CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague

Size: px
Start display at page:

Download "CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague"

Transcription

1 CNNS FROM THE BASICS TO RECENT ADVANCES Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague

2 OUTLINE Short review of the CNN design Architecture progress AlexNet VGGNet ResNet now GoogLeNet VGGNet is an universal design? Automatic architecture search Design choices 3

3 DATASETS USED IN PRESENTATION: IMAGENET AND CIFAR-10 Russakovskiy et.al, ImageNet Large Scale Visual Recognition Challenge, 2015 Krizhevsky, Learning Multiple Layers of Features from Tiny Images, 2009 ImageNet: 1.2M training images (~ 256 x 256px ) 50k validation images 1000 classes CIFAR-10: 50k training images (32x32 px ) 10k validation images 10 classes 4

4 IMAGENET WINNERS 5

5 CAFFENET ARCHITECTURE AlexNet (original):krizhevsky et.al., ImageNet Classification with Deep Convolutional Neural Networks, CaffeNet: Jia et.al., Caffe: Convolutional Architecture for Fast Feature Embedding, Image credit: Roberto Matheus Pinheiro Pereira, Deep Learning Talk. Srinivas et.al A Taxonomy of Deep Convolutional Neural Nets for Computer Vision,

6 CAFFENET ARCHITECTURE 7 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

7 VGGNET ARCHITECTURE All convolutions are 3x3 Good performance, but slow 8

8 INCEPTION (GOOGLENET): BUILDING BLOCK 9 Szegedy et.al. Going Deeper with Convolutions. CVPR, 2015 Image credit:

9 DEPTH LIMIT NOT REACHED YET IN DEEP LEARNING 10

10 DEPTH LIMIT NOT REACHED YET IN DEEP LEARNING 11

11 DEPTH LIMIT NOT REACHED YET IN DEEP LEARNING VGGNet 19 layers, 19.6 billion FLOPS. Simonyan et.al., 2014 ResNet 152 layers, 11.3 billion FLOPS. He et.al., 2015 Stochastic ResNet 1200 layers. Huang et.al., Deep Networks with Stochastic Depth, Slide credit Šulc et.al. Very Deep Residual Networks with MaxOut for Plant Identification in the Wild, 2016.

12 RESNET: RESIDUAL BLOCK 13 He et.al. Deep Residual Learning for Image Recognition, ICCV 2015

13 XCEPTION, RESNEXT: DEPTH-SEP CONV Inception Xception 14 F.Chollet. Xception: Deep Learning with Depthwise Separable Convolutions, arxiv 2016

14 XCEPTION, RESNEXT: DEPTH-SEP CONV ResNet block ResNeXt block 15 Xie et.al. Aggregated Residual Transformations for Deep Neural Network, CVPR 2017

15 ACCURACY-COMPLEXITY TRADE-OFF 16 Canziani et.al. An analysis of deep neural network models for practical applications, 2016

16 ACCURACY-COMPLEXITY TRADE-OFF 17 Canziani et.al. An analysis of deep neural network models for practical applications, 2016

17 RESIDUAL NETWORKS: HOT TOPIC Identity mapping Wide ResNets Stochastic depth Residual Inception ResNets + ELU ResNet in ResNet DC Nets Weighted ResNet 18

18 AUTOMATIC ARCHITECTURE SEARCH: REINFORCEMENT LEARNING ENASNet Conv cell ENASNet Reduction cell 19 Pham et.al. Efficient Neural Architecture Search via Parameter Sharing, 2018

19 AUTOMATIC ARCHITECTURE SEARCH: EVOLUTION AmoebaNet Conv cell AmoebaNet Reduction cell 20 Real et.al. Regularized Evolution for Image Classifier Architecture Search, 2018

20 TOO MUCH ARCH OPTIMIZATION MAY HURT ImageNet classification: PASCAL semantic segmentation 21 Long et.al. Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

21 TOO MUCH ARCH OPTIMIZATION MAY HURT Performance on ESPGame dataset, semantic metrics Visual ST Visual MEN Multimodal ST Multimodal MEN AlexNet GoogLeNet VGGNet Kiela et.al. Comparing Data Sources and Architectures for Deep Visual Representation Learning in Semantics

