Parallel Computing Lab 10: Parallel Game of Life (GOL) with structured grid

Size: px
Start display at page:

Download "Parallel Computing Lab 10: Parallel Game of Life (GOL) with structured grid"

Transcription

1 Parallel Computing Lab 10: Parallel Game of Life (GOL) with structured grid November 17, 2012 This lab requires to write a program in Bulk Synchronous Parallelism (BSP), particularly parallel Game of Life (GOL) sumulation on regular grid. It also shows how to use VTK visual library (no details yet). 1 Code and setup There is a skeleton code given (see gol1-template.tgz), in case you don t want to write everything from scratch. You can use any part of the code, although its easier to evaluate a solution if it follows my code structure. Unzip the code on aur and compile with module load intelmpi module load VTK make In case you want to compile on your computer change VTK directories in the Makefile. 1.1 Sequential GOL There are 2 sequential version: 1. Fortran with terminal output./main_gol-seq (a) sources are main_gol-seq.f90, gol-seq.f90, commonf.f90, and common.h (b) this program prints out GOL field new state to console every time a key is pressed 2. C++ with VTK visualization./gol-visual-seq (a) you need to give -X parameter to ssh and possibly set LIBGL_ALWAYS_INDIRECT environment variable to 1 (b) sources are gol-visual-seq.cc (c) this program draws GOL field new state with VTK every second (d) you can use mouse to rotate and zoom the field (it is 3D) As you can see the grid is structured. If 3D is too slow with ssh try NX, see instructions on HPC web site[1]. 1

2 compcomm compute 3 compute 1 MPI_COMM_WORLD vis process compute 4 compute 2 Figure 1: Proccesses and communicators 2 Parallel GOL There is one parallel version which is incomplete (just a template) main_gol-mpi.f90. It may run in two modes 1. mpirun -np 1./main_gol-mpi initializes MPI, runs the sequential GOL and prints output to console 2. mpirun -np 1./main_gol-mpi : -np 1./gol-visual-mpi runs one visualize MPI process (gol-visualmpi.cc) and one compute MPI process (main_gol-mpi.f90) visualizer waits for messages from compute process compute process calculates GOL field new state on a key press In any case compcomm communicator is created (see Figure 1) from MPI_COMM_WORLD that combines only MPI processes with compute role (main_gol-mpi.f90 ). Use this communicator in the following task. Task 1 ReWrite the program, so that GOL is run in parallel. For that create gol-mpi.f90 and write code similar to gol-seq.f90 that runs in parallel by decomposing the domain into n n subdomains and exchanging neighbours (ghost) values as necessary (see lecture slides). You may completely ignore visual VTK C++ part if you don t like it and just use the console for output. An example of splitting the field into 3 3 parts for 9 processes is shown on Figure 2. The idea is to create larger local (lxn+2) (lyn+2) data field that comprises: local values that computed by the current process, inner values that in addition are not needed by any other process and can also be computed without any ghost values, ghost values that is a thin region of non-local values along the boundary that are needed by local computations and must be eventually copied from other procceses. 2

3 all values data(1:lxn+2,1:lyn+2) inner values data(3:lxn,3:lyn) local values data(2:lxn+1,2:lyn+1) YN lyn lxn XN Figure 2: Decomposition of GOL between 9 processes; local, inner and all values for one process It is possible to exchange latest ghost values every time before doing local computations. In this case the code I have is the following:!> Do one step in gol subroutine gol_parfield_step(pf) type(parfield_t),intent(inout) :: pf type(ghostinfo_t) :: ghostinfo! exchange ghosts call gol_parfield_exchange_ghosts start(pf, ghostinfo) call gol_parfield_exchange_ghosts finish(pf, ghostinfo)! make the step call gol_field_calculate(pf%base, (/2,2,pf%lXN+1,pf%lYN+1/)) call gol_field_step_finish(pf%base) end subroutine gol_parfield_step The second argument in gol_field_calculate routine specifies the region to compute. In this case these are local values, but in the next task we will need more fine control. Value ghostinfo holds all MPI request handles, buffers, and other useful info between MPI_Isend/MPI_Irecv and MPI_Wait calls. 3 Parallel optimized GOL One optimization idea is to initiate the exchange ghost values and in the while compute inner local values, then as ghost values are available compute non-inner local values. The code of one GOL step than changes to the following: subroutine gol_parfield_step_async(pf) 3

