Dynamic Selection of Auto-tuned Kernels to the Numerical Libraries in the DOE ACTS Collection

Size: px
Start display at page:

Download "Dynamic Selection of Auto-tuned Kernels to the Numerical Libraries in the DOE ACTS Collection"

Transcription

1 Numerical Libraries in the DOE ACTS Collection The DOE ACTS Collection SIAM Parallel Processing for Scientific Computing, Savannah, Georgia Feb 15, 2012 Tony Drummond Computational Research Division Lawrence Berkeley National Laboratory

2 The DOE ACTS Collection Project Goal: The Advanced CompuTational Software Collection (ACTS) makes reliable and efficient software tools more widely used, and more effective in solving the nation s engineering and scientific problems. Tony Drummond and Osni Marques Computational Research Division Lawrence Berkeley National Laboratory

3 What is the Role of ACTS in the HPC Software Stack? APPLICATIONS GENERAL PURPOSE TOOLS PLATFORM SUPPORT TOOLS AND UTILITIES HARDWARE

4 ACTS Plays a Critical Role in the HPC Software Stack Accelerate Application Code Development By maintaining a solid collection with some of the best numerical kernels and support tools for code development, run-time and library optimization GENERAL PURPOSE TOOLS APPLICATIONS ScaLAPACK PETSc Overture SLEPc Global Arrays TAO AztecOO PyACTS SuperLU TAU Hypre ATLAS PLATFORM SUPPORT TOOLS AND UTILITIES SUNDIALS HARDWARE

5 The DOE ACTS Collection Category Tool Functionalities Numerical AztecOO Scalable linear and non-linear solvers using iterative schemes. Hypre A family of scalable preconditioners. Code Development Run Time Support Library Development PETSc OPT++ SUNDIALS ScaLAPACK SLEPc SuperLU TAO Global Arrays Overture TAU ATLAS Scalable linear and non-linear solvers and additional support for PDE related work. Object-oriented nonlinear optimization solvers. Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-algebraic equations. High performance parallel dense linear algebra. Scalable algorithms for the solution of large sparse eigenvalue problems. Scalable direct solution of large, sparse, nonsymmetric linear systems of equations. Large-scale optimization software. Supports the development of parallel programs. Supports the development of computational fluid dynamics codes in complex geometries. Portable and scalable performance analyzes and tracing tools for C, C++, Fortran and Java programs. Automatic generation of optimized numerical dense algebra for scalar processors.

6 Numerical Functionality in the ACTS Collection Ax = b or AX = B Hx = b min x b Ax 2 min x x 2 min x b Ax 2 min x x 2 Az = λz A = UΣV T A = UΣV H Az = λbz ABz = λz BAz = λz Commonalities among ACTS Tools: General purpose user interfaces Parallel and Scalable implementations of numerical algorithms Modular design (kernel reusability) Parallelism exploited at the MPI_TASK level (newer versions under development to support other levels of concurrency)

7 Providing Sustainable and Scalable Performance for ACTS Tools in Multicore Systems TOOL DEVELOPERS Challenge is avoid code rewrite for performance APPLICATION DEVELOPERS APPLICATIONS CS Community efforts Hand-Tuned Codes Compiler opt Auto-tuning New Programming Environments

8 Providing Sustainable and Scalable Performance for ACTS Tools in Multicore Systems TOOL DEVELOPERS Development of new numerical functionalities and implementation Integration of auto-tuned kernels (BLAS, LAPACK, TORCH, etc..) Adoption of new programming models and paradigms APPLICATION DEVELOPERS Tool and Functionality Selection Choosing functional parameters Compile/Link: Integrating Optimized Kernels Runtime: Dynamic Kernel Selection Verification: Robustness and Scalability

9 Providing Sustainable and Scalable Performance for ACTS Tools in Multicore Systems Q. Can Performance Scalability be passed from libraries/tools to applications and across platforms and configurations?

10 Compiler Optimized vs Highly Tuned LU Solve (ScaLAPACK) &!" 0-#,1&+"/23& " %#" *"'!#$!*% % improvement %!" $#" $!" $$!!!" $&!!!" $#!!!"!"#$"%&'(" *"&!#$!*% *"!!#$!*% )"!!#$!!% ("!!#$!!% '"!!#$!!% *+!!!% #"!" '()"*"+%,%-" '(")"."+%,*-" '(")"$/"+*,*-" '(")"%*+*,/-" Number of MPI_TASKS (np) &"!!#$!!%!"!!#$!!% '% )% *(% &'% )*+,&-"#$".#-&/" CRAY - XTE6 Execution time improvement vs. performance scalability

11 Portable Performance is no longer straight forward NP Threads/ MPI_TASK 1(24) Doubling Problem Size and Adding 1 node )"!!#$!'% ("&!#$!'% ("!!#$!'% '"&!#$!'% '"!!#$!'% &"!!#$!!%!"!!#$!!%!"#$"%&'(")&*"+#,&"-./01"2345" *% +% ',% (*% Total MPI Tasks '""# NP Threads/ MPI_TASK 2(48) %""#!""# &""# "# ()*#'# +!,!-# ()#*#.# +!,'-# ()#*#&$# +','-# ()#*#!' +',$-# %""""#!$"""#!!"""#!!"""#!$"""# %""""#