22 NOW SMALL DESIGN CHOICES 23

23 CAFFENET ARCHITECTURE Image credit: Hu et.al, 2015 Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery 25

24 LIST OF HYPER-PARAMETERS TESTED 26

25 REFERENCE METHODS: IMAGE SIZE SENSITIVE 27 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

26 CHOICE OF NON-LINEARITY 28

27 CHOICE OF NON-LINEARITY 29 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

28 NON-LINEARITIES ON CAFFENET 30 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

29 BATCH NORMALIZATION (AFTER EVERY CONVOLUTION LAYER) 31 Ioffe et.al, ICML 2015

30 BATCH NORMALIZATION: WHERE, BEFORE OR AFTER NON-LINEARITY? ImageNet, top-1 accuracy Network No BN Before ReLU After ReLU CaffeNet128-FC GoogLeNet CIFAR-10, top-1 accuracy, FitNet4 network Non-linearity BN Before BN After TanH ReLU MaxOut In short: better to test with your architecture and dataset :) 32 Mishkin and Matas. All you need is a good init. ICLR, 2016 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

31 BATCH NORMALIZATION SOMETIMES WORKS TOO GOOD AND HIDES PROBLEMS Case: CNN has less number outputs ( just typo), than classes in dataset: 26 vs. 28 Plain CNN diverges 33 BatchNormed learns well

32 NON-LINEARITIES ON CAFFENET, WITH BATCH NORMALIZATION 34 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

33 NON-LINEARITIES: TAKE AWAY MESSAGE Use ELU without batch normalization Or ReLU + BN Try maxout for the final layers Fallback solution (if something goes wrong) ReLU 35 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

34 BUT IN SMALL DATA REGIME ( ~50K IMAGES) TRY LEAKY OR RANDOMIZED RELU Accuracy [%], Network in Network architecture ReLU VLReLU RReLU PReLU CIFAR CIFAR LogLoss, Plankton VGG architecture ReLU VLReLU RReLU PReLU KNDB Xu et.al. Empirical Evaluation of Rectified Activations in Convolutional Network ICLR 2015

35 INPUT IMAGE SIZE 37 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

36 PADDING TYPES No padding, stride = 2 Zero padding, stride = 2 Zero padding, stride = 1 38 Dumoulin and Visin. A guide to convolution arithmetic for deep learning. ArXiv 2016

37 PADDING Zero-padding: Preserving spatial size, not washing out information Dropout-like augmentation by zeros Caffenet128 with conv padding: 47% top-1 acc w/o conv padding: 41% top-1 acc. 39

38 MAX POOLING: PADDING AND KERNEL 40 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

39 POOLING METHODS 41 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

40 POOLING METHODS 42 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

41 LEARNING RATE POLICY: LINEAR 43 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

42 LEARNING RATE POLICY: LINEAR COSINE Bello et.al performed large scale reinforcementlearning search of learning rate schedule: Interestingly, we also found that the linear cosine decay generally allows for a larger initial learning rate and leads to faster convergence 44 Bello et.al. Neural Optimizer Search with Reinforcement Learning, arxiv 2017

43 IMAGE PREPROCESSING Subtract mean pixel (training set), divide by std. RGB is the best (standard) colorspace for CNN Do nothing more unless you have specific dataset. Subtract local mean pixel B.Graham, 2015 Kaggle Diabetic Retinopathy Competition report 45

44 IMAGE PREPROCESSING: WHAT DOESN`T WORK 46 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

45 IMAGE PREPROCESSING: LET`S LEARN THE COLORSPACE 47 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016 Image credit:

46 DATASET QUALITY AND SIZE 48 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

47 NETWORK WIDTH: SATURATION AND SPEED PROBLEM 49 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

48 BATCH SIZE AND LEARNING RATE 50 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

49 CLASSIFIER DESIGN Take home: put fully-connected before final layer, not earlier Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016 Ren et.al Object Detection Networks on Convolutional Feature Maps, arxiv

50 APPLYING ALTOGETHER >5 pp. additional top-1 accuracy for free. 52 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arxiv 2016

51 TAKE HOME MESSAGES use ELU if without batchnorm or ReLU with BN. apply a learned colorspace transformation of RGB (2 layers of 1x1 convolution ). use the linear learning rate decay policy. use a sum of the average and max pooling layers. use mini-batch size around 128 or 256. If this is too big for your GPU, decrease the learning rate proportionally to the batch size. use fully-connected layers as convolutional and average the predictions for the final decision. when investing in increasing training set size, check if a plateau has not been reach. cleanliness of the data is more important than the size. if you cannot increase the input image size, reduce the stride in the consequent layers, it has roughly the same effect. if your network has a complex and highly optimized architecture, like e.g. GoogLeNet, be careful with modifications. 53

