Quadrics QsNet II : A network for Supercomputing Applications

Size: px
Start display at page:

Download "Quadrics QsNet II : A network for Supercomputing Applications"

Transcription

1 Quadrics QsNet II : A network for Supercomputing Applications David Addison, Jon Beecroft, David Hewson, Moray McLaren (Quadrics Ltd.), Fabrizio Petrini (LANL)

2 You ve bought your super computer You ve constructed your building for it! So w hat do you w ant from the netw ork? Any process to any other process communication in zero time. That s it! Sim ple Can t have that so you need the next best thing Image Courtesy of LANL

3 A Quadrics Supercomputer Network Ultra low user process to user process latency Highest possible (affordable?) compute communications ratio Seamless scaling to many 1000s of nodes High availability Reliable dat a t ransfer Mixed system and m ultiple user traffic on one network

4 Supercomputers Los Alam os National Laboratory ASCI Q Gflops Law rence Liverm ore National Laboratory - MCR Gflops Law rence Liverm ore National Laboratory - ALC Gflops Pacific Northw est National Laboratory Gflops Pittsburgh Supercomputer Centre -LeMieux4463Gflops CEA - Tera Gflops Images Courtesy of LANL, LLNL,PNNL, PSC, CEA

5 QsNet II Com ponent s Elan 4 net work interface card Elit e 4 swit ch component QsNet I I Switch

6 Topology Fat trees give great performance Scales to the number of nodes Fault tolerance st ruct ure Uniform connectivity Supports global operations

7 A Process Communication Cable or fibre up t o 150m Cable up t o 13m Elit e4 Swit ch Chip

8 8 byte write latency on a 4000 node machine with 50m of cable Latency ( ns) Elit e Swit ch Cable Elan CPU ChipSet Elan3 ( QsNet ) Elan4 ( QsNet II )

9 Elan 4 funct ional unit s 64-bit virtual addressing Short Transaction ENgine Pipelined ( R) DMA engine 64-bit RISC processor 16Kbyte On-chip I-cache Mem ory System 32Kbyte On-chip D-cache, pipelined fills, multi-port. 64-bit MMU 128-TLB entries, hash walk engine, mixed page sizes, 16 bit context. 64-bit/133MHz PCI-X 64Mbytes ECC DDR RAM Link. 2.6 Gbytes/ sec total

10 Elan4 Com m and Queues Enables a user process to send packet s into the network with very low latency Used to start all operations. (RDMA, STEN, RI SC t hreads et c) Up to 8K com m and queues can be allocated Com m and queues can by used by m any processes simultaneously from multiple CPUs

11 Com m and Program m ing Model

12 Elan4 Com m and Queues The Com m and Processor can execute com m ands directly as they are written from the PCI-X bus 80ns from PCI-X bus to network link Pr ovides aut o r et r y of STEN packet s DDR-SDRAM used as backing store for Queues Copes wit h a m ain CPU process t im eslice in a command stream and concurrent access by multiple CPUs Copes wit h occasional out of order PIO writes

13 Com m and Proc I m plem ent at ion

14 Elan4 RDMA processor Addresses are 64 bit Pipelined operation t o hide lar ge PCI - X read latency Pr ocesses t w o RDMA descr ipt or s concur r ent ly to achieve peak bandwidth with multiple small RDMAs Two run queues for high and low priority scheduling Tim eslices between m ultiple RDMAs

15 RI SC processor 64 bit word Instruction set optimised for low latency scheduling 16 Kbyte I-Cache Regist ers loaded direct ly from the network Block load/ store instructions for copy bandwidth

16 Elan4 im plem entat ion LSI G12 process 0.18um 4 + R layer metal process 7.5 mm x 7.5 mm ~800,000 gates ~283 signal pins 512 ball BGA 3 watts

17 QsNet II Physical Link 1.333Ghz design speed 4b5b coding for DC balance on cables and fiber ~920 Mbytes/s after protocol Internal switch links deliver 1.18 Gbytes/ s after protocol Copper Optics 2 virtual channels 10 bit LVDS total 40 wires 12m range 12 bit parallel optical fiber 150m range

18 QsNet II Elit e4 Swit ch Com ponent 8 QsNet II links 2 virtual channels Broadcast to range of outputs Full autom at ic error det ect ion / recovery Arbitration based on age of packet Two levels of priority Adaptive routing support Unblocked latency of ~ 20ns Traceroute transaction for interrogating the network