4 (a) simple ghost exchange (b) overlap ghost exchange with inner computations Figure 3: Intel TAC charts for parallel Game of Life with 9 processes type(parfield_t),intent(inout) :: pf type(ghostinfo_t) :: ghostinfo! start exchanging ghost values and calculate inner part call gol_parfield_exchange_ghosts start(pf, ghostinfo) call gol_field_calculate(pf%base, (/3,3,pf%lXN,pf%lYN/)) call gol_parfield_exchange_ghosts finish(pf, ghostinfo)! calculate outer part! top and bottom borders call gol_field_calculate(pf%base, (/2,2,pf%lXN+1,2/)) call gol_field_calculate(pf%base, (/2,pf%lYN+1,pf%lXN+1,pf%lYN+1/))! left and right borders call gol_field_calculate(pf%base, (/2,3,2,pf%lYN/)) call gol_field_calculate(pf%base, (/pf%lxn+1,3,pf%lxn+1,pf%lyn/))! finish the step call gol_field_step_finish(pf%base) end subroutine gol_parfield_step_async Task 2 ReWrite the GOL code, so that each process first calculates its boundary values needed for other proccesses, sends them out and then calculates the rest. Benchmark the new code against the non-optimized one for large GOL field and provide table with run times for 1,4,9, and 16 processes for both versions. Disable visualization and provide event charts from Intel TAC for 4,9 and 16 MPI processes for both versions. Is optimization helpful? For the numbers I tried ( grid) and 4,9,16,36 processes I did not notice any substantial win in time. The charts from ITAC are shown on Figure 3. References [1] 4

5 Appendix A: Using VTK Here follow the details of VTK programming. 5

Elementary Parallel Programming with Examples. Reinhold Bader (LRZ) Georg Hager (RRZE)

Elementary Parallel Programming with Examples. Reinhold Bader (LRZ) Georg Hager (RRZE) Elementary Parallel Programming with Examples Reinhold Bader (LRZ) Georg Hager (RRZE) Two Paradigms for Parallel Programming Hardware Designs Distributed Memory M Message Passing explicit programming required

More information

MPI Case Study. Fabio Affinito. April 24, 2012

MPI Case Study. Fabio Affinito. April 24, 2012 MPI Case Study Fabio Affinito April 24, 2012 In this case study you will (hopefully..) learn how to Use a master-slave model Perform a domain decomposition using ghost-zones Implementing a message passing

More information

MPI Lab. How to split a problem across multiple processors Broadcasting input to other nodes Using MPI_Reduce to accumulate partial sums

MPI Lab. How to split a problem across multiple processors Broadcasting input to other nodes Using MPI_Reduce to accumulate partial sums MPI Lab Parallelization (Calculating π in parallel) How to split a problem across multiple processors Broadcasting input to other nodes Using MPI_Reduce to accumulate partial sums Sharing Data Across Processors

More information

Distributed Memory Programming With MPI Computer Lab Exercises

Distributed Memory Programming With MPI Computer Lab Exercises Distributed Memory Programming With MPI Computer Lab Exercises Advanced Computational Science II John Burkardt Department of Scientific Computing Florida State University http://people.sc.fsu.edu/ jburkardt/classes/acs2

More information

HPC Fall 2007 Project 3 2D Steady-State Heat Distribution Problem with MPI

HPC Fall 2007 Project 3 2D Steady-State Heat Distribution Problem with MPI HPC Fall 2007 Project 3 2D Steady-State Heat Distribution Problem with MPI Robert van Engelen Due date: December 14, 2007 1 Introduction 1.1 Account and Login Information For this assignment you need an

More information

HPC Fall 2010 Final Project 3 2D Steady-State Heat Distribution with MPI

HPC Fall 2010 Final Project 3 2D Steady-State Heat Distribution with MPI HPC Fall 2010 Final Project 3 2D Steady-State Heat Distribution with MPI Robert van Engelen Due date: December 10, 2010 1 Introduction 1.1 HPC Account Setup and Login Procedure Same as in Project 1. 1.2

More information

MPI Casestudy: Parallel Image Processing

MPI Casestudy: Parallel Image Processing MPI Casestudy: Parallel Image Processing David Henty 1 Introduction The aim of this exercise is to write a complete MPI parallel program that does a very basic form of image processing. We will start by

More information

Introduction to MPI. Ekpe Okorafor. School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014

Introduction to MPI. Ekpe Okorafor. School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 Introduction to MPI Ekpe Okorafor School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 Topics Introduction MPI Model and Basic Calls MPI Communication Summary 2 Topics Introduction

More information

Domain Decomposition: Computational Fluid Dynamics

Domain Decomposition: Computational Fluid Dynamics Domain Decomposition: Computational Fluid Dynamics May 24, 2015 1 Introduction and Aims This exercise takes an example from one of the most common applications of HPC resources: Fluid Dynamics. We will

More information

MPI Lab. Steve Lantz Susan Mehringer. Parallel Computing on Ranger and Longhorn May 16, 2012

MPI Lab. Steve Lantz Susan Mehringer. Parallel Computing on Ranger and Longhorn May 16, 2012 MPI Lab Steve Lantz Susan Mehringer Parallel Computing on Ranger and Longhorn May 16, 2012 1 MPI Lab Parallelization (Calculating p in parallel) How to split a problem across multiple processors Broadcasting

More information

Introduction to Parallel Programming with MPI

Introduction to Parallel Programming with MPI Introduction to Parallel Programming with MPI PICASso Tutorial October 25-26, 2006 Stéphane Ethier (ethier@pppl.gov) Computational Plasma Physics Group Princeton Plasma Physics Lab Why Parallel Computing?