12 Portable Performance is no longer straight forward NP Threads/ MPI_TASK 1(24) 4 6 Trice the Problem Size and 3 nodes )"!!#$!'% ("&!#$!'% ("!!#$!'%!"#$"%&'(")&*"+#,&"-./01"2345" '"&!#$!'% 8 3 '"!!#$!'% &"!!#$!!% !"!!#$!!% *% +% ',% (*% Total MPI Tasks NP Threads/ MPI_TASK 3(72) *""# )""# &""# %""#!""# (""# '""# "# %&"""#!$"""#!!"""#!$"""# %&"""# ,-#%#.(/(0# +,#-#1#.(/%0# +,#-#')#.%/%0# +,#-#(%.%/)0#!!"""#

13 Providing Sustainable and Scalable Performance for ACTS Tools in Multicore Systems Q. Can Performance Scalability be passed from libraries/tools to applications and across platforms and configurations? A. Yes, maybe with a lot of automatic work Fully operational through various parameters and levels of automation Application developers are very reluctant to change their code then preserve in as much as possible current structure of APIs

14 ACTS Parametric Research and Collaborations Library Installation Run Time job submit options Compile + link Application APPLICATIONS GENERAL PURPOSE TOOLS Use of ACTS parameters to ensure application scalability (pacts) Pre-Installation PLATFORM SUPPORT TOOLS AND UTILITIES HARDWARE

15 ACTS Parametric Research and Integration Without pacts Hand-tuning algorithmic parameters can be cumbersome Auto-tuning produces a single tuned library n=max-cores/node APPLICATIONS GENERAL PURPOSE TOOLS PLATFORM SUPPORT TOOLS AND UTILITIES With pacts Auto-tune algorithmic parameters (smart-tuning) Auto-tuning produces multiple tuned libraries using steering parameters (#cores/node)} Run-time selection of tuned executables (#cores/node) Some applications won t scale HARDWARE Sustainable & scalable Performance for all applications

16 Multi-Level Tuning to Attain Scalable Performance Optimized dense BLAS kernels Algorithmic optimization Minimize computational costs (storage + ops) Sustain numerical stability and reliability Specialized problem solving techniques Software Implementations: Specialized Data Structures Maximize Load balancing Minimize Latencies, Idle time, etc.. APPLICATIONS GENERAL PURPOSE TOOLS Auto-tuning Smart-tuning Auto-tuning

17 Tuning at Library Installation Level APPLICATIONS Software Resources: Compiler level optimizations Specialized communication libraries and other custom-made support libraries Auto-tuners GENERAL PURPOSE TOOLS PLATFORM SUPPORT TOOLS AND UTILITIES HARDWARE ACTS PARAMETERS Performance Tuning Parameters (PT-pACTS) and Software Dependencies (SD-pACTS): arithmetic and arithmetic precision automatic threading compiler communication libraries and paradigms software requirements

18 Parametrize Optimized Installation of Libraries+Apps Software Resources: Auto-tuners Performance Monitors Functional Performance Parameter Derivation (FP-pACTS) APPLICATIONS GENERAL PURPOSE TOOLS PLATFORM SUPPORT TOOLS AND UTILITIES HARDWARE ACTS PARAMETERS PT-pACTS, SD-pACTS NUMA Aware, Thread, cache, TLB and local store blocking, padding, register and format selection FP-pACTS Output of performance monitoring Optimized library and kernels labeling

19 Runtime Dynamic Selection of Kernels/Libraries APPLICATIONS GENERAL PURPOSE TOOLS Software Resources: Runtime scripts (e.g., job submission scripts) Runtime Parameters impacting application performance (RT-pACTS) Functional Performance Parameter Derivation (FP-pACTS) PLATFORM SUPPORT TOOLS AND UTILITIES HARDWARE ACTS PARAMETERS Smart-tuning tools Choice of ACTS tool(s) and functionality Choice of calling parameters (RT-pACTS) PT-pACTS, SD-pACTS, FP-pACTS and RT-pACTS algorithmic (functional calls) application numerical requirements problem size resource utilization

20 Simple Example of ScaLAPACK LU Library Installation Time SD-pACTS PDGETRF and PDGETRS implementations BLAS DGEMM, DTRSM implementations PT-pACTS Number of cores/node Global Local LAPACK ScaLAPACK PBLAS BLACS OUTPUT: Tuned kernels PBLAS_DEFAULT BLACS_DEFAULT PBLAS_A01V1 BLACS_A01V1 PBLAS_A01V2 BLACS_A01V2 PBLAS_A01V3 BLACS_A01V3 : : PBLAS_A01Vn BLACS_A01Vn BLAS platform specific MPI/PVM/...