19 Elit e 4 im plem entat ion LSI G12 process 0.18um layer metal process. 8.67mm x 8.67mm ~ 1 million gates ~348 signal pins 608 ball BGA 6.5 watts

20 Perform ance Short message latency RDMA bandwidt h Perfor m ance in applications MPI m essage passing Global operations

21 Short message latency on a 4000 node machine with 50m cable Latency ( us) Number of bytes in message

22 RDMA bandwidt h Batched RDMAs Bandw idth ( MB/ s) Size in bytes

23 MPI short m essage latency useconds Infiniband QsNet I I (elan4) Bytes

24 MPI Bandwidth - Elan MBytes/ sec MPI bandwidth MPI ping Size in bytes

25 Global operat ions - Hardware barrier scaling lateccy ( us) Elan3 Elan Nodes

26 Acknowledgements

27

1/5/2012. Overview of Interconnects. Presentation Outline. Myrinet and Quadrics. Interconnects. Switch-Based Interconnects

1/5/2012. Overview of Interconnects. Presentation Outline. Myrinet and Quadrics. Interconnects. Switch-Based Interconnects Overview of Interconnects Myrinet and Quadrics Leading Modern Interconnects Presentation Outline General Concepts of Interconnects Myrinet Latest Products Quadrics Latest Release Our Research Interconnects

More information

THE QUADRICS NETWORK: HIGH-PERFORMANCE CLUSTERING TECHNOLOGY

THE QUADRICS NETWORK: HIGH-PERFORMANCE CLUSTERING TECHNOLOGY THE QUADRICS NETWORK: HIGH-PERFORMANCE CLUSTERING TECHNOLOGY THE QUADRICS NETWORK EXTENDS THE NATIVE OPERATING SYSTEM IN PROCESSING NODES WITH A NETWORK OPERATING SYSTEM AND SPECIALIZED HARDWARE SUPPORT

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

Broadcom BCM5600 StrataSwitch

Broadcom BCM5600 StrataSwitch Broadcom BCM5600 StrataSwitch A Highly Integrated Ethernet Switch On A Chip Andrew Essen and James Mannos Broadcom Corporation Outline Introduction Networking Basics Description of BCM5600 Design Process

More information

Cluster Network Products

Cluster Network Products Cluster Network Products Cluster interconnects include, among others: Gigabit Ethernet Myrinet Quadrics InfiniBand 1 Interconnects in Top500 list 11/2009 2 Interconnects in Top500 list 11/2008 3 Cluster

More information

CS/ECE 217. GPU Architecture and Parallel Programming. Lecture 16: GPU within a computing system

CS/ECE 217. GPU Architecture and Parallel Programming. Lecture 16: GPU within a computing system CS/ECE 217 GPU Architecture and Parallel Programming Lecture 16: GPU within a computing system Objective To understand the major factors that dictate performance when using GPU as an compute co-processor

More information

PC DESY Peter Wegner. PC Cluster Definition 1

PC DESY Peter Wegner. PC Cluster Definition 1 PC Cluster @ DESY Peter Wegner 1. Motivation, History 2. Myrinet-Communication 4. Cluster Hardware 5. Cluster Software 6. Future PC Cluster Definition 1 Idee: Herbert Cornelius (Intel München) 1 PC Cluster

More information

Fast-communication PC Clusters at DESY Peter Wegner DV Zeuthen

Fast-communication PC Clusters at DESY Peter Wegner DV Zeuthen Fast-communication PC Clusters at DESY Peter Wegner DV Zeuthen 1. Motivation, History, Cluster Schema 2. PC cluster fast interconnect 3. PC Cluster Hardware 4. PC Cluster Software 5. Operating 6. Future

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Memory latency: Affects cache miss penalty. Measured by:

Memory latency: Affects cache miss penalty. Measured by: Main Memory Main memory generally utilizes Dynamic RAM (DRAM), which use a single transistor to store a bit, but require a periodic data refresh by reading every row. Static RAM may be used for main memory

More information

Main Memory. EECC551 - Shaaban. Memory latency: Affects cache miss penalty. Measured by:

Main Memory. EECC551 - Shaaban. Memory latency: Affects cache miss penalty. Measured by: Main Memory Main memory generally utilizes Dynamic RAM (DRAM), which use a single transistor to store a bit, but require a periodic data refresh by reading every row (~every 8 msec). Static RAM may be

More information

Memory latency: Affects cache miss penalty. Measured by:

