Tut #2 LSDyna: Impact Analysis By C. Daley

Size: px
Start display at page:

Download "Tut #2 LSDyna: Impact Analysis By C. Daley"

Transcription

1 Engineering 9093 Ice Class Ship Structures Tut #2 LSDyna: Impact Analysis By C. Daley Overview For a general introduction of LSDyna see Tut. #1. Unlike most finite element programs LSDyna can easily model unrestrained bodies, such as a sphere flying at and striking a plate. In this lab we will model that situation. Learning Objectives The lab builds on the LSDyna features learned in Lab#1. In this lab we will model unrestrained motion (rigid body motion). We will model the plate as steel, but the sphere as a special body called a "rigid body". We will not apply a force to either of the two bodies. Instead we will apply an initial velocity to the rigid sphere. We will specify a contact model which will allow us to model the contact that will occur between the sphere and the plate. Without a contact model the sphere would just fly through the plate. The plate will be modeled as elasto-plastic and will dent when struck by the sphere. The sphere cannot dent. A few shortcuts for displaying and hiding model features will also be shown. LSDYNA Model #2 Ball Impacting Plate Step 1: describe and sketch the problem: In this second example we will model a rigid sphere impacting a steel plate. The problem is sketched below Tut#2: LSDyna Impact Analysis, page 1

2 The problem description is as follows: Geometry- Plate: 0.30 x.30 m (elasto-plastic), Sphere: 0.05m radius (rigid), Load: is the result of contact at impact Supports: the plate edge is fixed, sphere is moving. Material: Steel, with E = 200e9 Pa (2e11 N/m2), y = 3e8 Pa, Et= 1e9 Pa Units: N, m, Pa, s Step 2: estimate expected results (analytically): How can this be done? Step 3: open LS-PrePost 1) First, Open LS-PrePost which should be on the desktop, with Icon or Step 4: Directly create the FE model (nodes and element mesh) 1) Click the element and mesh button:. which opens up a new set of icons for meshing. 2) Click the shape mesher button:. which opens a dialog window to directly create a mesh. In the Entity box at the top, select: 4N_Shell and fill in the 4 corner coordinates, the number of divisions (elements) in x and y, and the Target Name, so it looks like this: 9093 Tut#2: LSDyna Impact Analysis, page 2

3 When you click on, a trial mesh is created. If it looks ok, press and. At this point you should have a window that looks like: 1) To create the sphere, click the shape mesher button:. which opens a dialog window to directly create a mesh. Select Sphere_Solid, make the Radius 0.05, the Density 6, the z position 0.06 and the Target Name Ball, as shown below. press Create, Accept and Done Tut#2: LSDyna Impact Analysis, page 3

4 The window should look like: Note: LSDyna has automatically created 2 parts, and has colored part 1 red and part 2 blue. Each part has nodes and elements but does not yet have the other properties they need. Step 5: Define the material properties 1) Click the model and part button: which will bring up a new set of icons. 2) Click the keyword manager button: which opens a dialog window to directly create keywords (Note: LS-Dyna files are called.k files because they are essentially a list of keyword commands). At this point the model option is selected, and there are 3 categories of keyword already there (element, node and part). Note that there are 1768 elements, along with the 1940 nodes and 2 parts. Select the option and the window will display all the possible keywords: 9093 Tut#2: LSDyna Impact Analysis, page 4

5 1) Click on the + to the left of MAT to open the material options: 2) Select and then click on near the top of the window. A Keyword Input Form will open to allow input of the properties for this material model: 3) click on NewID and fill in the form so that it look like this; 9093 Tut#2: LSDyna Impact Analysis, page 5

6 then press and then press. This material model describes elastoplastic behavior in steel. This is similar to the bilinear-kinematic material property that can be specified in ANSYS. 4) Now Select and then click on near the top of the window. A Keyword Input Form will open to allow input of the properties for this material model: 5) click on NewID and fill in the form so that it look like this; then press and then press. This material model is used for rigid materials, though it has the density of steel. Step 6: Define the section properties 1) In LSDyna the section properties contain information about the element parameters and the type of physics employed. In the Keyword Manager window, scroll down until you see the Section keyword. Click on the + and then select SHELL 9093 Tut#2: LSDyna Impact Analysis, page 6

7 2) Click on near the top of the window. A Keyword Input Form will open to allow input of the properties for this section model. Click on NewID and fill in the form as follows: The form shows that the plate elements will have a thickness of m (3mm), that there are 5 integration points through the thickness (NIP=5) and the shear factor is then press and then press. After pressing Accept, you will see is different). in the right hand space of the form. (Don't worry if the SECID number 3) Now we need a SOLID section for the elements in the sphere. Under the SECTION Keyword, scroll down and select SOLID 4) Click on near the top of the window. A Keyword Input Form will open to allow input of the properties for this section model. click on NewID and fill in the form as follows: The form only needs a TITLE. There is no other data to enter. then press and then press Tut#2: LSDyna Impact Analysis, page 7