21 Simple Example of ScaLAPACK LU SD-pACTS PDGETRF and PDGETRS implementations BLAS DGEMM, DTRSM implementations Application Code Link Time FP-pACTS MPI_TASKS/node Blocking factor APPLICATIONS GENERAL PURPOSE TOOLS PLATFORM SUPPORT TOOLS AND UTILITIES HARDWARE kernel Selector OUTPUT: Tuned kernels PBLAS_DEFAULT PBLAS_A01V1 PBLAS_A01V2 PBLAS_A01V3 : PBLAS_A01Vn BLACS_DEFAULT BLACS_A01V1 BLACS_A01V2 BLACS_A01V3 : BLACS_A01Vn

22 Example of ScaLAPACK LU!"#$"%&'(")&*"+#,&"-./01"2345" )"!!#$!'% ("&!#$!'% ("!!#$!'% '"&!#$!'% '"!!#$!'% &"!!#$!!%!"!!#$!!% *% +% ',% (*% Total MPI Tasks Best in Node Performance SD-pACTS PDGETRF and PDGETRS implementations BLAS Implementation ACML FP-pACTS Matrix 2D Blocking Process Grid RT-pACTS 16x16 Number of cores and Number of nodes Problem size Matrix Blocking Process Grid % of Peak Total MPI Tasks Using RT-pACTS Without RT-pACTS

23 !"#$"%&'(")&*"+#,&"-./01"2345" Example of ScaLAPACK LU )"!!#$!'% ("&!#$!'% ("!!#$!'% '"&!#$!'% '"!!#$!'% &"!!#$!!%!"!!#$!!% *% +% ',% (*% Total MPI Tasks Best in Node Performance SD-pACTS PDGETRF and PDGETRS implementations BLAS Implementation optimized kernels 2-cores FP-pACTS Matrix 2D Blocking Process Grid RT-pACTS Number of cores and Number of nodes Problem size Matrix 2D Blocking NB=8 Process Grid % of Peak MPI_TASKS/node Using RT-pACTS Total MPI Tasks Without RT-pACTS

24 !"#$"%&'(")&*"+#,&"-./01"2345" Example of ScaLAPACK LU )"!!#$!'% ("&!#$!'% ("!!#$!'% '"&!#$!'% '"!!#$!'% &"!!#$!!%!"!!#$!!% *% +% ',% (*% Total MPI Tasks Best in Node Performance SD-pACTS PDGETRF and PDGETRS implementations BLAS Implementation optimized kernels 16-cores FP-pACTS Matrix 2D Blocking Process Grid RT-pACTS Number of cores and Number of nodes 16 MPI_TASKS/node Problem size Matrix 2D Blocking NB=8 Process Grid % of Peak Using RT-pACTS Total MPI Tasks Without RT-pACTS

25 Concluding Remarks HPC centers vs. Installation in your laptop On going-work in parametric research TORCH Kernels Parameter derivation and selection S. Petiton and C. Calvin Current tests used older version of OSKI, hand-tuned kernels and acml (blas) Enlarge the set of auto-tuners Incorporate new ACTS tool developments

Linear Algebra libraries in Debian. DebConf 10 New York 05/08/2010 Sylvestre

Linear Algebra libraries in Debian. DebConf 10 New York 05/08/2010 Sylvestre Linear Algebra libraries in Debian Who I am? Core developer of Scilab (daily job) Debian Developer Involved in Debian mainly in Science and Java aspects sylvestre.ledru@scilab.org / sylvestre@debian.org

More information

High-Performance Libraries and Tools. HPC Fall 2012 Prof. Robert van Engelen

High-Performance Libraries and Tools. HPC Fall 2012 Prof. Robert van Engelen High-Performance Libraries and Tools HPC Fall 2012 Prof. Robert van Engelen Overview Dense matrix BLAS (serial) ATLAS (serial/threaded) LAPACK (serial) Vendor-tuned LAPACK (shared memory parallel) ScaLAPACK/PLAPACK

More information

Mathematical Libraries and Application Software on JUROPA, JUGENE, and JUQUEEN. JSC Training Course

Mathematical Libraries and Application Software on JUROPA, JUGENE, and JUQUEEN. JSC Training Course Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries and Application Software on JUROPA, JUGENE, and JUQUEEN JSC Training Course May 22, 2012 Outline General Informations Sequential Libraries Parallel

More information

Mathematical Libraries and Application Software on JUQUEEN and JURECA

Mathematical Libraries and Application Software on JUQUEEN and JURECA Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries and Application Software on JUQUEEN and JURECA JSC Training Course May 2017 I.Gutheil Outline General Informations Sequential Libraries Parallel

More information

Scientific Computing. Some slides from James Lambers, Stanford

Scientific Computing. Some slides from James Lambers, Stanford Scientific Computing Some slides from James Lambers, Stanford Dense Linear Algebra Scaling and sums Transpose Rank-one updates Rotations Matrix vector products Matrix Matrix products BLAS Designing Numerical

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

Mathematical Libraries and Application Software on JUQUEEN and JURECA

Mathematical Libraries and Application Software on JUQUEEN and JURECA Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries and Application Software on JUQUEEN and JURECA JSC Training Course November 2015 I.Gutheil Outline General Informations Sequential Libraries Parallel

More information

Introduction to Parallel Programming & Cluster Computing

Introduction to Parallel Programming & Cluster Computing Introduction to Parallel Programming & Cluster Computing Scientific Libraries & I/O Libraries Joshua Alexander, U Oklahoma Ivan Babic, Earlham College Michial Green, Contra Costa College Mobeen Ludin,

More information

Some notes on efficient computing and high performance computing environments

Some notes on efficient computing and high performance computing environments Some notes on efficient computing and high performance computing environments Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public

More information

Sparse Direct Solvers for Extreme-Scale Computing

Sparse Direct Solvers for Extreme-Scale Computing Sparse Direct Solvers for Extreme-Scale Computing Iain Duff Joint work with Florent Lopez and Jonathan Hogg STFC Rutherford Appleton Laboratory SIAM Conference on Computational Science and Engineering