Memory latency: Affects cache miss penalty. Measured by: Main Memory Main memory generally utilizes Dynamic RAM (DRAM), which use a single transistor to store a bit, but require a periodic data refresh by reading every row. Static RAM may be used for main memory

More information

Assessing MPI Performance on QsNet II

Assessing MPI Performance on QsNet II Assessing MPI Performance on QsNet II Pablo E. García 1, Juan Fernández 1, Fabrizio Petrini 2, and José M. García 1 1 Departamento de Ingeniería y Tecnología de Computadores Universidad de Murcia, 371

More information

High Performance MPI on IBM 12x InfiniBand Architecture

High Performance MPI on IBM 12x InfiniBand Architecture High Performance MPI on IBM 12x InfiniBand Architecture Abhinav Vishnu, Brad Benton 1 and Dhabaleswar K. Panda {vishnu, panda} @ cse.ohio-state.edu {brad.benton}@us.ibm.com 1 1 Presentation Road-Map Introduction

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

The Challenges of System Design. Raising Performance and Reducing Power Consumption

The Challenges of System Design. Raising Performance and Reducing Power Consumption The Challenges of System Design Raising Performance and Reducing Power Consumption 1 Agenda The key challenges Visibility for software optimisation Efficiency for improved PPA 2 Product Challenge - Software

More information

The Future of High-Performance Networking (The 5?, 10?, 15? Year Outlook)

The Future of High-Performance Networking (The 5?, 10?, 15? Year Outlook) Workshop on New Visions for Large-Scale Networks: Research & Applications Vienna, VA, USA, March 12-14, 2001 The Future of High-Performance Networking (The 5?, 10?, 15? Year Outlook) Wu-chun Feng feng@lanl.gov

More information

QsNet III an Adaptively Routed Network for High Performance Computing

QsNet III an Adaptively Routed Network for High Performance Computing 16th IEEE Symposium on High Performance Interconnects QsNet III an Adaptively Routed Network for High Performance Computing Duncan Roweth, Trevor Jones Quadrics Limited, Bristol, United Kingdom, Email:

More information

Jim Keller. Digital Equipment Corp. Hudson MA

Jim Keller. Digital Equipment Corp. Hudson MA Jim Keller Digital Equipment Corp. Hudson MA ! Performance - SPECint95 100 50 21264 30 21164 10 1995 1996 1997 1998 1999 2000 2001 CMOS 5 0.5um CMOS 6 0.35um CMOS 7 0.25um "## Continued Performance Leadership

More information

Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses

Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses 1 Most of the integrated I/O subsystems are connected to the

More information

Blue Gene/Q. Hardware Overview Michael Stephan. Mitglied der Helmholtz-Gemeinschaft

Blue Gene/Q. Hardware Overview Michael Stephan. Mitglied der Helmholtz-Gemeinschaft Blue Gene/Q Hardware Overview 02.02.2015 Michael Stephan Blue Gene/Q: Design goals System-on-Chip (SoC) design Processor comprises both processing cores and network Optimal performance / watt ratio Small

More information

Negotiating the Maze Getting the most out of memory systems today and tomorrow. Robert Kaye

Negotiating the Maze Getting the most out of memory systems today and tomorrow. Robert Kaye Negotiating the Maze Getting the most out of memory systems today and tomorrow Robert Kaye 1 System on Chip Memory Systems Systems use external memory Large address space Low cost-per-bit Large interface

More information

InfiniBand SDR, DDR, and QDR Technology Guide

InfiniBand SDR, DDR, and QDR Technology Guide White Paper InfiniBand SDR, DDR, and QDR Technology Guide The InfiniBand standard supports single, double, and quadruple data rate that enables an InfiniBand link to transmit more data. This paper discusses

More information

1. Microprocessor Architectures. 1.1 Intel 1.2 Motorola

1. Microprocessor Architectures. 1.1 Intel 1.2 Motorola 1. Microprocessor Architectures 1.1 Intel 1.2 Motorola 1.1 Intel The Early Intel Microprocessors The first microprocessor to appear in the market was the Intel 4004, a 4-bit data bus device. This device

More information

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013 A Closer Look at the Epiphany IV 28nm 64 core Coprocessor Andreas Olofsson PEGPUM 2013 1 Adapteva Achieves 3 World Firsts 1. First processor company to reach 50 GFLOPS/W 3. First semiconductor company

More information

Memory Hierarchy: Motivation

Memory Hierarchy: Motivation Memory Hierarchy: Motivation The gap between CPU performance and main memory speed has been widening with higher performance CPUs creating performance bottlenecks for memory access instructions. The memory

