RStudio for Data Management,

Size: px
Start display at page:

Download "RStudio for Data Management,"

Transcription

1 K /1/9 17:35 page 4 #4 Usng R and RStudo for Data Management, Statstcal Analyss and Graphcs Second Edton Ncholas J. Horton Department of Mathematcs and Statstcs Amherst College Massachusetts, U.S.A. Ken Klenman Department of Populaton Medcne Harvard Medcal School and Harvard Plgrm Health Care Insttute Boston, Massachusetts, U.S.A.

2 K /1/9 17:35 page v #7 Contents Lst of Tables Lst of Fgures Preface to the second edton Preface to the frst edton xv xx xx xx 1 Data nput and output Input Natve dataset Fxed format text fles Other fxed fles Comma-separated value (CSV) fles Read sheets from an Excel fle Read data from R nto SAS Read data from SAS nto R Readng datasets n other formats Readng more complex text fles Readng data wth a varable number of words n a feld Read a fle byte by byte Access data from a URL Read an XML-formatted fle Read an HTML table Manual data entry Output Dsplayng data Number of dgts to dsplay Save a natve dataset Creatng datasets n text format Creatng Excel spreadsheets Creatng fles for use by other packages Creatng HTML formatted output Creatng XML datasets and output Further resources v

3 K /1/9 17:35 page v #8 v 2 Data management Structure and metadata Access varables from a dataset Names of varables and ther types Values of varables n a dataset Label varables Add comment to a dataset or varable Derved varables and data manpulaton Add derved varable to a dataset Rename varables n a dataset Create strng varables from numerc varables Create categorcal varables from contnuous varables Recode a categorcal varable Create a categorcal varable usng logc Create numerc varables from strng varables Extract characters from strng varables Length of strng varables Concatenate strng varables Set operatons Fnd strngs wthn strng varables Fnd approxmate strngs Replace strngs wthn strng varables Splt strngs nto multple strngs Remove spaces around strng varables Convert strngs from upper to lower case Create lagged varable Formattng values of varables Perl nterface Accessng databases usng SQL Mergng, combnng, and subsettng datasets Subsettng observatons Drop or keep varables n a dataset Random sample of a dataset Observaton number Keep unque values Identfy duplcated values Convert from wde to long (tall) format Convert from long (tall) to wde format Concatenate and stack datasets Sort datasets Merge datasets Date and tme varables Create date varable Extract weekday Extract month Extract year Extract quarter Create tme varable Further resources Examples Data nput and output

4 K /1/9 17:35 page v #9 v Data dsplay Derved varables and data manpulaton Sortng and subsettng datasets Statstcal and mathematcal functons Probablty dstrbutons and random number generaton Probablty densty functon Quantles of a probablty densty functon Settng the random number seed Unform random varables Multnomal random varables Normal random varables Multvarate normal random varables Truncated multvarate normal random varables Exponental random varables Other random varables Mathematcal functons Basc functons Trgonometrc functons Specal functons Integer functons Comparsons of floatng-pont varables Complex numbers Dervatves Integraton Optmzaton problems Matrx operatons Create matrx from vector Combne vectors or matrces Matrx addton Transpose matrx Fnd the dmenson of a matrx or dataset Matrx multplcaton Fndng the nverse of a matrx Component-wse multplcaton Create a submatrx Create a dagonal matrx Create a vector of dagonal elements Create a vector from a matrx Calculate the determnant Fnd egenvalues and egenvectors Fnd the sngular value decomposton Examples Probablty dstrbutons Programmng and operatng system nterface Control flow, programmng, and data generaton Loopng Condtonal executon Sequence of values or patterns Perform an acton repeatedly over a set of varables