More information

Self Adapting Numerical Software (SANS-Effort)

Self Adapting Numerical Software (SANS-Effort) Self Adapting Numerical Software (SANS-Effort) Jack Dongarra Innovative Computing Laboratory University of Tennessee and Oak Ridge National Laboratory 1 Work on Self Adapting Software 1. Lapack For Clusters

More information

Achieve Better Performance with PEAK on XSEDE Resources

Achieve Better Performance with PEAK on XSEDE Resources Achieve Better Performance with PEAK on XSEDE Resources Haihang You, Bilel Hadri, Shirley Moore XSEDE 12 July 18 th 2012 Motivations FACTS ALTD ( Automatic Tracking Library Database ) ref Fahey, Jones,

More information

Evaluation of sparse LU factorization and triangular solution on multicore architectures. X. Sherry Li

Evaluation of sparse LU factorization and triangular solution on multicore architectures. X. Sherry Li Evaluation of sparse LU factorization and triangular solution on multicore architectures X. Sherry Li Lawrence Berkeley National Laboratory ParLab, April 29, 28 Acknowledgement: John Shalf, LBNL Rich Vuduc,

More information

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 Challenges What is Algebraic Multi-Grid (AMG)? AGENDA Why use AMG? When to use AMG? NVIDIA AmgX Results 2

More information

In 1986, I had degrees in math and engineering and found I wanted to compute things. What I ve mostly found is that:

In 1986, I had degrees in math and engineering and found I wanted to compute things. What I ve mostly found is that: Parallel Computing and Data Locality Gary Howell In 1986, I had degrees in math and engineering and found I wanted to compute things. What I ve mostly found is that: Real estate and efficient computation

More information

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Stan Tomov Innovative Computing Laboratory University of Tennessee, Knoxville OLCF Seminar Series, ORNL June 16, 2010

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing W. P. Petersen Seminar for Applied Mathematics Department of Mathematics, ETHZ, Zurich wpp@math. ethz.ch P. Arbenz Institute for Scientific Computing Department Informatik,

More information

Cray Scientific Libraries: Overview and Performance. Cray XE6 Performance Workshop University of Reading Nov 2012

Cray Scientific Libraries: Overview and Performance. Cray XE6 Performance Workshop University of Reading Nov 2012 Cray Scientific Libraries: Overview and Performance Cray XE6 Performance Workshop University of Reading 20-22 Nov 2012 Contents LibSci overview and usage BFRAME / CrayBLAS LAPACK ScaLAPACK FFTW / CRAFFT

More information

Cray Scientific Libraries. Overview

Cray Scientific Libraries. Overview Cray Scientific Libraries Overview What are libraries for? Building blocks for writing scientific applications Historically allowed the first forms of code re-use Later became ways of running optimized

More information

Center for Scalable Application Development Software (CScADS): Automatic Performance Tuning Workshop

Center for Scalable Application Development Software (CScADS): Automatic Performance Tuning Workshop Center for Scalable Application Development Software (CScADS): Automatic Performance Tuning Workshop http://cscads.rice.edu/ Discussion and Feedback CScADS Autotuning 07 Top Priority Questions for Discussion

More information

Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development

Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development M. Serdar Celebi

More information

Faster Code for Free: Linear Algebra Libraries. Advanced Research Compu;ng 22 Feb 2017

Faster Code for Free: Linear Algebra Libraries. Advanced Research Compu;ng 22 Feb 2017 Faster Code for Free: Linear Algebra Libraries Advanced Research Compu;ng 22 Feb 2017 Outline Introduc;on Implementa;ons Using them Use on ARC systems Hands on session Conclusions Introduc;on 3 BLAS Level

More information

SciDAC CScADS Summer Workshop on Libraries and Algorithms for Petascale Applications

SciDAC CScADS Summer Workshop on Libraries and Algorithms for Petascale Applications Parallel Tiled Algorithms for Multicore Architectures Alfredo Buttari, Jack Dongarra, Jakub Kurzak and Julien Langou SciDAC CScADS Summer Workshop on Libraries and Algorithms for Petascale Applications

More information

Adrian Tate XK6 / openacc workshop Manno, Mar

Adrian Tate XK6 / openacc workshop Manno, Mar Adrian Tate XK6 / openacc workshop Manno, Mar6-7 2012 1 Overview & Philosophy Two modes of usage Contents Present contents Upcoming releases Optimization of libsci_acc Autotuning Adaptation Asynchronous

More information

Mathematical libraries at the CHPC

Mathematical libraries at the CHPC Presentation Mathematical libraries at the CHPC Martin Cuma Center for High Performance Computing University of Utah mcuma@chpc.utah.edu October 19, 2006 http://www.chpc.utah.edu Overview What and what

More information

Intel Performance Libraries

Intel Performance Libraries Intel Performance Libraries Powerful Mathematical Library Intel Math Kernel Library (Intel MKL) Energy Science & Research Engineering Design Financial Analytics Signal Processing Digital Content Creation

More information

Intel Math Kernel Library 10.3

Intel Math Kernel Library 10.3 Intel Math Kernel Library 10.3 Product Brief Intel Math Kernel Library 10.3 The Flagship High Performance Computing Math Library for Windows*, Linux*, and Mac OS* X Intel Math Kernel Library (Intel MKL)