More information

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007 Mellanox Technologies Maximize Cluster Performance and Productivity Gilad Shainer, shainer@mellanox.com October, 27 Mellanox Technologies Hardware OEMs Servers And Blades Applications End-Users Enterprise

More information

The RM9150 and the Fast Device Bus High Speed Interconnect

The RM9150 and the Fast Device Bus High Speed Interconnect The RM9150 and the Fast Device High Speed Interconnect John R. Kinsel Principal Engineer www.pmc -sierra.com 1 August 2004 Agenda CPU-based SOC Design Challenges Fast Device (FDB) Overview Generic Device

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

Mainstream Computer System Components

Mainstream Computer System Components Mainstream Computer System Components Double Date Rate (DDR) SDRAM One channel = 8 bytes = 64 bits wide Current DDR3 SDRAM Example: PC3-2800 (DDR3-600) 200 MHz (internal base chip clock) 8-way interleaved

More information

SpaceFibre Flight Software Workshop 2015

SpaceFibre Flight Software Workshop 2015 SpaceFibre Flight Software Workshop 2015 Steve Parkes, University of Dundee Albert Ferrer Florit, Alberto Gonzalez Villafranca, STAR-Dundee Ltd. David McLaren, Chris McClements, University of Dundee Contents

More information

InfiniBand Experiences of PC²

InfiniBand Experiences of PC² InfiniBand Experiences of PC² Dr. Jens Simon simon@upb.de Paderborn Center for Parallel Computing (PC²) Universität Paderborn hpcline-infotag, 18. Mai 2004 PC² - Paderborn Center for Parallel Computing

More information

The Memory Hierarchy & Cache

The Memory Hierarchy & Cache Removing The Ideal Memory Assumption: The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory

More information

An HS Link Network Interface Board for Parallel Computing

An HS Link Network Interface Board for Parallel Computing Carlos Ungil, Universidad de Zaragoza An S ink Network Interface Board for Parallel Computing A.Cruz,J.Pech,A.Tarancón,C..Ullod,C.Ungil An S ink Network Interface Board for Parallel Computing 1 RTNN attice

More information

Snoop-Based Multiprocessor Design III: Case Studies

Snoop-Based Multiprocessor Design III: Case Studies Snoop-Based Multiprocessor Design III: Case Studies Todd C. Mowry CS 41 March, Case Studies of Bus-based Machines SGI Challenge, with Powerpath SUN Enterprise, with Gigaplane Take very different positions

More information

Benefits of Quadrics Scatter/Gather to PVFS2 Noncontiguous IO

Benefits of Quadrics Scatter/Gather to PVFS2 Noncontiguous IO Benefits of Quadrics Scatter/Gather to PVFS2 Noncontiguous IO Weikuan Yu Dhabaleswar K. Panda Network-Based Computing Lab Dept. of Computer Science & Engineering The Ohio State University {yuw,panda}@cse.ohio-state.edu

More information

Efficient Data Transfers

Efficient Data Transfers Efficient Data fers Slide credit: Slides adapted from David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 PCIE Review Typical Structure of a CUDA Program Global variables declaration Function prototypes global

More information

Leveraging HyperTransport for a custom high-performance cluster network

Leveraging HyperTransport for a custom high-performance cluster network Leveraging HyperTransport for a custom high-performance cluster network Mondrian Nüssle HTCE Symposium 2009 11.02.2009 Outline Background & Motivation Architecture Hardware Implementation Host Interface

More information

The Nios II Family of Configurable Soft-core Processors

The Nios II Family of Configurable Soft-core Processors The Nios II Family of Configurable Soft-core Processors James Ball August 16, 2005 2005 Altera Corporation Agenda Nios II Introduction Configuring your CPU FPGA vs. ASIC CPU Design Instruction Set Architecture

More information

A Single Chip Shared Memory Switch with Twelve 10Gb Ethernet Ports

A Single Chip Shared Memory Switch with Twelve 10Gb Ethernet Ports A Single Chip Shared Memory Switch with Twelve 10Gb Ethernet Ports Takeshi Shimizu, Yukihiro Nakagawa, Sridhar Pathi, Yasushi Umezawa, Takashi Miyoshi, Yoichi Koyanagi, Takeshi Horie, Akira Hattori Hot

More information

Input-Output (I/O) Input - Output. I/O Devices. I/O Devices. I/O Devices. I/O Devices. operating system must control all I/O devices.