5 K /1/9 17:35 page v #10 v Grd of values Debuggng Error recovery Functons Interactons wth the operatng system Tmng commands Suspend executon for a tme nterval Execute a command n the operatng system Command hstory Fnd workng drectory Change workng drectory Lst and access fles Create temporary fle Redrect output Common statstcal procedures Summary statstcs Means and other summary statstcs Weghted means and other statstcs Other moments Trmmed mean Quantles Centerng, normalzng, and scalng Mean and 95% confdence nterval Proporton and 95% confdence nterval Maxmum lkelhood estmaton of parameters Bvarate statstcs Epdemologc statstcs Test characterstcs Correlaton Kappa (agreement) Contngency tables Dsplay cross-classfcaton table Dsplayng mssng value categores n a table Pearson ch-square statstc Cochran Mantel Haenszel test Cramér s V Fsher s exact test McNemar s test Tests for contnuous varables Tests for normalty Student s t-test Test for equal varances Nonparametrc tests Permutaton test Logrank test Analytc power and sample sze calculatons Further resources Examples Summary statstcs and exploratory data analyss Bvarate relatonshps

6 K /1/9 17:35 page x #11 x Contngency tables Two sample tests of contnuous varables Survval analyss: logrank test Lnear regresson and ANOVA Model fttng Lnear regresson Lnear regresson wth categorcal covarates Changng the reference category Parameterzaton of categorcal covarates Lnear regresson wth no ntercept Lnear regresson wth nteractons Lnear regresson wth bg data One-way analyss of varance Analyss of varance wth two or more factors Tests, contrasts, and lnear functons of parameters Jont null hypotheses: several parameters equal Jont null hypotheses: sum of parameters Tests of equalty of parameters Multple comparsons Lnear combnatons of parameters Model results and dagnostcs Predcted values Resduals Standardzed and Studentzed resduals Leverage Cook s dstance DFFITs Dagnostc plots Heteroscedastcty tests Model parameters and results Parameter estmates Standardzed regresson coe cents Coe cent plot Standard errors of parameter estmates Confdence nterval for parameter estmates Confdence lmts for the mean Predcton lmts R-squared Desgn and nformaton matrx Covarance matrx of parameter estmates Correlaton matrx of parameter estmates Further resources Examples Scatterplot wth smooth ft Lnear regresson wth nteracton Regresson coe cent plot Regresson dagnostcs Fttng a regresson model separately for each value of another varable Two-way ANOVA Multple comparsons

7 K /1/9 17:35 page x #12 x Contrasts Regresson generalzatons and modelng Generalzed lnear models Logstc regresson model Condtonal logstc regresson model Exact logstc regresson Ordered logstc model Generalzed logstc model Posson model Negatve bnomal model Log-lnear model Further generalzatons Zero-nflated Posson model Zero-nflated negatve bnomal model Generalzed addtve model Nonlnear least squares model Robust methods Quantle regresson model Robust regresson model Rdge regresson model Models for correlated data Lnear models wth correlated outcomes Lnear mxed models wth random ntercepts Lnear mxed models wth random slopes More complex random coe cent models Multlevel models Generalzed lnear mxed models Generalzed estmatng equatons MANOVA Tme seres model Survval analyss Proportonal hazards (Cox) regresson model Proportonal hazards (Cox) model wth fralty Nelson Aalen estmate of cumulatve hazard Testng the proportonalty of the Cox model Cox model wth tme-varyng predctors Multvarate statstcs and dscrmnant procedures Cronbach s Factor analyss Recursve parttonng Lnear dscrmnant analyss Latent class analyss Herarchcal clusterng Complex survey desgn Model selecton and assessment Compare two models Log-lkelhood Akake Informaton Crteron (AIC) Bayesan Informaton Crteron (BIC) LASSO model