More information

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1 LAPACK Linear Algebra PACKage 1 Janice Giudice David Knezevic 1 Motivating Question Recalling from last week... Level 1 BLAS: vectors ops Level 2 BLAS: matrix-vectors ops 2 2 O( n ) flops on O( n ) data

More information

Algorithm and Library Software Design Challenges for Tera, Peta, and Future Exascale Computing

Algorithm and Library Software Design Challenges for Tera, Peta, and Future Exascale Computing Algorithm and Library Software Design Challenges for Tera, Peta, and Future Exascale Computing Bo Kågström Department of Computing Science and High Performance Computing Center North (HPC2N) Umeå University,

More information

Dense matrix algebra and libraries (and dealing with Fortran)

Dense matrix algebra and libraries (and dealing with Fortran) Dense matrix algebra and libraries (and dealing with Fortran) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealing with Fortran)

More information

Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy

Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems) Julie Langou Piotr Luszczek Alfredo Buttari Julien Langou

More information

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca Distributed Dense Linear Algebra on Heterogeneous Architectures George Bosilca bosilca@eecs.utk.edu Centraro, Italy June 2010 Factors that Necessitate to Redesign of Our Software» Steepness of the ascent

More information

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 Agenda Introduction to AmgX Current Capabilities Scaling V2.0 Roadmap for the future 2 AmgX Fast, scalable linear solvers, emphasis on iterative

More information

A Few Numerical Libraries for HPC

A Few Numerical Libraries for HPC A Few Numerical Libraries for HPC CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) A Few Numerical Libraries for HPC Spring 2016 1 / 37 Outline 1 HPC == numerical linear

More information

Workshop on High Performance Computing (HPC08) School of Physics, IPM February 16-21, 2008 HPC tools: an overview

Workshop on High Performance Computing (HPC08) School of Physics, IPM February 16-21, 2008 HPC tools: an overview Workshop on High Performance Computing (HPC08) School of Physics, IPM February 16-21, 2008 HPC tools: an overview Stefano Cozzini CNR/INFM Democritos and SISSA/eLab cozzini@democritos.it Agenda Tools for

More information

Anna Morajko.

Anna Morajko. Performance analysis and tuning of parallel/distributed applications Anna Morajko Anna.Morajko@uab.es 26 05 2008 Introduction Main research projects Develop techniques and tools for application performance

More information

Automatic Tuning of Sparse Matrix Kernels

Automatic Tuning of Sparse Matrix Kernels Automatic Tuning of Sparse Matrix Kernels Kathy Yelick U.C. Berkeley and Lawrence Berkeley National Laboratory Richard Vuduc, Lawrence Livermore National Laboratory James Demmel, U.C. Berkeley Berkeley

More information

fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner

fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner Thomas Huckle Matous Sedlacek 2011 08 01 Technische Universität München Research Unit Computer Science V Scientific Computing in Computer

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

INTERNATIONAL ADVANCED RESEARCH WORKSHOP ON HIGH PERFORMANCE COMPUTING AND GRIDS Cetraro (Italy), July 3-6, 2006

INTERNATIONAL ADVANCED RESEARCH WORKSHOP ON HIGH PERFORMANCE COMPUTING AND GRIDS Cetraro (Italy), July 3-6, 2006 INTERNATIONAL ADVANCED RESEARCH WORKSHOP ON HIGH PERFORMANCE COMPUTING AND GRIDS Cetraro (Italy), July 3-6, 2006 The Challenges of Multicore and Specialized Accelerators Jack Dongarra University of Tennessee

More information

The Cray Programming Environment. An Introduction

The Cray Programming Environment. An Introduction The Cray Programming Environment An Introduction Vision Cray systems are designed to be High Productivity as well as High Performance Computers The Cray Programming Environment (PE) provides a simple consistent

More information

fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner

fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner Thomas Huckle Matous Sedlacek 2011 09 10 Technische Universität München Research Unit Computer Science V Scientific Computing in Computer

More information

Parallelism V. HPC Profiling. John Cavazos. Dept of Computer & Information Sciences University of Delaware

Parallelism V. HPC Profiling. John Cavazos. Dept of Computer & Information Sciences University of Delaware Parallelism V HPC Profiling John Cavazos Dept of Computer & Information Sciences University of Delaware Lecture Overview Performance Counters Profiling PAPI TAU HPCToolkit PerfExpert Performance Counters

More information

Intel Math Kernel Library

Intel Math Kernel Library Intel Math Kernel Library Release 7.0 March 2005 Intel MKL Purpose Performance, performance, performance! Intel s scientific and engineering floating point math library Initially only basic linear algebra

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville COSC 594 Lecture Notes March 22, 2017 1/20 Outline Introduction - Hardware

More information

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman)

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) Parallel Programming with Message Passing and Directives 2 MPI + OpenMP Some applications can

More information

CHAO YANG. Early Experience on Optimizations of Application Codes on the Sunway TaihuLight Supercomputer

CHAO YANG. Early Experience on Optimizations of Application Codes on the Sunway TaihuLight Supercomputer CHAO YANG Dr. Chao Yang is a full professor at the Laboratory of Parallel Software and Computational Sciences, Institute of Software, Chinese Academy Sciences. His research interests include numerical

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

Automatically Tuned Linear Algebra Software (ATLAS) R. Clint Whaley Innovative Computing Laboratory University of Tennessee.