52 THANK YOU FOR THE ATTENTION Any questions? All logs, graphs and network definitions: Feel free to add your tests The paper is here: 54

53 ARCHITECTURE Use as small filters as possible 3x3 + ReLU + 3x3 + ReLU > 5x5 + ReLU. 3x1 + 1x3 > 3x3. 2x2 + 2x2 > 3x3 Exception: 1 st layer. Too computationally ineffective to use 3x3 there. 55 Convolutional Neural Networks at Constrained Time Cost. He and Sun, CVPR 2015

54 WEIGHT INITIALIZATION FOR A VERY DEEP NET Gaussian noise with variance. var ω l = 0.01 (AlexNet, Krizhevsky et.al, 2012) var ω l = 1/n inputs (Glorot et.al. 2010) var ω l = 2/n inputs (He et.al. 2015) Orthonormal: (Saxe et.al. 2013) Glorot SVD ω l = V Data-dependent: LSUV (Mishkin et.al, 2016) 56 Mishkin and Matas. All you need is a good init. ICLR, 2016

55 WEIGHT INITIALIZATION INFLUENCES ACTIVATIONS a) Layer gain G L < 1 vanishing activations variance b) Layer gain G L > 1 exploding activation variance 57 Mishkin and Matas. All you need is a good init. ICLR, 2016

56 ACTIVATIONS INFLUENCES MAGNITUDE OF GRADIENT COMPONENTS 58 Mishkin and Matas. All you need is a good init. ICLR, 2016

57 LAYER-SEQUENTIAL UNIT-VARIANCE ORTHOGONAL INITIALIZATION Algorithm 1. Layer-sequential unit-variance orthogonal initialization. L convolution or fully-connected layer, W L its weights, O L layer output, ε variance tolerance, T i iteration number, T max max number of iterations. Pre-initialize network with orthonormal matrices as in Saxe et.al. (2013) for each convolutional and fully-connected layer L do do forward pass with mini-batch calculate var(o L ) W i+1 i L = W L var(o L ) until var O L 1.0 < ε or (T i > Tmax) end for * The LSUV algorithm does not deal with biases and initializes them with zeros 59 Mishkin and Matas. All you need is a good init. ICLR, 2016

58 COMPARISON OF THE INITIALIZATIONS FOR DIFFERENT ACTIVATIONS CIFAR-10 FitNet, accuracy [%] CIFAR-10 FitResNet, accuracy [%] 60 Mishkin and Matas. All you need is a good init. ICLR, 2016

59 LSUV INITIALIZATION IMPLEMENTATIONS Caffe Keras Torch 61 Mishkin and Matas. All you need is a good init. ICLR, 2016

60 CAFFENET TRAINING 62 Mishkin and Matas. All you need is a good init. ICLR, 2016

61 GOOGLENET TRAINING 63 Mishkin and Matas. All you need is a good init. ICLR, 2016

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9-1 Administrative A2 due Wed May 2 Midterm: In-class Tue May 8. Covers material through Lecture 10 (Thu May 3). Sample midterm released on piazza. Midterm review session: Fri May 4 discussion

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Learning Deep Representations for Visual Recognition

Learning Deep Representations for Visual Recognition Learning Deep Representations for Visual Recognition CVPR 2018 Tutorial Kaiming He Facebook AI Research (FAIR) Deep Learning is Representation Learning Representation Learning: worth a conference name

More information

Channel Locality Block: A Variant of Squeeze-and-Excitation

Channel Locality Block: A Variant of Squeeze-and-Excitation Channel Locality Block: A Variant of Squeeze-and-Excitation 1 st Huayu Li Northern Arizona University Flagstaff, United State Northern Arizona University hl459@nau.edu arxiv:1901.01493v1 [cs.lg] 6 Jan

More information

Learning Deep Features for Visual Recognition

Learning Deep Features for Visual Recognition 7x7 conv, 64, /2, pool/2 1x1 conv, 64 3x3 conv, 64 1x1 conv, 64 3x3 conv, 64 1x1 conv, 64 3x3 conv, 64 1x1 conv, 128, /2 3x3 conv, 128 1x1 conv, 512 1x1 conv, 128 3x3 conv, 128 1x1 conv, 512 1x1 conv,