More information

Domain Decomposition: Computational Fluid Dynamics

Domain Decomposition: Computational Fluid Dynamics Domain Decomposition: Computational Fluid Dynamics July 11, 2016 1 Introduction and Aims This exercise takes an example from one of the most common applications of HPC resources: Fluid Dynamics. We will

More information

CPS343 Parallel and High Performance Computing Project 1 Spring 2018

CPS343 Parallel and High Performance Computing Project 1 Spring 2018 CPS343 Parallel and High Performance Computing Project 1 Spring 2018 Assignment Write a program using OpenMP to compute the estimate of the dominant eigenvalue of a matrix Due: Wednesday March 21 The program

More information

ADVENTURE_Metis. ADVENTURE Project. User s Manual. Version: 1.1. February 17, 2006 ADVENTURE SYSTEM

ADVENTURE_Metis. ADVENTURE Project. User s Manual. Version: 1.1. February 17, 2006 ADVENTURE SYSTEM ADVENTURE SYSTEM ADVENTURE_Metis Parallel domain decomposition of mesh into single-layered subdomains or double-layered parts and subdomains using METIS and ParMETIS as kernels Version: 1.1 User s Manual

More information

Domain Decomposition: Computational Fluid Dynamics

Domain Decomposition: Computational Fluid Dynamics Domain Decomposition: Computational Fluid Dynamics December 0, 0 Introduction and Aims This exercise takes an example from one of the most common applications of HPC resources: Fluid Dynamics. We will

More information

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SurfSARA High Performance Computing and Big Data Course June 2014 Parallel Programming with Compiler Directives: OpenMP Message Passing Gentle Introduction

More information

Fortran packing code from the file exchange_1.f in the NAS LU Benchmark, opened in Eclipse. The selected code shows a simple packing loop that packs

Fortran packing code from the file exchange_1.f in the NAS LU Benchmark, opened in Eclipse. The selected code shows a simple packing loop that packs Fortran packing code from the file exchange_1.f in the NAS LU Benchmark, opened in Eclipse. The selected code shows a simple packing loop that packs the south border of the g array into the dum packing

More information

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Why serial is not enough Computing architectures Parallel paradigms Message Passing Interface How

More information

Bulk Synchronous and SPMD Programming. The Bulk Synchronous Model. CS315B Lecture 2. Bulk Synchronous Model. The Machine. A model

Bulk Synchronous and SPMD Programming. The Bulk Synchronous Model. CS315B Lecture 2. Bulk Synchronous Model. The Machine. A model Bulk Synchronous and SPMD Programming The Bulk Synchronous Model CS315B Lecture 2 Prof. Aiken CS 315B Lecture 2 1 Prof. Aiken CS 315B Lecture 2 2 Bulk Synchronous Model The Machine A model An idealized

More information

Advanced Parallel Programming

Advanced Parallel Programming Sebastian von Alfthan Jussi Enkovaara Pekka Manninen Advanced Parallel Programming February 15-17, 2016 PRACE Advanced Training Center CSC IT Center for Science Ltd, Finland All material (C) 2011-2016

More information

Myths and reality of communication/computation overlap in MPI applications

Myths and reality of communication/computation overlap in MPI applications Myths and reality of communication/computation overlap in MPI applications Alessandro Fanfarillo National Center for Atmospheric Research Boulder, Colorado, USA elfanfa@ucar.edu Oct 12th, 2017 (elfanfa@ucar.edu)

More information

Advanced MPI. Andrew Emerson

Advanced MPI. Andrew Emerson Advanced MPI Andrew Emerson (a.emerson@cineca.it) Agenda 1. One sided Communications (MPI-2) 2. Dynamic processes (MPI-2) 3. Profiling MPI and tracing 4. MPI-I/O 5. MPI-3 11/12/2015 Advanced MPI 2 One

More information

lslogin3$ cd lslogin3$ tar -xvf ~train00/mpibasic_lab.tar cd mpibasic_lab/pi cd mpibasic_lab/decomp1d

lslogin3$ cd lslogin3$ tar -xvf ~train00/mpibasic_lab.tar cd mpibasic_lab/pi cd mpibasic_lab/decomp1d MPI Lab Getting Started Login to ranger.tacc.utexas.edu Untar the lab source code lslogin3$ cd lslogin3$ tar -xvf ~train00/mpibasic_lab.tar Part 1: Getting Started with simple parallel coding hello mpi-world