Input-Output (I/O) Input - Output. I/O Devices. I/O Devices. I/O Devices. I/O Devices. operating system must control all I/O devices. Input - Output Input-Output (I/O) operating system must control all I/O devices issue commands to devices catch interrupts handle errors provide interface between devices and rest of system main categories

More information

Interconnection Network for Tightly Coupled Accelerators Architecture

Interconnection Network for Tightly Coupled Accelerators Architecture Interconnection Network for Tightly Coupled Accelerators Architecture Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato Center for Computational Sciences University of Tsukuba, Japan 1 What

More information

Computer System Components

Computer System Components Computer System Components CPU Core 1 GHz - 3.2 GHz 4-way Superscaler RISC or RISC-core (x86): Deep Instruction Pipelines Dynamic scheduling Multiple FP, integer FUs Dynamic branch prediction Hardware

More information

High-Performance Sort Chip

High-Performance Sort Chip High-Performance Sort Chip Shinsuke Azuma, Takao Sakuma, Takashi Nakano, Takaaki Ando, Kenji Shirai azuma@icc.melco.co.jp Mitsubishi Electric Corporation Hot Chips 1999 1 Overview Background Algorithm

More information

Chapter Seven Morgan Kaufmann Publishers

Chapter Seven Morgan Kaufmann Publishers Chapter Seven Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored as a charge on capacitor (must be

More information

OceanStor 9000 InfiniBand Technical White Paper. Issue V1.01 Date HUAWEI TECHNOLOGIES CO., LTD.

OceanStor 9000 InfiniBand Technical White Paper. Issue V1.01 Date HUAWEI TECHNOLOGIES CO., LTD. OceanStor 9000 Issue V1.01 Date 2014-03-29 HUAWEI TECHNOLOGIES CO., LTD. Copyright Huawei Technologies Co., Ltd. 2014. All rights reserved. No part of this document may be reproduced or transmitted in

More information

c Copyright by Sameer Kumar, 2005

c Copyright by Sameer Kumar, 2005 c Copyright by Sameer Kumar, 2005 OPTIMIZING COMMUNICATION FOR MASSIVELY PARALLEL PROCESSING BY SAMEER KUMAR B. Tech., Indian Institute Of Technology Madras, 1999 M.S., University of Illinois at Urbana-Champaign,

More information

The Processor That Don't Cost a Thing

The Processor That Don't Cost a Thing The Processor That Don't Cost a Thing Peter Hsu, Ph.D. Peter Hsu Consulting, Inc. http://cs.wisc.edu/~peterhsu DRAM+Processor Commercial demand Heat stiffling industry's growth Heat density limits small

More information

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation Mainstream Computer System Components CPU Core 2 GHz - 3.0 GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation One core or multi-core (2-4) per chip Multiple FP, integer

More information

Mainstream Computer System Components

Mainstream Computer System Components Mainstream Computer System Components Double Date Rate (DDR) SDRAM One channel = 8 bytes = 64 bits wide Current DDR3 SDRAM Example: PC3-12800 (DDR3-1600) 200 MHz (internal base chip clock) 8-way interleaved

More information

RHiNET-3/SW: an 80-Gbit/s high-speed network switch for distributed parallel computing

RHiNET-3/SW: an 80-Gbit/s high-speed network switch for distributed parallel computing RHiNET-3/SW: an 0-Gbit/s high-speed network switch for distributed parallel computing S. Nishimura 1, T. Kudoh 2, H. Nishi 2, J. Yamamoto 2, R. Ueno 3, K. Harasawa 4, S. Fukuda 4, Y. Shikichi 4, S. Akutsu

More information

COT 4600 Operating Systems Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:00-4:00 PM

COT 4600 Operating Systems Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:00-4:00 PM COT 4600 Operating Systems Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:00-4:00 PM Lecture 23 Attention: project phase 4 due Tuesday November 24 Final exam Thursday December 10 4-6:50

More information

Memory Hierarchy: The motivation

Memory Hierarchy: The motivation Memory Hierarchy: The motivation The gap between CPU performance and main memory has been widening with higher performance CPUs creating performance bottlenecks for memory access instructions. The memory

More information

Lessons learned from MPI

Lessons learned from MPI Lessons learned from MPI Patrick Geoffray Opinionated Senior Software Architect patrick@myri.com 1 GM design Written by hardware people, pre-date MPI. 2-sided and 1-sided operations: All asynchronous.