8 K /1/9 17:35 page x #13 x Hosmer Lemeshow goodness of ft Goodness of ft for count models Further resources Examples Logstc regresson Posson regresson Zero-nflated Posson regresson Negatve bnomal regresson Quantle regresson Ordered logstc Generalzed logstc model Generalzed addtve model Reshapng a dataset for longtudnal regresson Lnear model for correlated data Lnear mxed (random slope) model Generalzed estmatng equatons Generalzed lnear mxed model Cox proportonal hazards model Cronbach s Factor analyss Recursve parttonng Lnear dscrmnant analyss Herarchcal clusterng A graphcal compendum Unvarate plots Barplot Stem-and-leaf plot Dotplot Hstogram Densty plot Emprcal cumulatve probablty densty plot Boxplot Voln plots Unvarate plots by groupng varable Sde-by-sde hstograms Sde-by-sde boxplots Overlad densty plots Bar chart wth error bars Bvarate plots Scatterplot Scatterplot wth multple y values Scatterplot wth bnnng Transparent overplottng scatterplot Bvarate densty plot Scatterplot wth margnal hstograms Multvarate plots Matrx of scatterplots Condtonng plot Contour plots D plots

9 K /1/9 17:35 page x #14 x 8.5 Specal-purpose plots Choropleth maps Interacton plots Plots for categorcal data Crcular plot Plot an arbtrary functon Normal quantle quantle plot Recever operatng characterstc (ROC) curve Plot confdence ntervals for the mean Plot predcton lmts from a smple lnear regresson Plot predcted lnes for each value of a varable Kaplan Meer plot Hazard functon plottng Mean d erence plots Further resources Examples Scatterplot wth multple axes Condtonng plot Scatterplot wth margnal hstograms Kaplan Meer plot ROC curve Pars plot Vsualze correlaton matrx Graphcal optons and confguraton Addng elements Arbtrary straght lne Plot symbols Add ponts to an exstng graphc Jtter ponts Regresson lne ft to ponts Smoothed lne Normal densty Margnal rug plot Ttles Footnotes Text Mathematcal symbols Arrows and shapes Add grd Legend Identfyng and locatng ponts Optons and parameters Graph sze Grd of plots per page More general page layouts Fonts Pont and text sze Box around plots Sze of margns Graphcal settngs

10 K /1/9 17:35 page x #15 x Axs range and style Axs labels, values, and tck marks Lne styles Lne wdths Colors Log scale Omt axes Savng graphs PDF Postscrpt RTF JPEG Wndows Metafle Btmap mage fle (BMP) Tagged Image Fle Format PNG Closng a graphc devce Smulaton Generatng data Generate categorcal data Generate data from a logstc regresson Generate data from a generalzed lnear mxed model Generate correlated bnary data Generate data from a Cox model Samplng from a challengng dstrbuton Smulaton applcatons Smulaton study of Student s t-test Dploma (or hat-check) problem Monty Hall problem Censored survval Further resources Specal topcs Processng by group Means by group Lnear models stratfed by each value of a groupng varable Smulaton-based power calculatons Reproducble analyss and output Advanced statstcal methods Bayesan methods Propensty scores Bootstrappng Mssng data Fnte mxture models wth concomtant varables Further resources

11 K /1/9 17:35 page xv #16 xv 12 Case studes Data management and related tasks Fndng two closest values n a vector Tabulate bnomal probabltes Calculate and plot a runnng average Create a Fbonacc sequence Read varable format fles Plottng maps Massachusetts countes, contnued Bke rde plot Choropleth maps Data scrapng Scrapng data from HTML fles Readng data wth two lnes per observaton Plottng tme seres data Readng tables from HTML URL APIs and truly random numbers Readng from a web API Text mnng Retrevng data from arxv.org Exploratory text mnng Interactve vsualzaton Vsualzaton usng the grammar of graphcs (ggvs) Shny n Markdown Creatng a standalone Shny app Manpulatng bgger datasets Constraned optmzaton: the knapsack problem A Introducton to R and RStudo 211 A.1 Installaton A.1.1 Installaton under Wndows A.1.2 Installaton under Mac OS X A.1.3 RStudo A.1.4 Other graphcal nterfaces A.2 Runnng R and sample sesson A.2.1 Replcatng examples from the book and sourcng commands A.2.2 Batch mode A.3 Learnng R A.3.1 Gettng help A.3.2 swrl A.4 Fundamental structures and objects A.4.1 Objects and vectors A.4.2 Indexng A.4.3 Operators A.4.4 Lsts A.4.5 Matrces A.4.6 Dataframes A.4.7 Attrbutes and classes A.4.8 Optons A.5 Functons A.5.1 Callng functons