More information

L14 Supercomputing - Part 2

L14 Supercomputing - Part 2 Geophysical Computing L14-1 L14 Supercomputing - Part 2 1. MPI Code Structure Writing parallel code can be done in either C or Fortran. The Message Passing Interface (MPI) is just a set of subroutines

More information

Beginner's Guide for UK IBM systems

Beginner's Guide for UK IBM systems Beginner's Guide for UK IBM systems This document is intended to provide some basic guidelines for those who already had certain programming knowledge with high level computer languages (e.g. Fortran,

More information

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman)

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) Parallel Programming with Message Passing and Directives 2 MPI + OpenMP Some applications can

More information

STARTING THE DDT DEBUGGER ON MIO, AUN, & MC2. (Mouse over to the left to see thumbnails of all of the slides)

STARTING THE DDT DEBUGGER ON MIO, AUN, & MC2. (Mouse over to the left to see thumbnails of all of the slides) STARTING THE DDT DEBUGGER ON MIO, AUN, & MC2 (Mouse over to the left to see thumbnails of all of the slides) ALLINEA DDT Allinea DDT is a powerful, easy-to-use graphical debugger capable of debugging a

More information

Advanced MPI. Andrew Emerson

Advanced MPI. Andrew Emerson Advanced MPI Andrew Emerson (a.emerson@cineca.it) Agenda 1. One sided Communications (MPI-2) 2. Dynamic processes (MPI-2) 3. Profiling MPI and tracing 4. MPI-I/O 5. MPI-3 22/02/2017 Advanced MPI 2 One

More information

All routines were built with VS2010 compiler, OpenMP 2.0 and TBB 3.0 libraries were used to implement parallel versions of programs.

All routines were built with VS2010 compiler, OpenMP 2.0 and TBB 3.0 libraries were used to implement parallel versions of programs. technologies for multi-core numeric computation In order to compare ConcRT, OpenMP and TBB technologies, we implemented a few algorithms from different areas of numeric computation and compared their performance

More information

FROM SERIAL FORTRAN TO MPI PARALLEL FORTRAN AT THE IAS: SOME ILLUSTRATIVE EXAMPLES

FROM SERIAL FORTRAN TO MPI PARALLEL FORTRAN AT THE IAS: SOME ILLUSTRATIVE EXAMPLES FROM SERIAL FORTRAN TO MPI PARALLEL FORTRAN AT THE IAS: SOME ILLUSTRATIVE EXAMPLES Let's begin with a simple trapezoidal integration program. This version creates 'nbin' bins, and sums the function `fcn'

More information

CSE. Parallel Algorithms on a cluster of PCs. Ian Bush. Daresbury Laboratory (With thanks to Lorna Smith and Mark Bull at EPCC)

CSE. Parallel Algorithms on a cluster of PCs. Ian Bush. Daresbury Laboratory (With thanks to Lorna Smith and Mark Bull at EPCC) Parallel Algorithms on a cluster of PCs Ian Bush Daresbury Laboratory I.J.Bush@dl.ac.uk (With thanks to Lorna Smith and Mark Bull at EPCC) Overview This lecture will cover General Message passing concepts

More information

Code Parallelization

Code Parallelization Code Parallelization a guided walk-through m.cestari@cineca.it f.salvadore@cineca.it Summer School ed. 2015 Code Parallelization two stages to write a parallel code problem domain algorithm program domain

More information

PPCES 2016: MPI Lab March 2016 Hristo Iliev, Portions thanks to: Christian Iwainsky, Sandra Wienke

PPCES 2016: MPI Lab March 2016 Hristo Iliev, Portions thanks to: Christian Iwainsky, Sandra Wienke PPCES 2016: MPI Lab 16 17 March 2016 Hristo Iliev, iliev@itc.rwth-aachen.de Portions thanks to: Christian Iwainsky, Sandra Wienke Synopsis The purpose of this hands-on lab is to make you familiar with

More information

CSC Summer School in HIGH-PERFORMANCE COMPUTING

CSC Summer School in HIGH-PERFORMANCE COMPUTING CSC Summer School in HIGH-PERFORMANCE COMPUTING June 27 July 3, 2016 Espoo, Finland Exercise assignments All material (C) 2016 by CSC IT Center for Science Ltd. and the authors. This work is licensed under

More information

Supercomputing in Plain English Exercise #6: MPI Point to Point

Supercomputing in Plain English Exercise #6: MPI Point to Point Supercomputing in Plain English Exercise #6: MPI Point to Point In this exercise, we ll use the same conventions and commands as in Exercises #1, #2, #3, #4 and #5. You should refer back to the Exercise