More information

Supplementary material for Analyzing Filters Toward Efficient ConvNet

Supplementary material for Analyzing Filters Toward Efficient ConvNet Supplementary material for Analyzing Filters Toward Efficient Net Takumi Kobayashi National Institute of Advanced Industrial Science and Technology, Japan takumi.kobayashi@aist.go.jp A. Orthonormal Steerable

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Study of Residual Networks for Image Recognition

Study of Residual Networks for Image Recognition Study of Residual Networks for Image Recognition Mohammad Sadegh Ebrahimi Stanford University sadegh@stanford.edu Hossein Karkeh Abadi Stanford University hosseink@stanford.edu Abstract Deep neural networks

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage HENet: A Highly Efficient Convolutional Neural Networks Optimized for Accuracy, Speed and Storage Qiuyu Zhu Shanghai University zhuqiuyu@staff.shu.edu.cn Ruixin Zhang Shanghai University chriszhang96@shu.edu.cn

More information

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Intro to Deep Learning Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Why this class? Deep Features Have been able to harness the big data in the most efficient and effective

More information

Fuzzy Set Theory in Computer Vision: Example 3, Part II

Fuzzy Set Theory in Computer Vision: Example 3, Part II Fuzzy Set Theory in Computer Vision: Example 3, Part II Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Resource; CS231n: Convolutional Neural Networks for Visual Recognition https://github.com/tuanavu/stanford-

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Elastic Neural Networks for Classification

Elastic Neural Networks for Classification Elastic Neural Networks for Classification Yi Zhou 1, Yue Bai 1, Shuvra S. Bhattacharyya 1, 2 and Heikki Huttunen 1 1 Tampere University of Technology, Finland, 2 University of Maryland, USA arxiv:1810.00589v3

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

All You Want To Know About CNNs. Yukun Zhu

All You Want To Know About CNNs. Yukun Zhu All You Want To Know About CNNs Yukun Zhu Deep Learning Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image

More information

Lecture 5: Training Neural Networks, Part I

Lecture 5: Training Neural Networks, Part I Lecture 5: Training Neural Networks, Part I Thursday February 2, 2017 comp150dl 1 Announcements! - HW1 due today! - Because of website typo, will accept homework 1 until Saturday with no late penalty.

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan CENG 783 Special topics in Deep Learning AlchemyAPI Week 11 Sinan Kalkan TRAINING A CNN Fig: http://www.robots.ox.ac.uk/~vgg/practicals/cnn/ Feed-forward pass Note that this is written in terms of the

More information

Deconvolutions in Convolutional Neural Networks

Deconvolutions in Convolutional Neural Networks Overview Deconvolutions in Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Deconvolutions in CNNs Applications Network visualization

More information

Inception Network Overview. David White CS793

Inception Network Overview. David White CS793 Inception Network Overview David White CS793 So, Leonardo DiCaprio dreams about dreaming... https://m.media-amazon.com/images/m/mv5bmjaxmzy3njcxnf5bml5banbnxkftztcwnti5otm0mw@@._v1_sy1000_cr0,0,675,1 000_AL_.jpg

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Smart Parking System using Deep Learning. Sheece Gardezi Supervised By: Anoop Cherian Peter Strazdins

Smart Parking System using Deep Learning. Sheece Gardezi Supervised By: Anoop Cherian Peter Strazdins Smart Parking System using Deep Learning Sheece Gardezi Supervised By: Anoop Cherian Peter Strazdins Content Labeling tool Neural Networks Visual Road Map Labeling tool Data set Vgg16 Resnet50 Inception_v3

More information

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Suyash Shetty Manipal Institute of Technology suyash.shashikant@learner.manipal.edu Abstract In

More information

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017 Convolutional Neural Networks + Neural Style Transfer Justin Johnson 2/1/2017 Outline Convolutional Neural Networks Convolution Pooling Feature Visualization Neural Style Transfer Feature Inversion Texture

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

11. Neural Network Regularization

11. Neural Network Regularization 11. Neural Network Regularization CS 519 Deep Learning, Winter 2016 Fuxin Li With materials from Andrej Karpathy, Zsolt Kira Preventing overfitting Approach 1: Get more data! Always best if possible! If