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

Operating System Design Issues. I/O Management

Operating System Design Issues. I/O Management I/O Management Chapter 5 Operating System Design Issues Efficiency Most I/O devices slow compared to main memory (and the CPU) Use of multiprogramming allows for some processes to be waiting on I/O while

More information

High Performance Memory Opportunities in 2.5D Network Flow Processors

High Performance Memory Opportunities in 2.5D Network Flow Processors High Performance Memory Opportunities in 2.5D Network Flow Processors Jay Seaton, VP Silicon Operations, Netronome Larry Zu, PhD, President, Sarcina Technology LLC August 6, 2013 2013 Netronome 1 Netronome

More information

6.9. Communicating to the Outside World: Cluster Networking

6.9. Communicating to the Outside World: Cluster Networking 6.9 Communicating to the Outside World: Cluster Networking This online section describes the networking hardware and software used to connect the nodes of cluster together. As there are whole books and

More information

Memory Systems IRAM. Principle of IRAM

Memory Systems IRAM. Principle of IRAM Memory Systems 165 other devices of the module will be in the Standby state (which is the primary state of all RDRAM devices) or another state with low-power consumption. The RDRAM devices provide several

More information

Memory Hierarchies 2009 DAT105

Memory Hierarchies 2009 DAT105 Memory Hierarchies Cache performance issues (5.1) Virtual memory (C.4) Cache performance improvement techniques (5.2) Hit-time improvement techniques Miss-rate improvement techniques Miss-penalty improvement

More information

Advanced Parallel Programming I

Advanced Parallel Programming I Advanced Parallel Programming I Alexander Leutgeb, RISC Software GmbH RISC Software GmbH Johannes Kepler University Linz 2016 22.09.2016 1 Levels of Parallelism RISC Software GmbH Johannes Kepler University

More information

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important Storage Hierarchy III: I/O System Readings reg I$ D$ L2 L3 memory disk (swap) often boring, but still quite important ostensibly about general I/O, mainly about disks performance: latency & throughput

More information

Original Processor Frequency: AMD FX(tm)-6100 Six-Core Processor. CPU Thermal Design Power (TDP): Microcode Update Revision:

Original Processor Frequency: AMD FX(tm)-6100 Six-Core Processor. CPU Thermal Design Power (TDP): Microcode Update Revision: Processor Name: Original Processor Frequency: AMD FX-6100 3300.0 MHz CPU ID: Extended CPU ID: CPU Brand Name: CPU Vendor: CPU Stepping: CPU Code Name: CPU Thermal Design Power (TDP): CPU Platform: Microcode

More information

Course Introduction. Purpose: Objectives: Content: Learning Time:

Course Introduction. Purpose: Objectives: Content: Learning Time: Course Introduction Purpose: This course provides an overview of the Renesas SuperH series of 32-bit RISC processors, especially the microcontrollers in the SH-2 and SH-2A series Objectives: Learn the

More information

Input/Output. Today. Next. Principles of I/O hardware & software I/O software layers Disks. Protection & Security

Input/Output. Today. Next. Principles of I/O hardware & software I/O software layers Disks. Protection & Security Input/Output Today Principles of I/O hardware & software I/O software layers Disks Next Protection & Security Operating Systems and I/O Two key operating system goals Control I/O devices Provide a simple,

More information

M ultiplie r Bus S pe e d (set Jm prs on board) (s et in BIOS) CPU speed JP10 JP11 JP12 JP13 3.5 100 350 133* 466 ON OFF OFF ON 4 100 400 133* 533 OFF ON ON ON 66 300 4.5 100 450 OFF ON OFF ON 133* 600

More information

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals William Stallings Computer Organization and Architecture 7 th Edition Chapter 7 Input/Output Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

eslim SV Xeon 1U Server

eslim SV Xeon 1U Server eslim SV7-2100 Xeon 1U Server www.eslim.co.kr Dual and Quad-Core Server Computing Leader!! ELSIM KOREA INC. 1. Overview Hyper-Threading eslim SV7-2100 Server Outstanding computing powered by 64-bit Intel

More information

eslim SV Xeon 2U Server

eslim SV Xeon 2U Server eslim SV7-2250 Xeon 2U Server www.eslim.co.kr Dual and Quad-Core Server Computing Leader!! ELSIM KOREA INC. 1. Overview Hyper-Threading eslim SV7-2250 Server Outstanding computing powered by 64-bit Intel

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13 I/O Handling ECE 650 Systems Programming & Engineering Duke University, Spring 2018 Based on Operating Systems Concepts, Silberschatz Chapter 13 Input/Output (I/O) Typical application flow consists of