More information

Practical Introduction to Message-Passing Interface (MPI)

Practical Introduction to Message-Passing Interface (MPI) 1 Outline of the workshop 2 Practical Introduction to Message-Passing Interface (MPI) Bart Oldeman, Calcul Québec McGill HPC Bart.Oldeman@mcgill.ca Theoretical / practical introduction Parallelizing your

More information

MPI Tutorial. Shao-Ching Huang. High Performance Computing Group UCLA Institute for Digital Research and Education

MPI Tutorial. Shao-Ching Huang. High Performance Computing Group UCLA Institute for Digital Research and Education MPI Tutorial Shao-Ching Huang High Performance Computing Group UCLA Institute for Digital Research and Education Center for Vision, Cognition, Learning and Art, UCLA July 15 22, 2013 A few words before

More information

Cupid Documentation. Release 0.2 (ESMF v7) Rocky Dunlap

Cupid Documentation. Release 0.2 (ESMF v7) Rocky Dunlap Cupid Documentation Release 0.2 (ESMF v7) Rocky Dunlap July 28, 2016 Contents 1 Overview 3 1.1 What is NUOPC?............................................ 3 1.2 What is Eclipse?.............................................

More information

Kevin J. Barker. Scott Pakin and Darren J. Kerbyson

Kevin J. Barker. Scott Pakin and Darren J. Kerbyson Experiences in Performance Modeling: The Krak Hydrodynamics Application Kevin J. Barker Scott Pakin and Darren J. Kerbyson Performance and Architecture Laboratory (PAL) http://www.c3.lanl.gov/pal/ Computer,

More information

Experiences with CUDA & OpenACC from porting ACME to GPUs

Experiences with CUDA & OpenACC from porting ACME to GPUs Experiences with CUDA & OpenACC from porting ACME to GPUs Matthew Norman Irina Demeshko Jeffrey Larkin Aaron Vose Mark Taylor ORNL is managed by UT-Battelle for the US Department of Energy ORNL Sandia

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2018 Our Environment This Week Your laptops or workstations: only used for portal access Bridges

More information

Module 4: Working with MPI

Module 4: Working with MPI Module 4: Working with MPI Objective Learn how to develop, build and launch a parallel (MPI) program on a remote parallel machine Contents Remote project setup Building with Makefiles MPI assistance features

More information

Sami Ilvonen Pekka Manninen. Introduction to High-Performance Computing with Fortran. September 19 20, 2016 CSC IT Center for Science Ltd, Espoo

Sami Ilvonen Pekka Manninen. Introduction to High-Performance Computing with Fortran. September 19 20, 2016 CSC IT Center for Science Ltd, Espoo Sami Ilvonen Pekka Manninen Introduction to High-Performance Computing with Fortran September 19 20, 2016 CSC IT Center for Science Ltd, Espoo All material (C) 2009-2016 by CSC IT Center for Science Ltd.

More information

LECTURE ON MULTI-GPU PROGRAMMING. Jiri Kraus, November 14 th 2016

LECTURE ON MULTI-GPU PROGRAMMING. Jiri Kraus, November 14 th 2016 LECTURE ON MULTI-GPU PROGRAMMING Jiri Kraus, November 14 th 2016 MULTI GPU PROGRAMMING With MPI and OpenACC Node 0 Node 1 Node N-1 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM GPU CPU GPU CPU GPU CPU

More information

Performance Analysis of Parallel Scientific Applications In Eclipse

Performance Analysis of Parallel Scientific Applications In Eclipse Performance Analysis of Parallel Scientific Applications In Eclipse EclipseCon 2015 Wyatt Spear, University of Oregon wspear@cs.uoregon.edu Supercomputing Big systems solving big problems Performance gains

More information

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008 SHARCNET Workshop on Parallel Computing Hugh Merz Laurentian University May 2008 What is Parallel Computing? A computational method that utilizes multiple processing elements to solve a problem in tandem

More information

Module 3: Working with C/C++

Module 3: Working with C/C++ Module 3: Working with C/C++ Objective Learn basic Eclipse concepts: Perspectives, Views, Learn how to use Eclipse to manage a remote project Learn how to use Eclipse to develop C programs Learn how to

More information

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC Course Class #1 Q&A Contents OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC/CUDA/OpenMP Q: Is OpenACC an NVIDIA standard or is it accepted

More information

CSC Summer School in HIGH-PERFORMANCE COMPUTING

CSC Summer School in HIGH-PERFORMANCE COMPUTING CSC Summer School in HIGH-PERFORMANCE COMPUTING June 22 July 1, 2015 Espoo, Finland Exercise assignments All material (C) 2015 by CSC IT Center for Science Ltd. and the authors. This work is licensed under