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Deep Residual Learning

Deep Residual Learning Deep Residual Learning MSRA @ ILSVRC & COCO 2015 competitions Kaiming He with Xiangyu Zhang, Shaoqing Ren, Jifeng Dai, & Jian Sun Microsoft Research Asia (MSRA) MSRA @ ILSVRC & COCO 2015 Competitions 1st

More information

Lecture 37: ConvNets (Cont d) and Training

Lecture 37: ConvNets (Cont d) and Training Lecture 37: ConvNets (Cont d) and Training CS 4670/5670 Sean Bell [http://bbabenko.tumblr.com/post/83319141207/convolutional-learnings-things-i-learned-by] (Unrelated) Dog vs Food [Karen Zack, @teenybiscuit]

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong TABLE I CLASSIFICATION ACCURACY OF DIFFERENT PRE-TRAINED MODELS ON THE TEST DATA

More information

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina Residual Networks And Attention Models cs273b Recitation 11/11/2016 Anna Shcherbina Introduction to ResNets Introduced in 2015 by Microsoft Research Deep Residual Learning for Image Recognition (He, Zhang,

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Tutorial on Keras CAP 6412 - ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Deep learning packages TensorFlow Google PyTorch Facebook AI research Keras Francois Chollet (now at Google) Chainer Company

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets)

Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets) Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets) Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft Roland Fernandez, Senior Researcher, Microsoft Module Outline

More information

Real Time Monitoring of CCTV Camera Images Using Object Detectors and Scene Classification for Retail and Surveillance Applications

Real Time Monitoring of CCTV Camera Images Using Object Detectors and Scene Classification for Retail and Surveillance Applications Real Time Monitoring of CCTV Camera Images Using Object Detectors and Scene Classification for Retail and Surveillance Applications Anand Joshi CS229-Machine Learning, Computer Science, Stanford University,

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

Lecture : Training a neural net part I Initialization, activations, normalizations and other practical details Anne Solberg February 28, 2018

Lecture : Training a neural net part I Initialization, activations, normalizations and other practical details Anne Solberg February 28, 2018 INF 5860 Machine learning for image classification Lecture : Training a neural net part I Initialization, activations, normalizations and other practical details Anne Solberg February 28, 2018 Reading

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Progressive Neural Architecture Search

Progressive Neural Architecture Search Progressive Neural Architecture Search Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy 09/10/2018 @ECCV 1 Outline Introduction

More information

Implementing Deep Learning for Video Analytics on Tegra X1.

Implementing Deep Learning for Video Analytics on Tegra X1. Implementing Deep Learning for Video Analytics on Tegra X1 research@hertasecurity.com Index Who we are, what we do Video analytics pipeline Video decoding Facial detection and preprocessing DNN: learning

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

CNN optimization. Rassadin A

CNN optimization. Rassadin A CNN optimization Rassadin A. 01.2017-02.2017 What to optimize? Training stage time consumption (CPU / GPU) Inference stage time consumption (CPU / GPU) Training stage memory consumption Inference stage

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 2018: T-R: 11:30-1pm @ Lopata 101 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao Xia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/

More information

CrescendoNet: A New Deep Convolutional Neural Network with Ensemble Behavior

CrescendoNet: A New Deep Convolutional Neural Network with Ensemble Behavior CrescendoNet: A New Deep Convolutional Neural Network with Ensemble Behavior Xiang Zhang, Nishant Vishwamitra, Hongxin Hu, Feng Luo School of Computing Clemson University xzhang7@clemson.edu Abstract We

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Convolution Neural Network for Traditional Chinese Calligraphy Recognition

Convolution Neural Network for Traditional Chinese Calligraphy Recognition Convolution Neural Network for Traditional Chinese Calligraphy Recognition Boqi Li Mechanical Engineering Stanford University boqili@stanford.edu Abstract script. Fig. 1 shows examples of the same TCC

More information

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs In-Place Activated BatchNorm for Memory- Optimized Training of DNNs Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder Mapillary Research Paper: https://arxiv.org/abs/1712.02616 Code: https://github.com/mapillary/inplace_abn