8 Step 7: Apply the material and section properties to the model (to the 'Part') 1) In the Keyword Manager window, select the Part Keyword, press + and select Part: Then press. A Keyword Input Form will open. There are 2 parts defined, but the section and material information are not yet linked to the parts (there are zeros under SECID and MID);. 2) Note that the 2 parts are listed in the upper right area of the form: This means that you are editing the Plate. Press the black dot to the right of SECID, and you see the following window open; Select and press Done. When you do the SECID is updated. Click on the black dot to the right of MID and select and press Done. then press in the Keyword Input Form ( Don't press ). We now have to apply the properties to the solid elements of the sphere. 3) Select the Ball part listed in the upper right area of the form: This means that you are editing the Ball. Press the black dot to the right of SECID, and you see the following window open; Select and Press Done. When you do the SECID is updated. Click on the black dot to the right of MID and select and press Done. Now press and now press. We now have a finite element model with material and section properties. Note - You have to the new information for each part prior to moving on to the next part, else the info will be lost Tut#2: LSDyna Impact Analysis, page 8

9 Step 8: Apply boundary conditions (fix the edges of the plate) Rather than using the Keyword Manager window, we will use a special tool to create the boundary conditions (an app called Entity Creation) : The Model and Part button already selected: Click on the Create Entity button. This will bring us an Entity Creation form. Select the + Boundary and then select Spc : Now change to Create mode by selecting Make sure the Set option selected and all 6 degrees of freedom selected: Now you need to select the nodes at the left end of the model. A Sel. Nodes dialog box should be open: with Pick selected: As a quick way to select all the edges of the plate, change the view to Edge Line Mode by pressing at the bottom of the main LSDyna window. This will change the view so that you only see the edges. Now in the Sel. Nodes dialog box press the button. Now all boundary nodes are selected and the screen should look like; 9093 Tut#2: LSDyna Impact Analysis, page 9

10 Now in the Entity Creation form you can hit : You should see that a new node set has been created: Now hit to close the Entity Creation form. You should change the view back to Shaded Element Mode by hitting. Step 9: Apply a velocity to the ball. This activity can also be done with Create Entity feature. With the Create Entity form open, select Velocity under Initial Make sure the create option is selected. Enter -20 in the Vz box. Now you need to select all the nodes in the ball. The Sel.Nodes window is open. Select the ByPart option: 9093 Tut#2: LSDyna Impact Analysis, page 10

11 and click on the sphere in the main window. All the nodes in the sphere will be highlighted: Now hit in the Entity Creation window and you will see a long list of nodes. Now Click Hint : you can turn the viewing of velocity vectors and boundary conditions on or off by selecting in the Entity Creation window and All or None in the Entity Selection window Tut#2: LSDyna Impact Analysis, page 11

12 Step 10: Specify the Contact model. We will use the simplest form of contact modeling. In the Keyword Manager, select Contact and then select the AUTOMATIC_SINGLE _SURFACE option. Hit and see the form. Just select NewID and fill in the Title with "Contact Model" Now press and now press. Step 11: Specify the duration of the simulation. Return to the Keyword Manager and select Scroll down to find and then click Put 0.01 in the ENDTIM box : hit and Step 12: Specify output frequency. LSDyna will solve the problem with a very short timestep. There would likely be far too much output if you were to look at all the data for every solution timestep. Instead you can specify the frequency of the output. Return to the Keyword Manager and select the DATABASE and BINARY_D3PLOT Keywords. and then click Specify an output timestep for the pot data of seconds (0.10ms) hit Step 13: Save the.k file and In the Keyword Manager window hit to close it Under the File menu select the Save Keyword As command and save the file as Plate_Ball1.k in its own folder (to keep the output files all in one place) Note - you will have to type Plate_Ball1.k, as LSPrePost will not automatically add the.k extension Tut#2: LSDyna Impact Analysis, page 12

13 Step 14: Run the LS-Dyna Analysis 1) Click on the LS-Dyna Manager Program, which opens the window.: In the top menu, select Solver and select Start LS-Dyna Analysis. Next you see the input screen. Use the Browse button to select the Plate_Ball1.k file. By default the same folder as the.k file is in will be the folder where the output is sent. When the.k file is selected, press the RUN button. A winow will pop up showing the computation steps. When finished is should say Normal termination : 9093 Tut#2: LSDyna Impact Analysis, page 13

14 Step 15: Examine results of the LS-Dyna Analysis 1) Re-Open LS-PrePost. 2) From the File Menu, Select Open and LS-Dyna Binary Plot. 3) In the same folder as the.k file should be a file called d3plot - open it. Now you should see the screen as shown below. You can hit the Play button to annimate the bar over the.001 second of analysis. To see more data, hit the Post button, then hit the Fringe Component select Plastic Strain and, and the plot will become: Now you will see the animated stresses. You can select Static under the Fringe Range button to keep a constant range of stress during the animation Tut#2: LSDyna Impact Analysis, page 14