Automatically Tuned Linear Algebra Software (ATLAS) R. Clint Whaley Innovative Computing Laboratory University of Tennessee. Automatically Tuned Linear Algebra Software (ATLAS) R. Clint Whaley Innovative Computing Laboratory University of Tennessee Outline Pre-intro: BLAS Motivation What is ATLAS Present release How ATLAS works

More information

Cray RS Programming Environment

Cray RS Programming Environment Cray RS Programming Environment Gail Alverson Cray Inc. Cray Proprietary Red Storm Red Storm is a supercomputer system leveraging over 10,000 AMD Opteron processors connected by an innovative high speed,

More information

A Standard for Batching BLAS Operations

A Standard for Batching BLAS Operations A Standard for Batching BLAS Operations Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 5/8/16 1 API for Batching BLAS Operations We are proposing, as a community

More information

MPI Related Software

MPI Related Software 1 MPI Related Software Profiling Libraries and Tools Visualizing Program Behavior Timing Performance Measurement and Tuning High Level Libraries Profiling Libraries MPI provides mechanism to intercept

More information

PETSc Satish Balay, Kris Buschelman, Bill Gropp, Dinesh Kaushik, Lois McInnes, Barry Smith

PETSc   Satish Balay, Kris Buschelman, Bill Gropp, Dinesh Kaushik, Lois McInnes, Barry Smith PETSc http://www.mcs.anl.gov/petsc Satish Balay, Kris Buschelman, Bill Gropp, Dinesh Kaushik, Lois McInnes, Barry Smith PDE Application Codes PETSc PDE Application Codes! ODE Integrators! Nonlinear Solvers,!

More information

Epetra Performance Optimization Guide

Epetra Performance Optimization Guide SAND2005-1668 Unlimited elease Printed March 2005 Updated for Trilinos 9.0 February 2009 Epetra Performance Optimization Guide Michael A. Heroux Scalable Algorithms Department Sandia National Laboratories

More information

How to get Access to Shaheen2? Bilel Hadri Computational Scientist KAUST Supercomputing Core Lab

How to get Access to Shaheen2? Bilel Hadri Computational Scientist KAUST Supercomputing Core Lab How to get Access to Shaheen2? Bilel Hadri Computational Scientist KAUST Supercomputing Core Lab Live Survey Please login with your laptop/mobile h#p://'ny.cc/kslhpc And type the code VF9SKGQ6 http://hpc.kaust.edu.sa

More information

NEW ADVANCES IN GPU LINEAR ALGEBRA

NEW ADVANCES IN GPU LINEAR ALGEBRA GTC 2012: NEW ADVANCES IN GPU LINEAR ALGEBRA Kyle Spagnoli EM Photonics 5/16/2012 QUICK ABOUT US» HPC/GPU Consulting Firm» Specializations in:» Electromagnetics» Image Processing» Fluid Dynamics» Linear

More information

Oracle Developer Studio 12.6

Oracle Developer Studio 12.6 Oracle Developer Studio 12.6 Oracle Developer Studio is the #1 development environment for building C, C++, Fortran and Java applications for Oracle Solaris and Linux operating systems running on premises

More information

How HPC Hardware and Software are Evolving Towards Exascale

How HPC Hardware and Software are Evolving Towards Exascale How HPC Hardware and Software are Evolving Towards Exascale Kathy Yelick Associate Laboratory Director and NERSC Director Lawrence Berkeley National Laboratory EECS Professor, UC Berkeley NERSC Overview

More information

Advanced School in High Performance and GRID Computing November Mathematical Libraries. Part I

Advanced School in High Performance and GRID Computing November Mathematical Libraries. Part I 1967-10 Advanced School in High Performance and GRID Computing 3-14 November 2008 Mathematical Libraries. Part I KOHLMEYER Axel University of Pennsylvania Department of Chemistry 231 South 34th Street

More information

Libraries for Scientific Computing: an overview and introduction to HSL

Libraries for Scientific Computing: an overview and introduction to HSL Libraries for Scientific Computing: an overview and introduction to HSL Mario Arioli Jonathan Hogg STFC Rutherford Appleton Laboratory 2 / 41 Overview of talk Brief introduction to who we are An overview

More information

Using Java for Scientific Computing. Mark Bul EPCC, University of Edinburgh

Using Java for Scientific Computing. Mark Bul EPCC, University of Edinburgh Using Java for Scientific Computing Mark Bul EPCC, University of Edinburgh markb@epcc.ed.ac.uk Java and Scientific Computing? Benefits of Java for Scientific Computing Portability Network centricity Software

More information

Parallel Programming & Cluster Computing

Parallel Programming & Cluster Computing Parallel Programming & Cluster Computing Grab Bag: Scientific Libraries, I/O Libraries, Visualization Henry Neeman, University of Oklahoma Charlie Peck, Earlham College Andrew Fitz Gibbon, Earlham College

More information

HPC Numerical Libraries. Nicola Spallanzani SuperComputing Applications and Innovation Department

HPC Numerical Libraries. Nicola Spallanzani SuperComputing Applications and Innovation Department HPC Numerical Libraries Nicola Spallanzani n.spallanzani@cineca.it SuperComputing Applications and Innovation Department Algorithms and Libraries Many numerical algorithms are well known and largely available.