More information

Programming Assignment 3

Programming Assignment 3 UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 3550 Section 002 Communication Networks Spring 2018 Programming Assignment 3 Introduction Having created a TCP client in programming assignment 2, it s

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2017 Our Environment This Week Your laptops or workstations: only used for portal access Bridges

More information

Numerical Modelling in Fortran: day 7. Paul Tackley, 2017

Numerical Modelling in Fortran: day 7. Paul Tackley, 2017 Numerical Modelling in Fortran: day 7 Paul Tackley, 2017 Today s Goals 1. Makefiles 2. Intrinsic functions 3. Optimisation: Making your code run as fast as possible 4. Combine advection-diffusion and Poisson

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2017 Our Environment This Week Your laptops or workstations: only used for portal access Bridges

More information

The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing

The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Parallelism Decompose the execution into several tasks according to the work to be done: Function/Task

More information

A4. Intro to Parallel Computing

A4. Intro to Parallel Computing Self-Consistent Simulations of Beam and Plasma Systems Steven M. Lund, Jean-Luc Vay, Rémi Lehe and Daniel Winklehner Colorado State U., Ft. Collins, CO, 13-17 June, 2016 A4. Intro to Parallel Computing

More information

Parallel Programming Patterns

Parallel Programming Patterns Parallel Programming Patterns Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Copyright 2013, 2017, 2018 Moreno Marzolla, Università

More information

EC-433 Digital Image Processing

EC-433 Digital Image Processing EC-433 Digital Image Processing Lecture 4 Digital Image Fundamentals Dr. Arslan Shaukat Acknowledgement: Lecture slides material from Dr. Rehan Hafiz, Gonzalez and Woods Interpolation Required in image

More information

Orbital Integrator System Manual

Orbital Integrator System Manual Orbital Integrator System Manual Benjamin Sprague This manual is intended to describe the functionality of the orbital integrator system. Copyright c 2006 Benjamin Sprague Permission is granted to copy,

More information

SGI Altix Getting Correct Code Reiner Vogelsang SGI GmbH

SGI Altix Getting Correct Code Reiner Vogelsang SGI GmbH SGI Altix Getting Correct Code Reiner Vogelsang SGI GmbH reiner@sgi.com Module Objectives After completing the module, you will able to Find caveats and hidden errors in application codes Handle debuggers

More information

A Practical Guide to Performing Molecular Dynamics Simulations on the University of Tennessee Linux Cluster. Document prepared by:

A Practical Guide to Performing Molecular Dynamics Simulations on the University of Tennessee Linux Cluster. Document prepared by: A Practical Guide to Performing Molecular Dynamics Simulations on the University of Tennessee Linux Cluster Document prepared by: David Keffer Computational Materials Research Group The University of Tennessee

More information

Programming with MPI. Pedro Velho

Programming with MPI. Pedro Velho Programming with MPI Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage - Who might be interested in those applications?

More information

Lecture 18 Representation and description I. 2. Boundary descriptors

Lecture 18 Representation and description I. 2. Boundary descriptors Lecture 18 Representation and description I 1. Boundary representation 2. Boundary descriptors What is representation What is representation After segmentation, we obtain binary image with interested regions

More information

Parallel Programming Models. Parallel Programming Models. Threads Model. Implementations 3/24/2014. Shared Memory Model (without threads)

Parallel Programming Models. Parallel Programming Models. Threads Model. Implementations 3/24/2014. Shared Memory Model (without threads) Parallel Programming Models Parallel Programming Models Shared Memory (without threads) Threads Distributed Memory / Message Passing Data Parallel Hybrid Single Program Multiple Data (SPMD) Multiple Program

More information

immediate send and receive query the status of a communication MCS 572 Lecture 8 Introduction to Supercomputing Jan Verschelde, 9 September 2016

immediate send and receive query the status of a communication MCS 572 Lecture 8 Introduction to Supercomputing Jan Verschelde, 9 September 2016 Data Partitioning 1 Data Partitioning functional and domain decomposition 2 Parallel Summation applying divide and conquer fanning out an array of data fanning out with MPI fanning in the results 3 An

More information

Meteorology 5344, Fall 2017 Computational Fluid Dynamics Dr. M. Xue. Computer Problem #l: Optimization Exercises

Meteorology 5344, Fall 2017 Computational Fluid Dynamics Dr. M. Xue. Computer Problem #l: Optimization Exercises Meteorology 5344, Fall 2017 Computational Fluid Dynamics Dr. M. Xue Computer Problem #l: Optimization Exercises Due Thursday, September 19 Updated in evening of Sept 6 th. Exercise 1. This exercise is

More information

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho Programming with MPI on GridRS Dr. Márcio Castro e Dr. Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage -

More information

Parallel I/O. and split communicators. David Henty, Fiona Ried, Gavin J. Pringle

Parallel I/O. and split communicators. David Henty, Fiona Ried, Gavin J. Pringle Parallel I/O and split communicators David Henty, Fiona Ried, Gavin J. Pringle Dr Gavin J. Pringle Applications Consultant gavin@epcc.ed.ac.uk +44 131 650 6709 4x4 array on 2x2 Process Grid Parallel IO

More information

5/5/2012. Message Passing Programming Model Blocking communication. Non-Blocking communication Introducing MPI. Non-Buffered Buffered

5/5/2012. Message Passing Programming Model Blocking communication. Non-Blocking communication Introducing MPI. Non-Buffered Buffered Lecture 7: Programming Using the Message-Passing Paradigm 1 Message Passing Programming Model Blocking communication Non-Buffered Buffered Non-Blocking communication Introducing MPI 2 1 Programming models

More information

Workloads Programmierung Paralleler und Verteilter Systeme (PPV)

Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Workloads 2 Hardware / software execution environment

More information

MPI Programming. Henrik R. Nagel Scientific Computing IT Division

MPI Programming. Henrik R. Nagel Scientific Computing IT Division 1 MPI Programming Henrik R. Nagel Scientific Computing IT Division 2 Outline Introduction Finite Difference Method Finite Element Method LU Factorization SOR Method Monte Carlo Method Molecular Dynamics

More information

Parallelization Using a PGAS Language such as X10 in HYDRO and TRITON

Parallelization Using a PGAS Language such as X10 in HYDRO and TRITON Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Parallelization Using a PGAS Language such as X10 in HYDRO and TRITON Marc Tajchman* a a Commissariat à l énergie atomique

More information

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Rolf Rabenseifner rabenseifner@hlrs.de Gerhard Wellein gerhard.wellein@rrze.uni-erlangen.de University of Stuttgart

More information

HPF commands specify which processor gets which part of the data. Concurrency is defined by HPF commands based on Fortran90

HPF commands specify which processor gets which part of the data. Concurrency is defined by HPF commands based on Fortran90 149 Fortran and HPF 6.2 Concept High Performance Fortran 6.2 Concept Fortran90 extension SPMD (Single Program Multiple Data) model each process operates with its own part of data HPF commands specify which

More information

Optimising for the p690 memory system

Optimising for the p690 memory system Optimising for the p690 memory Introduction As with all performance optimisation it is important to understand what is limiting the performance of a code. The Power4 is a very powerful micro-processor

More information

WRF Software Architecture. John Michalakes, Head WRF Software Architecture Michael Duda Dave Gill

WRF Software Architecture. John Michalakes, Head WRF Software Architecture Michael Duda Dave Gill WRF Software Architecture John Michalakes, Head WRF Software Architecture Michael Duda Dave Gill Outline Introduction Computing Overview WRF Software Overview Introduction WRF Software Characteristics

More information

Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem

Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem Guan Wang and Matthias K. Gobbert Department of Mathematics and Statistics, University of

More information

CSC Summer School in HIGH-PERFORMANCE COMPUTING

CSC Summer School in HIGH-PERFORMANCE COMPUTING CSC Summer School in HIGH-PERFORMANCE COMPUTING June 30 July 9, 2014 Espoo, Finland Exercise assignments All material (C) 2014 by CSC IT Center for Science Ltd. and the authors. This work is licensed under

More information

Hands-on. MPI basic exercises

Hands-on. MPI basic exercises WIFI XSF-UPC: Username: xsf.convidat Password: 1nt3r3st3l4r WIFI EDUROAM: Username: roam06@bsc.es Password: Bsccns.4 MareNostrum III User Guide http://www.bsc.es/support/marenostrum3-ug.pdf Remember to

More information

LS-DYNA Installation Guide Windows and Linux

LS-DYNA Installation Guide Windows and Linux LS-DYNA Installation Guide Windows and Linux Contents Contents 1 2 1 Introduction 2 2 Linux 3 Page 2.1 Licensing 3 2.1.1 Server 3 2.1.2 Node Locked 4 2.2 Message Passing Interface (MPI) 4 2.3 LS-DYNA executable

More information

MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA

MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA MPI+OPENACC GDDR5 Memory System Memory GDDR5 Memory System Memory GDDR5 Memory System Memory GPU CPU GPU CPU GPU CPU PCI-e PCI-e PCI-e Network

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2016 Our Environment This Week Your laptops or workstations: only used for portal access Bridges

More information

Message Passing Interface (MPI)

Message Passing Interface (MPI) What the course is: An introduction to parallel systems and their implementation using MPI A presentation of all the basic functions and types you are likely to need in MPI A collection of examples What

More information

OpenMP Exercises. These exercises will introduce you to using OpenMP for parallel programming. There are four exercises:

OpenMP Exercises. These exercises will introduce you to using OpenMP for parallel programming. There are four exercises: OpenMP Exercises These exercises will introduce you to using OpenMP for parallel programming. There are four exercises: 1. OMP Hello World 2. Worksharing Loop 3. OMP Functions 4. Hand-coding vs. MKL To

More information

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SURFsara High Performance Computing and Big Data Message Passing as a Programming Paradigm Gentle Introduction to MPI Point-to-point Communication Message Passing

More information

Implementation of an integrated efficient parallel multiblock Flow solver

Implementation of an integrated efficient parallel multiblock Flow solver Implementation of an integrated efficient parallel multiblock Flow solver Thomas Bönisch, Panagiotis Adamidis and Roland Rühle adamidis@hlrs.de Outline Introduction to URANUS Why using Multiblock meshes

More information

Introduction to parallel computing with MPI

Introduction to parallel computing with MPI Introduction to parallel computing with MPI Sergiy Bubin Department of Physics Nazarbayev University Distributed Memory Environment image credit: LLNL Hybrid Memory Environment Most modern clusters and

More information

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. OpenMP and MPI Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 15, 2010 José Monteiro (DEI / IST) Parallel and Distributed Computing

More information

Implementation of the Yin-Yang grid in PENCIL

Implementation of the Yin-Yang grid in PENCIL Implementation of the Yin-Yang grid in PENCIL Matthias August 10, 2016 Motivation Models in spherical geometry with full θ φ extent θ = 0 can t be a coordinate line ghost zones for θ boundaries lie beyond

More information

Exploring XMP programming model applied to Seismic Imaging application. Laurence BEAUDE

Exploring XMP programming model applied to Seismic Imaging application. Laurence BEAUDE Exploring XMP programming model applied to Seismic Imaging application Introduction Total at a glance: 96 000 employees in more than 130 countries Upstream operations (oil and gas exploration, development

More information

Laplace Exercise Solution Review

Laplace Exercise Solution Review Laplace Exercise Solution Review John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2018 Finished? If you have finished, we can review a few principles that you have inevitably

More information

Accelerate HPC Development with Allinea Performance Tools

Accelerate HPC Development with Allinea Performance Tools Accelerate HPC Development with Allinea Performance Tools 19 April 2016 VI-HPS, LRZ Florent Lebeau / Ryan Hulguin flebeau@allinea.com / rhulguin@allinea.com Agenda 09:00 09:15 Introduction 09:15 09:45

More information

ECE 574 Cluster Computing Lecture 13

ECE 574 Cluster Computing Lecture 13 ECE 574 Cluster Computing Lecture 13 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 21 March 2017 Announcements HW#5 Finally Graded Had right idea, but often result not an *exact*

More information

Adaptive Mesh Refinement in Titanium

Adaptive Mesh Refinement in Titanium Adaptive Mesh Refinement in Titanium http://seesar.lbl.gov/anag Lawrence Berkeley National Laboratory April 7, 2005 19 th IPDPS, April 7, 2005 1 Overview Motivations: Build the infrastructure in Titanium

More information

Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm

Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm Andreas Sandberg 1 Introduction The purpose of this lab is to: apply what you have learned so

More information

Fall CSE 633 Parallel Algorithms. Cellular Automata. Nils Wisiol 11/13/12

Fall CSE 633 Parallel Algorithms. Cellular Automata. Nils Wisiol 11/13/12 Fall 2012 CSE 633 Parallel Algorithms Cellular Automata Nils Wisiol 11/13/12 Simple Automaton: Conway s Game of Life Simple Automaton: Conway s Game of Life John H. Conway Simple Automaton: Conway s Game

More information

Laplace Exercise Solution Review

Laplace Exercise Solution Review Laplace Exercise Solution Review John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2017 Finished? If you have finished, we can review a few principles that you have inevitably

More information

Non-Blocking Communications

Non-Blocking Communications Non-Blocking Communications Deadlock 1 5 2 3 4 Communicator 0 2 Completion The mode of a communication determines when its constituent operations complete. - i.e. synchronous / asynchronous The form of

More information

Message Passing Interface

Message Passing Interface Message Passing Interface DPHPC15 TA: Salvatore Di Girolamo DSM (Distributed Shared Memory) Message Passing MPI (Message Passing Interface) A message passing specification implemented

More information

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. OpenMP and MPI Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 16, 2011 CPD (DEI / IST) Parallel and Distributed Computing 18

More information

Parallel Processing. Parallel Processing. 4 Optimization Techniques WS 2018/19

Parallel Processing. Parallel Processing. 4 Optimization Techniques WS 2018/19 Parallel Processing WS 2018/19 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: September 7, 2018 Betriebssysteme / verteilte Systeme Parallel Processing

More information