15 Self Study Exercises: Student: For each of these exercises, be prepared to show the instructor your results if asked. Exercise #1 Change the model initial shape. Open the d3plot file, then re-open the.k file. Animate the results until there is a dent in the plate, and stop the animation. Save a version of the.k file in a new folder (call the file Impact2.k ). Now close all and re-open the Impact2.k file in LS-PrePost. What is different? In LSDyna run the new Impact2.k file and then review the results in LSPrePost. What has happened? Ex#1 Initials of Instructor Exercise #2 Redo the analysis starting with the ball as elasto-plastic (ie not rigid).with a strength of 5 MPa. What is different? Ex#2 Initials of Instructor 9093 Tut#2: LSDyna Impact Analysis, page 15

Tutorial #3 LSDyna: Pop Can Crushing Analysis By C. Daley

Tutorial #3 LSDyna: Pop Can Crushing Analysis By C. Daley Engineering 9093 Ice Class Ship Structures Tutorial #3 LSDyna: Pop Can Crushing Analysis By C. Daley Overview For a general introduction of LSDyna see Tut #1. Unlike most finite element programs LSDyna

More information

Tutorial #1 Introduction to LSDyna: Simple Cantilever By C. Daley

Tutorial #1 Introduction to LSDyna: Simple Cantilever By C. Daley Engineering 9093 Ice Class Ship Structures Tutorial #1 Introduction to LSDyna: Simple Cantilever By C. Daley Overview LSDyna is a special type of finite element program produced by Livermore Software Technology

More information

Tutorial 1 : Create an LS-DYNA input deck for a ball impacting a plate

Tutorial 1 : Create an LS-DYNA input deck for a ball impacting a plate Tutorial 1 : Create an LS-DYNA input deck for a ball impacting a plate Case description: Ball: solid elements, rigid material Plate: shell elements, edges constrained Ball Initial Velocity: 10mm/ms Files

More information

A GUIDE TO DEVELOP FEA MODEL. 2D Model (Shell Element) In LS-DYNA

A GUIDE TO DEVELOP FEA MODEL. 2D Model (Shell Element) In LS-DYNA A GUIDE TO DEVELOP FEA MODEL 2D Model (Shell Element) In LS-DYNA By Dr. Rakhmad Arief Siregar CAED Lab. Mechanical Eng. Program Universiti Malaysia Perlis Problem 1: Preprocessing by LS-PREPOST 2.1 1.

More information

Introduction to LS-PrePost 4.0 (workshop) Quanqing Yan, Philip Ho, LSTC 2014

Introduction to LS-PrePost 4.0 (workshop) Quanqing Yan, Philip Ho, LSTC 2014 Introduction to LS-PrePost 4.0 (workshop) Quanqing Yan, Philip Ho, LSTC 04 Table of Contents SECTION WORKSHOPS Overview - General Operations Workshop Mesh Generation Workshop Pre-Processing Workshop 3-6

More information

Lab#5 Combined analysis types in ANSYS By C. Daley

Lab#5 Combined analysis types in ANSYS By C. Daley Engineering 5003 - Ship Structures I Lab#5 Combined analysis types in ANSYS By C. Daley Overview In this lab we will model a simple pinned column using shell elements. Once again, we will use SpaceClaim

More information

Tutorial 2 :Create an LS-DYNA input deck for a simple inflatable airbag

Tutorial 2 :Create an LS-DYNA input deck for a simple inflatable airbag Tutorial 2 :Create an LS-DYNA input deck for a simple inflatable airbag Case description: Airbag: shell elements, fabric material Constraints: none Files required: curves.k Step 1: Create a circle 1. Geometry

More information

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method Exercise 1 3-Point Bending Using the GUI and the Bottom-up-Method Contents Learn how to... 1 Given... 2 Questions... 2 Taking advantage of symmetries... 2 A. Preprocessor (Setting up the Model)... 3 A.1

More information

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA DYNAMIC SIMULATION USING LS-DYNA CHAPTER-10 10.1 Introduction In the past few decades, the Finite Element Method (FEM) has been developed into a key indispensable technology in the modeling and simulation

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

Introduction to LS-PrePost (workshops) Quanqing Yan, Philip Ho, LSTC 2017

Introduction to LS-PrePost (workshops) Quanqing Yan, Philip Ho, LSTC 2017 Introduction to LS-PrePost (workshops) Quanqing Yan, Philip Ho, LSTC 07 Table of Contents SECTION WORKSHOPS Overview - General Operations Workshop Mesh Generation Workshop Pre-Processing Workshop --5 Post-Processing