More information

SwitchX Virtual Protocol Interconnect (VPI) Switch Architecture

SwitchX Virtual Protocol Interconnect (VPI) Switch Architecture SwitchX Virtual Protocol Interconnect (VPI) Switch Architecture 2012 MELLANOX TECHNOLOGIES 1 SwitchX - Virtual Protocol Interconnect Solutions Server / Compute Switch / Gateway Virtual Protocol Interconnect

More information

Introduction to Input and Output

Introduction to Input and Output Introduction to Input and Output The I/O subsystem provides the mechanism for communication between the CPU and the outside world (I/O devices). Design factors: I/O device characteristics (input, output,

More information

CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology. Moore s Law: 2X transistors / year

CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology. Moore s Law: 2X transistors / year CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology Moore s Law: 2X transistors / year Cramming More Components onto Integrated Circuits Gordon Moore, Electronics, 1965 # on transistors

More information

A PERFORMANCE EVALUATION OF AN ALPHA EV7 PROCESSING NODE

A PERFORMANCE EVALUATION OF AN ALPHA EV7 PROCESSING NODE A PERFORMANCE EVALUATION OF AN ALPHA EV7 PROCESSING NODE Darren J. Kerbyson Adolfy Hoisie Scott Pakin Fabrizio Petrini Harvey J. Wasserman LOS ALAMOS NATIONAL LABORATORY (LANL), CCS-3 MODELING, ALGORITHMS

More information

Top500 Supercomputer list

Top500 Supercomputer list Top500 Supercomputer list Tends to represent parallel computers, so distributed systems such as SETI@Home are neglected. Does not consider storage or I/O issues Both custom designed machines and commodity

More information

Module 12: I/O Systems

Module 12: I/O Systems Module 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Performance Operating System Concepts 12.1 Silberschatz and Galvin c

More information

Cray XD1 Supercomputer Release 1.3 CRAY XD1 DATASHEET

Cray XD1 Supercomputer Release 1.3 CRAY XD1 DATASHEET CRAY XD1 DATASHEET Cray XD1 Supercomputer Release 1.3 Purpose-built for HPC delivers exceptional application performance Affordable power designed for a broad range of HPC workloads and budgets Linux,

More information

New Storage Architectures

New Storage Architectures New Storage Architectures OpenFabrics Software User Group Workshop Replacing LNET routers with IB routers #OFSUserGroup Lustre Basics Lustre is a clustered file-system for supercomputing Architecture consists

More information

Ingo Brenckmann Jochen Kirsten Storage Technology Strategists SAS EMEA Copyright 2003, SAS Institute Inc. All rights reserved.

Ingo Brenckmann Jochen Kirsten Storage Technology Strategists SAS EMEA Copyright 2003, SAS Institute Inc. All rights reserved. Intelligent Storage Results from real life testing Ingo Brenckmann Jochen Kirsten Storage Technology Strategists SAS EMEA SAS Intelligent Storage components! OLAP Server! Scalable Performance Data Server!

More information

The Impact of Optics on HPC System Interconnects

The Impact of Optics on HPC System Interconnects The Impact of Optics on HPC System Interconnects Mike Parker and Steve Scott Hot Interconnects 2009 Manhattan, NYC Will cost-effective optics fundamentally change the landscape of networking? Yes. Changes

More information

JNAF791 Series ATX. ATX Embedded Motherboard, 8th Generation Intel Xeon E, Core i7/ i5 /i3, Pentium Celeron LGA1151 Socket Processor, Max.

JNAF791 Series ATX. ATX Embedded Motherboard, 8th Generation Intel Xeon E, Core i7/ i5 /i3, Pentium Celeron LGA1151 Socket Processor, Max. ATX JNAF791 Series ATX Embedded Motherboard, 8th Generation Intel Xeon E, Core i7/ i5 /i3, Pentium Celeron LGA1151 Socket Processor, Max. 95W TDP The JETWAY JNAF791 Series are ATX form factor board adopts

More information

Embedded System Design

Embedded System Design Embedded System Design Lecture 5 Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University What We Have Covered So Far Instruction Set Architecture How CPU interacts with I/O controllers

More information

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec Introduction I/O 1 I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections I/O Device Summary I/O 2 I/O System