More information

Brief notes on setting up semi-high performance computing environments. July 25, 2014

Brief notes on setting up semi-high performance computing environments. July 25, 2014 Brief notes on setting up semi-high performance computing environments July 25, 2014 1 We have two different computing environments for fitting demanding models to large space and/or time data sets. 1

More information

C6000 Compiler Roadmap

C6000 Compiler Roadmap C6000 Compiler Roadmap CGT v7.4 CGT v7.3 CGT v7. CGT v8.0 CGT C6x v8. CGT Longer Term In Development Production Early Adopter Future CGT v7.2 reactive Current 3H2 4H 4H2 H H2 Future CGT C6x v7.3 Control

More information

HIGH PERFORMANCE NUMERICAL LINEAR ALGEBRA. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

HIGH PERFORMANCE NUMERICAL LINEAR ALGEBRA. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 HIGH PERFORMANCE NUMERICAL LINEAR ALGEBRA Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 BLAS BLAS 1, 2, 3 Performance GEMM Optimized BLAS Parallel

More information

COMPUTATIONAL LINEAR ALGEBRA

COMPUTATIONAL LINEAR ALGEBRA COMPUTATIONAL LINEAR ALGEBRA Matrix Vector Multiplication Matrix matrix Multiplication Slides from UCSD and USB Directed Acyclic Graph Approach Jack Dongarra A new approach using Strassen`s algorithm Jim

More information

Performances and Tuning for Designing a Fast Parallel Hemodynamic Simulator. Bilel Hadri

Performances and Tuning for Designing a Fast Parallel Hemodynamic Simulator. Bilel Hadri Performances and Tuning for Designing a Fast Parallel Hemodynamic Simulator Bilel Hadri University of Tennessee Innovative Computing Laboratory Collaboration: Dr Marc Garbey, University of Houston, Department

More information

Optimization and Scalability

Optimization and Scalability Optimization and Scalability Drew Dolgert CAC 29 May 2009 Intro to Parallel Computing 5/29/2009 www.cac.cornell.edu 1 Great Little Program What happens when I run it on the cluster? How can I make it faster?

More information

An HPC Implementation of the Finite Element Method

An HPC Implementation of the Finite Element Method An HPC Implementation of the Finite Element Method John Rugis Interdisciplinary research group: David Yule Physiology James Sneyd, Shawn Means, Di Zhu Mathematics John Rugis Computer Science Project funding:

More information

Advanced Numerical Techniques for Cluster Computing

Advanced Numerical Techniques for Cluster Computing Advanced Numerical Techniques for Cluster Computing Presented by Piotr Luszczek http://icl.cs.utk.edu/iter-ref/ Presentation Outline Motivation hardware Dense matrix calculations Sparse direct solvers

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 207/8 A.J.Proença The Roofline Performance Model (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 207/8 AJProença, Advanced Architectures,

More information

Automatic Development of Linear Algebra Libraries for the Tesla Series

Automatic Development of Linear Algebra Libraries for the Tesla Series Automatic Development of Linear Algebra Libraries for the Tesla Series Enrique S. Quintana-Ortí quintana@icc.uji.es Universidad Jaime I de Castellón (Spain) Dense Linear Algebra Major problems: Source

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

Combinatorial problems in a Parallel Hybrid Linear Solver

Combinatorial problems in a Parallel Hybrid Linear Solver Combinatorial problems in a Parallel Hybrid Linear Solver Ichitaro Yamazaki and Xiaoye Li Lawrence Berkeley National Laboratory François-Henry Rouet and Bora Uçar ENSEEIHT-IRIT and LIP, ENS-Lyon SIAM workshop

More information

Altix Usage and Application Programming

Altix Usage and Application Programming Center for Information Services and High Performance Computing (ZIH) Altix Usage and Application Programming Discussion And Important Information For Users Zellescher Weg 12 Willers-Bau A113 Tel. +49 351-463

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

Parallelism paradigms

Parallelism paradigms Parallelism paradigms Intro part of course in Parallel Image Analysis Elias Rudberg elias.rudberg@it.uu.se March 23, 2011 Outline 1 Parallelization strategies 2 Shared memory 3 Distributed memory 4 Parallelization

More information

MAGMA: a New Generation

MAGMA: a New Generation 1.3 MAGMA: a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Jack Dongarra T. Dong, M. Gates, A. Haidar, S. Tomov, and I. Yamazaki University of Tennessee, Knoxville Release

More information

Solving Dense Linear Systems on Graphics Processors

Solving Dense Linear Systems on Graphics Processors Solving Dense Linear Systems on Graphics Processors Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí High Performance Computing & Architectures Group Universidad

More information

Ranger Optimization Release 0.3

Ranger Optimization Release 0.3 Ranger Optimization Release 0.3 Drew Dolgert May 20, 2011 Contents 1 Introduction i 1.1 Goals, Prerequisites, Resources...................................... i 1.2 Optimization and Scalability.......................................