More information

ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels

ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels I. ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels Copyright 2001-2005, John R. Baker John R. Baker; phone: 270-534-3114; email: jbaker@engr.uky.edu This exercise

More information

Sliding Split Tube Telescope

Sliding Split Tube Telescope LESSON 15 Sliding Split Tube Telescope Objectives: Shell-to-shell contact -accounting for shell thickness. Creating boundary conditions and loads by way of rigid surfaces. Simulate large displacements,

More information

ALE and Fluid-Structure Interaction in LS-DYNA March 2004

ALE and Fluid-Structure Interaction in LS-DYNA March 2004 ALE and Fluid-Structure Interaction in LS-DYNA March 2004 Workshop Models 1. Taylor bar impact 2. One-dimensional advection test 3. Channel 4. Underwater explosion 5. Bar impacting water surface 6. Sloshing

More information

Module 1.7W: Point Loading of a 3D Cantilever Beam

Module 1.7W: Point Loading of a 3D Cantilever Beam Module 1.7W: Point Loading of a 3D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution 14 Results

More information

How to set up a 2D CFD case in LS-DYNA. Marcus Timgren DYNAmore Nordic

How to set up a 2D CFD case in LS-DYNA. Marcus Timgren DYNAmore Nordic How to set up a 2D CFD case in LS-DYNA Marcus Timgren DYNAmore Nordic Upcoming webex The following Webex about the ICFD solver are scheduled. How to set up a 2D FSI case in LS-DYNA Jan 23 How to set up

More information

CHAPTER 8 FINITE ELEMENT ANALYSIS

CHAPTER 8 FINITE ELEMENT ANALYSIS If you have any questions about this tutorial, feel free to contact Wenjin Tao (w.tao@mst.edu). CHAPTER 8 FINITE ELEMENT ANALYSIS Finite Element Analysis (FEA) is a practical application of the Finite

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

PTC Newsletter January 14th, 2002

PTC  Newsletter January 14th, 2002 PTC Email Newsletter January 14th, 2002 PTC Product Focus: Pro/MECHANICA (Structure) Tip of the Week: Creating and using Rigid Connections Upcoming Events and Training Class Schedules PTC Product Focus:

More information

ANSYS 5.6 Tutorials Lecture # 2 - Static Structural Analysis

ANSYS 5.6 Tutorials Lecture # 2 - Static Structural Analysis R50 ANSYS 5.6 Tutorials Lecture # 2 - Static Structural Analysis Example 1 Static Analysis of a Bracket 1. Problem Description: The objective of the problem is to demonstrate the basic ANSYS procedures

More information

Engineering Analysis with

Engineering Analysis with Engineering Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

Engineering Analysis with SolidWorks Simulation 2012

Engineering Analysis with SolidWorks Simulation 2012 Engineering Analysis with SolidWorks Simulation 2012 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

FEA of Composites Classical Lamination Theory Example 1

FEA of Composites Classical Lamination Theory Example 1 FEA of Composites Classical Lamination Theory Example 1 22.514 Instructor: Professor James Sherwood Author: Dimitri Soteropoulos Revised by Jacob Wardell Problem Description: A four layer [0/90] s graphite-epoxy

More information

Exercise 1: Axle Structural Static Analysis

Exercise 1: Axle Structural Static Analysis Exercise 1: Axle Structural Static Analysis The purpose of this exercise is to cover the basic functionality of the Mechanical Toolbar (MTB) in the context of performing an actual analysis. Details of

More information

Problem description. It is desired to analyze the cracked body shown using a 3D finite element mesh: Top view. 50 radius. Material properties:

Problem description. It is desired to analyze the cracked body shown using a 3D finite element mesh: Top view. 50 radius. Material properties: Problem description It is desired to analyze the cracked body shown using a 3D finite element mesh: Top view 30 50 radius 30 Material properties: 5 2 E = 2.07 10 N/mm = 0.29 All dimensions in mm Crack

More information

COMPUTATIONAL SIMULATION OF BLAST LOADING IN AN OPEN CYLINDER MODEL USING ANSYS AND LS-DYNA

COMPUTATIONAL SIMULATION OF BLAST LOADING IN AN OPEN CYLINDER MODEL USING ANSYS AND LS-DYNA COMPUTATIONAL SIMULATION OF BLAST LOADING IN AN OPEN CYLINDER MODEL USING ANSYS AND LS-DYNA Ramprashad Prabhakaran Graduate Student Department of Mechanical Engineering University of Nevada, Las Vegas

More information

Plasticity Bending Machine Tutorial (FFlex)

Plasticity Bending Machine Tutorial (FFlex) Plasticity Bending Machine Tutorial (FFlex) Copyright 2018 FunctionBay, Inc. All rights reserved. User and training documentation from FunctionBay, Inc. is subjected to the copyright laws of the Republic

More information

Problem description. Initial velocity mm/sec. Beveled end with varying thickness Thickness=0.5 Thickness=1. Tube cross-section.