More information

SCI Basics. Hugo Kohmann

SCI Basics. Hugo Kohmann Hugo Kohmann Slide 1 What is SCI ½ The SCI standard ANSI/IEEE 1596-1992 defines a point-to-point interface and a set of packet protocols. ½ The SCI protocols use small packet sizes with a 16-byte header

More information

CS 431/531 Introduction to Performance Measurement, Modeling, and Analysis Winter 2019

CS 431/531 Introduction to Performance Measurement, Modeling, and Analysis Winter 2019 CS 431/531 Introduction to Performance Measurement, Modeling, and Analysis Winter 2019 Prof. Karen L. Karavanic karavan@pdx.edu web.cecs.pdx.edu/~karavan Today s Agenda Why Study Performance? Why Study

More information

APENet: LQCD clusters a la APE

APENet: LQCD clusters a la APE Overview Hardware/Software Benchmarks Conclusions APENet: LQCD clusters a la APE Concept, Development and Use Roberto Ammendola Istituto Nazionale di Fisica Nucleare, Sezione Roma Tor Vergata Centro Ricerce

More information

Modern CPU Architectures

Modern CPU Architectures Modern CPU Architectures Alexander Leutgeb, RISC Software GmbH RISC Software GmbH Johannes Kepler University Linz 2014 16.04.2014 1 Motivation for Parallelism I CPU History RISC Software GmbH Johannes

More information

Link Layer & Network Layer

Link Layer & Network Layer Chapter 7.B and 7.C Link Layer & Network Layer Prof. Dina Kat abi Some slides are from lectures by Nick Mckeown, Ion Stoica, Frans Kaashoek, Hari Balakrishnan, and Sam Madden 1 Previous Lecture We learned

More information

Flexible Architecture Research Machine (FARM)

Flexible Architecture Research Machine (FARM) Flexible Architecture Research Machine (FARM) RAMP Retreat June 25, 2009 Jared Casper, Tayo Oguntebi, Sungpack Hong, Nathan Bronson Christos Kozyrakis, Kunle Olukotun Motivation Why CPUs + FPGAs make sense

More information

The Network Processor Revolution

The Network Processor Revolution The Network Processor Revolution Fast Pattern Matching and Routing at OC-48 David Kramer Senior Design/Architect Market Segments Optical Mux Optical Core DWDM Ring OC 192 to OC 768 Optical Mux Carrier

More information

Low latency, high bandwidth communication. Infiniband and RDMA programming. Bandwidth vs latency. Knut Omang Ifi/Oracle 2 Nov, 2015

Low latency, high bandwidth communication. Infiniband and RDMA programming. Bandwidth vs latency. Knut Omang Ifi/Oracle 2 Nov, 2015 Low latency, high bandwidth communication. Infiniband and RDMA programming Knut Omang Ifi/Oracle 2 Nov, 2015 1 Bandwidth vs latency There is an old network saying: Bandwidth problems can be cured with

More information

eslim SV Opteron 1U Server

eslim SV Opteron 1U Server eslim SV5-2300 Opteron 1U Server www.eslim.co.kr Dual and Quad-Core Server Computing Leader!! ESLIM KOREA INC. 1. Overview HyperTransport eslim SV5-2300 Server Powered by Dual-core AMD Opteron processor

More information

Initial Performance Evaluation of the Cray SeaStar Interconnect

Initial Performance Evaluation of the Cray SeaStar Interconnect Initial Performance Evaluation of the Cray SeaStar Interconnect Ron Brightwell Kevin Pedretti Keith Underwood Sandia National Laboratories Scalable Computing Systems Department 13 th IEEE Symposium on

More information

ICC: An Interconnect Controller for the Tofu Interconnect Architecture

ICC: An Interconnect Controller for the Tofu Interconnect Architecture : An Interconnect Controller for the Tofu Interconnect Architecture August 24, 2010 Takashi Toyoshima Next Generation Technical Computing Unit Fujitsu Limited Background Requirements for Supercomputing

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

Adapted from David Patterson s slides on graduate computer architecture

Adapted from David Patterson s slides on graduate computer architecture Mei Yang Adapted from David Patterson s slides on graduate computer architecture Introduction Ten Advanced Optimizations of Cache Performance Memory Technology and Optimizations Virtual Memory and Virtual

More information

spin: High-performance streaming Processing in the Network

spin: High-performance streaming Processing in the Network T. HOEFLER, S. DI GIROLAMO, K. TARANOV, R. E. GRANT, R. BRIGHTWELL spin: High-performance streaming Processing in the Network spcl.inf.ethz.ch The Development of High-Performance Networking Interfaces

More information