More information

Como funciona o Deep Learning

Como funciona o Deep Learning Como funciona o Deep Learning Moacir Ponti (com ajuda de Gabriel Paranhos da Costa) ICMC, Universidade de São Paulo Contact: www.icmc.usp.br/~moacir moacir@icmc.usp.br Uberlandia-MG/Brazil October, 2017

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

3D Densely Convolutional Networks for Volumetric Segmentation. Toan Duc Bui, Jitae Shin, and Taesup Moon

3D Densely Convolutional Networks for Volumetric Segmentation. Toan Duc Bui, Jitae Shin, and Taesup Moon 3D Densely Convolutional Networks for Volumetric Segmentation Toan Duc Bui, Jitae Shin, and Taesup Moon School of Electronic and Electrical Engineering, Sungkyunkwan University, Republic of Korea arxiv:1709.03199v2

More information

Lecture : Neural net: initialization, activations, normalizations and other practical details Anne Solberg March 10, 2017

Lecture : Neural net: initialization, activations, normalizations and other practical details Anne Solberg March 10, 2017 INF 5860 Machine learning for image classification Lecture : Neural net: initialization, activations, normalizations and other practical details Anne Solberg March 0, 207 Mandatory exercise Available tonight,

More information

Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet

Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet 1 Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet Naimish Agarwal, IIIT-Allahabad (irm2013013@iiita.ac.in) Artus Krohn-Grimberghe, University of Paderborn (artus@aisbi.de)

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

Restricted Connectivity in Deep Neural Networks

Restricted Connectivity in Deep Neural Networks Restricted Connectivity in Deep Neural Networks Yani Ioannou University of Cambridge April 7, 207 Overview Introduction Research Overview PhD Research Motivation Structural Priors Spatial Structural Priors

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Jakob Verbeek 2017-2018 Biological motivation Neuron is basic computational unit of the brain about 10^11 neurons in human brain Simplified neuron model as linear threshold

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

CS231N Course Project Report Classifying Shadowgraph Images of Planktons Using Convolutional Neural Networks

CS231N Course Project Report Classifying Shadowgraph Images of Planktons Using Convolutional Neural Networks CS231N Course Project Report Classifying Shadowgraph Images of Planktons Using Convolutional Neural Networks Shane Soh Stanford University shanesoh@stanford.edu 1. Introduction In this final project report,

More information

FUSION MODEL BASED ON CONVOLUTIONAL NEURAL NETWORKS WITH TWO FEATURES FOR ACOUSTIC SCENE CLASSIFICATION

FUSION MODEL BASED ON CONVOLUTIONAL NEURAL NETWORKS WITH TWO FEATURES FOR ACOUSTIC SCENE CLASSIFICATION Please contact the conference organizers at dcasechallenge@gmail.com if you require an accessible file, as the files provided by ConfTool Pro to reviewers are filtered to remove author information, and

More information

Advanced Video Analysis & Imaging

Advanced Video Analysis & Imaging Advanced Video Analysis & Imaging (5LSH0), Module 09B Machine Learning with Convolutional Neural Networks (CNNs) - Workout Farhad G. Zanjani, Clint Sebastian, Egor Bondarev, Peter H.N. de With ( p.h.n.de.with@tue.nl

More information

Kaggle Data Science Bowl 2017 Technical Report

Kaggle Data Science Bowl 2017 Technical Report Kaggle Data Science Bowl 2017 Technical Report qfpxfd Team May 11, 2017 1 Team Members Table 1: Team members Name E-Mail University Jia Ding dingjia@pku.edu.cn Peking University, Beijing, China Aoxue Li

More information

Convolutional Neural Networks and Supervised Learning

Convolutional Neural Networks and Supervised Learning Convolutional Neural Networks and Supervised Learning Eilif Solberg August 30, 2018 Outline Convolutional Architectures Convolutional neural networks Training Loss Optimization Regularization Hyperparameter

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition

Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba,

More information

A Novel Weight-Shared Multi-Stage Network Architecture of CNNs for Scale Invariance

A Novel Weight-Shared Multi-Stage Network Architecture of CNNs for Scale Invariance JOURNAL OF L A TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 A Novel Weight-Shared Multi-Stage Network Architecture of CNNs for Scale Invariance Ryo Takahashi, Takashi Matsubara, Member, IEEE, and Kuniaki