Problem description. Initial velocity mm/sec. Beveled end with varying thickness Thickness=0.5 Thickness=1. Tube cross-section. Problem 52: rushing of a crash tube Problem description onsider the crushing of a crash tube by a rigid weight: Initial velocity 12000 mm/sec eveled end with varying thickness Thickness=0.5 Thickness=1

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Two Dimensional Truss

Two Dimensional Truss Two Dimensional Truss Introduction This tutorial was created using ANSYS 7.0 to solve a simple 2D Truss problem. This is the first of four introductory ANSYS tutorials. Problem Description Determine the

More information

Exercise 9a - Analysis Setup and Loading

Exercise 9a - Analysis Setup and Loading Exercise 9a - Analysis Setup and Loading This exercise will focus on setting up a model for analysis. At the end of this exercise, you will run an analysis in OptiStruct. While this exercise is focused

More information

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA 14 th International LS-DYNA Users Conference Session: Simulation Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA Hailong Teng Livermore Software Technology Corp. Abstract This paper

More information

A Quadratic Pipe Element in LS-DYNA

A Quadratic Pipe Element in LS-DYNA A Quadratic Pipe Element in LS-DYNA Tobias Olsson, Daniel Hilding DYNAmore Nordic AB 1 Bacground Analysis of long piping structures can be challenging due to the enormous number of shell/solid elements

More information

Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies

Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies Tim Varner - 2004 The Inventor User Interface Command Panel Lists the commands that are currently

More information

16 SW Simulation design resources

16 SW Simulation design resources 16 SW Simulation design resources 16.1 Introduction This is simply a restatement of the SW Simulation online design scenarios tutorial with a little more visual detail supplied on the various menu picks

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook P3*V8.0*Z*Z*Z*SM-PAT325-WBK - 1 - - 2 - Table of Contents Page 1 Composite Model of Loaded Flat Plate 2 Failure Criteria for Flat Plate 3 Making Plies

More information

Introduction And Overview ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Introduction And Overview ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction And Overview 2006 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary The ANSYS Workbench represents more than a general purpose engineering tool. It provides a highly integrated engineering

More information

Defining shell thicknesses Plotting 5 and 6 DOF nodes Plotting shell thicknesses Plotting results on the top, midsurface and bottom of the shell

Defining shell thicknesses Plotting 5 and 6 DOF nodes Plotting shell thicknesses Plotting results on the top, midsurface and bottom of the shell Problem description A shell corner is analyzed first for its static response due to a concentrated load, then for its natural frequencies and mode shapes. In the static analysis, we will demonstrate the

More information

Explicit Drop Test and Submodeling with ANSYS LS-DYNA

Explicit Drop Test and Submodeling with ANSYS LS-DYNA Explicit Drop Test and Submodeling with ANSYS LS-DYNA 1 Chris Cowan Ozen Engineering, Inc. 1210 E. Arques Ave, Suite 207 Sunnyvale, CA 94085 info@ozeninc.com Ozen Engineering Inc. We are your local ANSYS

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Consider the beam in the figure below. It is clamped on the left side and has a point force of 8kN acting

More information

Introduction To Finite Element Analysis

Introduction To Finite Element Analysis Creating a Part In this part of the tutorial we will introduce you to some basic modelling concepts. If you are already familiar with modelling in Pro Engineer you will find this section very easy. Before

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Simulation of Turbulent Flow over the Ahmed Body

Simulation of Turbulent Flow over the Ahmed Body 1 Simulation of Turbulent Flow over the Ahmed Body ME:5160 Intermediate Mechanics of Fluids CFD LAB 4 (ANSYS 18.1; Last Updated: Aug. 18, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim, Maysam Mousaviraad,

More information

Simulation of Laminar Pipe Flows

Simulation of Laminar Pipe Flows Simulation of Laminar Pipe Flows 57:020 Mechanics of Fluids and Transport Processes CFD PRELAB 1 By Timur Dogan, Michael Conger, Maysam Mousaviraad, Tao Xing and Fred Stern IIHR-Hydroscience & Engineering

More information

Problem description. The figure shows a disc braking system.

