Communication Network?
Skill Area 214: Use a Multimedia Software. Software Application (SWA)
Skill Area 214: Use a Multimedia Application (SWA) Skill Area 214: Use a Multimedia 214.4 Produce Audio Files What is digital audio? Audio is another meaning for sound. Digital audio refers to a digital
Provisioning: Configuring QoS for IP Telephony
CHAPTER 7 In an Architecture for Voice, Video, and Integrated Data (AVVID) network, you must configure QoS for IP telephony to ensure voice quality. The following topics provide information about the need