More information

Performance Tools for Technical Computing

Performance Tools for Technical Computing Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University Intel Software Conference 2010 April 13th, Barcelona, Spain Agenda o Motivation and Methodology

More information

MPI Related Software. Profiling Libraries. Performance Visualization with Jumpshot

MPI Related Software. Profiling Libraries. Performance Visualization with Jumpshot 1 MPI Related Software Profiling Libraries and Tools Visualizing Program Behavior Timing Performance Measurement and Tuning High Level Libraries Performance Visualization with Jumpshot For detailed analysis

More information

Java Performance Analysis for Scientific Computing

Java Performance Analysis for Scientific Computing Java Performance Analysis for Scientific Computing Roldan Pozo Leader, Mathematical Software Group National Institute of Standards and Technology USA UKHEC: Java for High End Computing Nov. 20th, 2000

More information

Introducing Overdecomposition to Existing Applications: PlasComCM and AMPI

Introducing Overdecomposition to Existing Applications: PlasComCM and AMPI Introducing Overdecomposition to Existing Applications: PlasComCM and AMPI Sam White Parallel Programming Lab UIUC 1 Introduction How to enable Overdecomposition, Asynchrony, and Migratability in existing

More information

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science Algorithms and Architecture William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp Algorithms What is an algorithm? A set of instructions to perform a task How do we evaluate an algorithm?

More information

Early Experiences Writing Performance Portable OpenMP 4 Codes

Early Experiences Writing Performance Portable OpenMP 4 Codes Early Experiences Writing Performance Portable OpenMP 4 Codes Verónica G. Vergara Larrea Wayne Joubert M. Graham Lopez Oscar Hernandez Oak Ridge National Laboratory Problem statement APU FPGA neuromorphic

More information

BLAS. Christoph Ortner Stef Salvini

BLAS. Christoph Ortner Stef Salvini BLAS Christoph Ortner Stef Salvini The BLASics Basic Linear Algebra Subroutines Building blocks for more complex computations Very widely used Level means number of operations Level 1: vector-vector operations

More information

*Yuta SAWA and Reiji SUDA The University of Tokyo

*Yuta SAWA and Reiji SUDA The University of Tokyo Auto Tuning Method for Deciding Block Size Parameters in Dynamically Load-Balanced BLAS *Yuta SAWA and Reiji SUDA The University of Tokyo iwapt 29 October 1-2 *Now in Central Research Laboratory, Hitachi,

More information

A Software Developing Environment for Earth System Modeling. Depei Qian Beihang University CScADS Workshop, Snowbird, Utah June 27, 2012

A Software Developing Environment for Earth System Modeling. Depei Qian Beihang University CScADS Workshop, Snowbird, Utah June 27, 2012 A Software Developing Environment for Earth System Modeling Depei Qian Beihang University CScADS Workshop, Snowbird, Utah June 27, 2012 1 Outline Motivation Purpose and Significance Research Contents Technology

More information

Supercomputing and Science An Introduction to High Performance Computing

Supercomputing and Science An Introduction to High Performance Computing Supercomputing and Science An Introduction to High Performance Computing Part VII: Scientific Computing Henry Neeman, Director OU Supercomputing Center for Education & Research Outline Scientific Computing

More information

GPU Debugging Made Easy. David Lecomber CTO, Allinea Software

GPU Debugging Made Easy. David Lecomber CTO, Allinea Software GPU Debugging Made Easy David Lecomber CTO, Allinea Software david@allinea.com Allinea Software HPC development tools company Leading in HPC software tools market Wide customer base Blue-chip engineering,

More information

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008 SHARCNET Workshop on Parallel Computing Hugh Merz Laurentian University May 2008 What is Parallel Computing? A computational method that utilizes multiple processing elements to solve a problem in tandem

More information

LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems

LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems Xiangrui Meng Joint with Michael A. Saunders and Michael W. Mahoney Stanford University June 19, 2012 Meng, Saunders, Mahoney

More information

Kriging in a Parallel Environment

Kriging in a Parallel Environment Kriging in a Parallel Environment Jason Morrison (Ph.D. Candidate, School of Computer Science, Carleton University, ON, K1S 5B6, Canada; (613)-520-4333; e-mail: morrison@scs.carleton.ca) Introduction In

More information

Overcoming the Barriers to Sustained Petaflop Performance. William D. Gropp Mathematics and Computer Science

Overcoming the Barriers to Sustained Petaflop Performance. William D. Gropp Mathematics and Computer Science Overcoming the Barriers to Sustained Petaflop Performance William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp But First Are we too CPU-centric? What about I/O? What do applications

More information

Autotuning (1/2): Cache-oblivious algorithms

Autotuning (1/2): Cache-oblivious algorithms Autotuning (1/2): Cache-oblivious algorithms Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA: Parallel Numerical Algorithms [L.17] Tuesday, March 4, 2008 1 Today s sources CS 267 (Demmel

More information

Mixed MPI-OpenMP EUROBEN kernels

Mixed MPI-OpenMP EUROBEN kernels Mixed MPI-OpenMP EUROBEN kernels Filippo Spiga ( on behalf of CINECA ) PRACE Workshop New Languages & Future Technology Prototypes, March 1-2, LRZ, Germany Outline Short kernel description MPI and OpenMP

More information

Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM

Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM Alexander Monakov, amonakov@ispras.ru Institute for System Programming of Russian Academy of Sciences March 20, 2013 1 / 17 Problem Statement In OpenFOAM,

More information