Problem description. The figure shows a disc braking system. Problem description Problem 34: Thermo-mechanical coupling analysis of a disc braking system The figure shows a disc braking system. Applied pressure Piston Brake pad Brake disc Fixed plate Initially,

More information

Computational Simulation Of AT595 Blast Container using LS-Dyna

Computational Simulation Of AT595 Blast Container using LS-Dyna Computational Simulation Of AT595 Blast Container using LS-Dyna Presented by Kiran Kumar Matta MEG 795 Department Of Mechanical Engineering University Of Nevada,Las Vegas December 2003 Contents Introduction

More information

Problem description C L. Tank walls. Water in tank

Problem description C L. Tank walls. Water in tank Problem description A cylindrical water tank is subjected to gravity loading and ground accelerations, as shown in the figures below: Tank walls Water in tank Wall thickness 0.05 C L 5 g=9.81 m/s 2 Water:

More information

Exercise 2b: Applying Entity Attributes, Masking, and Creating Groups

Exercise 2b: Applying Entity Attributes, Masking, and Creating Groups Exercise 2b: Applying Entity Attributes, Masking, and Creating Groups This exercise uses the model file, truck.key and the corresponding d3plot file as the results file. Step 1: Turning components on and

More information

Multi-Step Analysis of a Cantilever Beam

Multi-Step Analysis of a Cantilever Beam LESSON 4 Multi-Step Analysis of a Cantilever Beam LEGEND 75000. 50000. 25000. 0. -25000. -50000. -75000. 0. 3.50 7.00 10.5 14.0 17.5 21.0 Objectives: Demonstrate multi-step analysis set up in MSC/Advanced_FEA.

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Consider the classic example of a circular hole in a rectangular plate of constant thickness. The plate

More information

Neuerungen in LS-PrePost für das Pre- und Postprocessing von Composites

Neuerungen in LS-PrePost für das Pre- und Postprocessing von Composites Neuerungen in LS-PrePost für das Pre- und Postprocessing von Composites Thomas Klöppel DYNAmore GmbH Stuttgart Anders Jernberg DYNAmore Nordic AB Linköping LS-PrePost für Composites - Thomas Klöppel -

More information

Exercise Guide. Published: August MecSoft Corpotation

Exercise Guide. Published: August MecSoft Corpotation VisualCAD Exercise Guide Published: August 2018 MecSoft Corpotation Copyright 1998-2018 VisualCAD 2018 Exercise Guide by Mecsoft Corporation User Notes: Contents 2 Table of Contents About this Guide 4

More information

Autodesk Inventor 2019 and Engineering Graphics

Autodesk Inventor 2019 and Engineering Graphics Autodesk Inventor 2019 and Engineering Graphics An Integrated Approach Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the

More information

Case Study 2: Piezoelectric Circular Plate

Case Study 2: Piezoelectric Circular Plate Case Study 2: Piezoelectric Circular Plate PROBLEM - 3D Circular Plate, kp Mode, PZT4, D=50mm x h=1mm GOAL Evaluate the operation of a piezoelectric circular plate having electrodes in the top and bottom

More information

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Goals In this exercise, we will explore the strengths and weaknesses of different element types (tetrahedrons vs. hexahedrons,

More information

CHAPTER 4 CFD AND FEA ANALYSIS OF DEEP DRAWING PROCESS

CHAPTER 4 CFD AND FEA ANALYSIS OF DEEP DRAWING PROCESS 54 CHAPTER 4 CFD AND FEA ANALYSIS OF DEEP DRAWING PROCESS 4.1 INTRODUCTION In Fluid assisted deep drawing process the punch moves in the fluid chamber, the pressure is generated in the fluid. This fluid

More information

Simulation and Validation of Turbulent Pipe Flows

Simulation and Validation of Turbulent Pipe Flows Simulation and Validation of Turbulent Pipe Flows ENGR:2510 Mechanics of Fluids and Transport Processes CFD LAB 1 (ANSYS 17.1; Last Updated: Oct. 10, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim,

More information

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 Note: These instructions are based on an older version of FLUENT, and some of the instructions

More information

A rubber O-ring is pressed between two frictionless plates as shown: 12 mm mm

A rubber O-ring is pressed between two frictionless plates as shown: 12 mm mm Problem description A rubber O-ring is pressed between two frictionless plates as shown: Prescribed displacement C L 12 mm 48.65 mm A two-dimensional axisymmetric analysis is appropriate here. Data points

More information

Institute of Mechatronics and Information Systems

Institute of Mechatronics and Information Systems EXERCISE 4 Free vibrations of an electrical machine model Target Getting familiar with the fundamental issues of free vibrations analysis of a simplified model of an electrical machine, with the use of

More information

Introduction to ANSYS DesignModeler

Introduction to ANSYS DesignModeler Lecture 9 Beams and Shells 14. 5 Release Introduction to ANSYS DesignModeler 2012 ANSYS, Inc. November 20, 2012 1 Release 14.5 Beams & Shells The features in the Concept menu are used to create and modify

More information

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks Computer Life (CPL) ISSN: 1819-4818 Delivering Quality Science to the World Finite Element Analysis of Bearing Box on SolidWorks Chenling Zheng 1, a, Hang Li 1, b and Jianyong Li 1, c 1 Shandong University