More information

Yelp Restaurant Photo Classification

Yelp Restaurant Photo Classification Yelp Restaurant Photo Classification Rajarshi Roy Stanford University rroy@stanford.edu Abstract The Yelp Restaurant Photo Classification challenge is a Kaggle challenge that focuses on the problem predicting

More information

Human Pose Estimation with Deep Learning. Wei Yang

Human Pose Estimation with Deep Learning. Wei Yang Human Pose Estimation with Deep Learning Wei Yang Applications Understand Activities Family Robots American Heist (2014) - The Bank Robbery Scene 2 What do we need to know to recognize a crime scene? 3

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

Residual Networks for Tiny ImageNet

Residual Networks for Tiny ImageNet Residual Networks for Tiny ImageNet Hansohl Kim Stanford University hansohl@stanford.edu Abstract Residual networks are powerful tools for image classification, as demonstrated in ILSVRC 2015 [5]. We explore

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Smart Content Recognition from Images Using a Mixture of Convolutional Neural Networks *

Smart Content Recognition from Images Using a Mixture of Convolutional Neural Networks * Smart Content Recognition from Images Using a Mixture of Convolutional Neural Networks * Tee Connie *, Mundher Al-Shabi *, and Michael Goh Faculty of Information Science and Technology, Multimedia University,

More information

Convolutional Neural Networks for Facial Expression Recognition

Convolutional Neural Networks for Facial Expression Recognition Convolutional Neural Networks for Facial Expression Recognition Shima Alizadeh Stanford University shima86@stanford.edu Azar Fazel Stanford University azarf@stanford.edu Abstract In this project, we have

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Index. Springer Nature Switzerland AG 2019 B. Moons et al., Embedded Deep Learning,

Index. Springer Nature Switzerland AG 2019 B. Moons et al., Embedded Deep Learning, Index A Algorithmic noise tolerance (ANT), 93 94 Application specific instruction set processors (ASIPs), 115 116 Approximate computing application level, 95 circuits-levels, 93 94 DAS and DVAS, 107 110

More information

Neural Networks with Input Specified Thresholds

Neural Networks with Input Specified Thresholds Neural Networks with Input Specified Thresholds Fei Liu Stanford University liufei@stanford.edu Junyang Qian Stanford University junyangq@stanford.edu Abstract In this project report, we propose a method

More information

Deep Learning Cook Book

Deep Learning Cook Book Deep Learning Cook Book Robert Haschke (CITEC) Overview Input Representation Output Layer + Cost Function Hidden Layer Units Initialization Regularization Input representation Choose an input representation

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

DL Tutorial. Xudong Cao

DL Tutorial. Xudong Cao DL Tutorial Xudong Cao Historical Line 1960s Perceptron 1980s MLP BP algorithm 2006 RBM unsupervised learning 2012 AlexNet ImageNet Comp. 2014 GoogleNet VGGNet ImageNet Comp. Rule based AI algorithm Game

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

arxiv: v1 [cs.cv] 4 Dec 2014

arxiv: v1 [cs.cv] 4 Dec 2014 Convolutional Neural Networks at Constrained Time Cost Kaiming He Jian Sun Microsoft Research {kahe,jiansun}@microsoft.com arxiv:1412.1710v1 [cs.cv] 4 Dec 2014 Abstract Though recent advanced convolutional

More information

KamiNet A Convolutional Neural Network for Tiny ImageNet Challenge

KamiNet A Convolutional Neural Network for Tiny ImageNet Challenge KamiNet A Convolutional Neural Network for Tiny ImageNet Challenge Shaoming Feng Stanford University superfsm@stanford.edu Liang Shi Stanford University liangs@stanford.edu Abstract In this paper, we address

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

arxiv: v2 [cs.cv] 26 Jan 2018

arxiv: v2 [cs.cv] 26 Jan 2018 DIRACNETS: TRAINING VERY DEEP NEURAL NET- WORKS WITHOUT SKIP-CONNECTIONS Sergey Zagoruyko, Nikos Komodakis Université Paris-Est, École des Ponts ParisTech Paris, France {sergey.zagoruyko,nikos.komodakis}@enpc.fr

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

Multi-Glance Attention Models For Image Classification

Multi-Glance Attention Models For Image Classification Multi-Glance Attention Models For Image Classification Chinmay Duvedi Stanford University Stanford, CA cduvedi@stanford.edu Pararth Shah Stanford University Stanford, CA pararth@stanford.edu Abstract We

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information