More information

Finite Element Analysis Using NEi Nastran

Finite Element Analysis Using NEi Nastran Appendix B Finite Element Analysis Using NEi Nastran B.1 INTRODUCTION NEi Nastran is engineering analysis and simulation software developed by Noran Engineering, Inc. NEi Nastran is a general purpose finite

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Problem Description: FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Dimitri Soteropoulos Programs Utilized: Abaqus/CAE 6.11-2 This tutorial explains how to build

More information

BioIRC solutions. CFDVasc manual

BioIRC solutions. CFDVasc manual BioIRC solutions CFDVasc manual Main window of application is consisted from two parts: toolbar - which consist set of button for accessing variety of present functionalities image area area in which is

More information

SIMCENTER 12 ACOUSTICS Beta

SIMCENTER 12 ACOUSTICS Beta SIMCENTER 12 ACOUSTICS Beta 1/80 Contents FEM Fluid Tutorial Compressor Sound Radiation... 4 1. Import Structural Mesh... 5 2. Create an Acoustic Mesh... 7 3. Load Recipe... 20 4. Vibro-Acoustic Response

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

Workshop 15. Single Pass Rolling of a Thick Plate

Workshop 15. Single Pass Rolling of a Thick Plate Introduction Workshop 15 Single Pass Rolling of a Thick Plate Rolling is a basic manufacturing technique used to transform preformed shapes into a form suitable for further processing. The rolling process

More information

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Vol 4 No 3 NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Ass Lecturer Mahmoud A Hassan Al-Qadisiyah University College of Engineering hasaaneng@yahoocom ABSTRACT This paper provides some lighting

More information

Lab Practical - Finite Element Stress & Deformation Analysis

Lab Practical - Finite Element Stress & Deformation Analysis Lab Practical - Finite Element Stress & Deformation Analysis Part A The Basics In this example, some of the basic features of a finite element analysis will be demonstrated through the modelling of a simple

More information

ES 128: Computer Assignment #4. Due in class on Monday, 12 April 2010

ES 128: Computer Assignment #4. Due in class on Monday, 12 April 2010 ES 128: Computer Assignment #4 Due in class on Monday, 12 April 2010 Task 1. Study an elastic-plastic indentation problem. This problem combines plasticity with contact mechanics and has many rich aspects.

More information

Pro MECHANICA STRUCTURE WILDFIRE 4. ELEMENTS AND APPLICATIONS Part I. Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC

Pro MECHANICA STRUCTURE WILDFIRE 4. ELEMENTS AND APPLICATIONS Part I. Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC Pro MECHANICA STRUCTURE WILDFIRE 4 ELEMENTS AND APPLICATIONS Part I Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC PUBLICATIONS Schroff Development Corporation www.schroff.com

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

The Essence of Result Post- Processing

The Essence of Result Post- Processing APPENDIX E The Essence of Result Post- Processing Objectives: Manually create the geometry for the tension coupon using the given dimensions then apply finite elements. Manually define material and element

More information

Installation Guide. Beginners guide to structural analysis

Installation Guide. Beginners guide to structural analysis Installation Guide To install Abaqus, students at the School of Civil Engineering, Sohngaardsholmsvej 57, should log on to \\studserver, whereas the staff at the Department of Civil Engineering should

More information

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1 Instructions MAE 323 Lab Instructions 1 Problem Definition Determine how different element types perform for modeling a cylindrical pressure vessel over a wide range of r/t ratios, and how the hoop stress

More information

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Andrew Smyth, P.E. LPI, Inc., New York, NY, USA Abstract Overhead crane wire ropes utilized within manufacturing plants are subject to extensive

More information

MSC.visualNastran Desktop FEA Exercise Workbook. Pin and Bracket Assembly: Vibration Simulation in 4D

MSC.visualNastran Desktop FEA Exercise Workbook. Pin and Bracket Assembly: Vibration Simulation in 4D MSC.visualNastran Desktop FEA Exercise Workbook Pin and Bracket Assembly: Vibration Simulation in 4D WS24-2 Objectives This exercise is design to introduce vibration analysis in visualnastran Desktop.

More information

Elasto-Plastic Deformation of a Thin Plate

Elasto-Plastic Deformation of a Thin Plate WORKSHOP PROBLEM 6 Elasto-Plastic Deformation of a Thin Plate W P y L x P Objectives: Demonstrate the use of elasto-plastic material properties. Create an accurate deformation plot of the model. Create

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Michael Schraiber, Dimitri Soteropoulos, Sanjay Nainani Programs Utilized: HyperMesh Desktop v2017.2, OptiStruct,

More information

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

SETTLEMENT OF A CIRCULAR FOOTING ON SAND 1 SETTLEMENT OF A CIRCULAR FOOTING ON SAND In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar

More information

Post-Processing Modal Results of a Space Satellite

Post-Processing Modal Results of a Space Satellite LESSON 8 Post-Processing Modal Results of a Space Satellite 30000 7.61+00 5.39+00 30002 30001 mode 1 : Max 5.39+00 @Nd 977 Objectives: Post-process model results from an DB file. View and animate the eigenvector

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1 Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 2 (ANSYS 19.1; Last Updated: Aug. 7, 2018) By Timur Dogan, Michael Conger,

More information

A plate with a hole is subjected to tension as shown: z p = 25.0 N/mm 2

A plate with a hole is subjected to tension as shown: z p = 25.0 N/mm 2 Problem description A plate with a hole is subjected to tension as shown: z p = 25.0 N/mm 2 56 y All lengths in mm. Thickness =1mm E = 7.0 10 4 N/mm = 0.25 10 20 This is the same problem as problem 2.

More information

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 This document contains an Abaqus tutorial for performing a buckling analysis using the finite element program

More information

Introduction to 2 nd -order Lagrangian Element in LS-DYNA

Introduction to 2 nd -order Lagrangian Element in LS-DYNA Introduction to 2 nd -order Lagrangian Element in LS-DYNA Hailong Teng Livermore Software Technology Corporation Nov, 2017 Motivation Users are requesting higher order elements for implicit. Replace shells.

More information

Interface with FE programs

Interface with FE programs Page 1 of 47 Interdisciplinary > RFlex > Flexible body Interface Interface with FE programs RecurDyn/RFlex can import FE model from ANSYS, NX/NASTRAN, MSC/NASTRAN and I-DEAS. Figure 1 RecurDyn/RFlex Interface

More information

Chapter 4 Feature Design Tree

Chapter 4 Feature Design Tree 4-1 Chapter 4 Feature Design Tree Understand Feature Interactions Use the FeatureManager Design Tree Modify and Update Feature Dimensions Perform History-Based Part Modifications Change the Names of Created

More information

Lesson: Lightweighting of Robot Gripper Arm

Lesson: Lightweighting of Robot Gripper Arm Lesson: Lightweighting of Robot Gripper Arm This functionality is only available in Fusion 360 Ultimate. In this exercise we'll perform a Shape Optimization study to reduce the weight of a robot gripper

More information

Basic User Manual Maxwell 2D Student Version. Rick Hoadley Jan 2005

Basic User Manual Maxwell 2D Student Version. Rick Hoadley Jan 2005 1 Basic User Manual Maxwell 2D Student Version Rick Hoadley Jan 2005 2 Overview Maxwell 2D is a program that can be used to visualize magnetic fields and predict magnetic forces. Magnetic circuits are

More information

DEVELOPMENT OF A NUMERICAL MODEL FOR SIMULATIONS OF SPLIT HOPKINSON PRESSURE BAR

DEVELOPMENT OF A NUMERICAL MODEL FOR SIMULATIONS OF SPLIT HOPKINSON PRESSURE BAR DEVELOPMENT OF A NUMERICAL MODEL FOR SIMULATIONS OF SPLIT HOPKINSON PRESSURE BAR Afdhal 1, Annisa Jusuf 1, Muhammad Agus Kariem 2 and Leonardo Gunawan 1 1 Lightweight Structures Research Group, Faculty

More information

ENGINEERING TRIPOS PART IIA FINITE ELEMENT METHOD

ENGINEERING TRIPOS PART IIA FINITE ELEMENT METHOD ENGINEERING TRIPOS PART IIA LOCATION: DPO EXPERIMENT 3D7 FINITE ELEMENT METHOD Those who have performed the 3C7 experiment should bring the write-up along to this laboratory Objectives Show that the accuracy

More information

Recent developments in OASYS Primer

Recent developments in OASYS Primer Recent developments in OASYS Primer October 2004 Miles Thornton Engineering consultancy 7000 staff worldwide Arup is our founder s name, Ove Arup Oasys = Ove Arup Systems 2004 Copyright by DYNAmore GmbH

More information

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior In this tutorial you will learn how to recognize and deal with a common modeling issues involving stress concentrations

More information

Engine Gasket Model Instructions

Engine Gasket Model Instructions SOL 600 Engine Gasket Model Instructions Demonstrated:! Set up the Model Database! 3D Model Import from a MSC.Nastran BDF! Creation of Groups from Element Properties! Complete the Material Models! Import

More information

Crashbox Tutorial. In this tutorial the focus is on modeling a Formula Student Racecar Crashbox with HyperCrash 12.0

Crashbox Tutorial. In this tutorial the focus is on modeling a Formula Student Racecar Crashbox with HyperCrash 12.0 Crashbox Tutorial In this tutorial the focus is on modeling a Formula Student Racecar Crashbox with HyperCrash 12.0 (Written by Moritz Guenther, student at Altair Engineering GmbH) 1 HyperMesh* 1. Start

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Pre-Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew Opyd, Dong-Hwan

More information