12 K /1/9 17:35 page xv #17 xv A.5.2 The apply famly of functons A.5.3 Ppes and connectons between functons A.6 Add-ons: packages A.6.1 Introducton to packages A.6.2 Packages and name conflcts A.6.3 Mantanng packages A.6.4 CRAN task vews A.6.5 Installed lbrares and packages A.6.6 Packages referenced n ths book A.6.7 Datasets avalable wth R A.7 Support and bugs B The HELP study dataset 237 B.1 Background on the HELP study B.2 Roadmap to analyses of the HELP dataset B.3 Detaled descrpton of the dataset C References 243 D Indces 255 D.1 Subject ndex D.2 R ndex

book 2014/5/6 15:21 page v #3 List of figures List of tables Preface to the second edition Preface to the first edition

book 2014/5/6 15:21 page v #3 List of figures List of tables Preface to the second edition Preface to the first edition book 2014/5/6 15:21 page v #3 Contents List of figures List of tables Preface to the second edition Preface to the first edition xvii xix xxi xxiii 1 Data input and output 1 1.1 Input........................................

More information

EXST7034 Regression Techniques Geaghan Logistic regression Diagnostics Page 1

EXST7034 Regression Techniques Geaghan Logistic regression Diagnostics Page 1 Logstc regresson Dagnostcs Page 1 1 **********************************************************; 2 *** Logstc Regresson - Dsease outbreak example ***; 3 *** NKNW table 14.3 (Appendx C3) ***; 4 *** Study

More information

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp Lfe Tables (Tmes) Summary... 1 Data Input... 2 Analyss Summary... 3 Survval Functon... 5 Log Survval Functon... 6 Cumulatve Hazard Functon... 7 Percentles... 7 Group Comparsons... 8 Summary The Lfe Tables

More information

Why visualisation? IRDS: Visualization. Univariate data. Visualisations that we won t be interested in. Graphics provide little additional information

Why visualisation? IRDS: Visualization. Univariate data. Visualisations that we won t be interested in. Graphics provide little additional information Why vsualsaton? IRDS: Vsualzaton Charles Sutton Unversty of Ednburgh Goal : Have a data set that I want to understand. Ths s called exploratory data analyss. Today s lecture. Goal II: Want to dsplay data

More information

C2 Training: June 8 9, Combining effect sizes across studies. Create a set of independent effect sizes. Introduction to meta-analysis

C2 Training: June 8 9, Combining effect sizes across studies. Create a set of independent effect sizes. Introduction to meta-analysis C2 Tranng: June 8 9, 2010 Introducton to meta-analyss The Campbell Collaboraton www.campbellcollaboraton.org Combnng effect szes across studes Compute effect szes wthn each study Create a set of ndependent

More information

Lecture 4: Principal components

Lecture 4: Principal components /3/6 Lecture 4: Prncpal components 3..6 Multvarate lnear regresson MLR s optmal for the estmaton data...but poor for handlng collnear data Covarance matrx s not nvertble (large condton number) Robustness

More information

y and the total sum of

y and the total sum of Lnear regresson Testng for non-lnearty In analytcal chemstry, lnear regresson s commonly used n the constructon of calbraton functons requred for analytcal technques such as gas chromatography, atomc absorpton

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

X- Chart Using ANOM Approach

X- Chart Using ANOM Approach ISSN 1684-8403 Journal of Statstcs Volume 17, 010, pp. 3-3 Abstract X- Chart Usng ANOM Approach Gullapall Chakravarth 1 and Chaluvad Venkateswara Rao Control lmts for ndvdual measurements (X) chart are

More information

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005 Exercses (Part 4) Introducton to R UCLA/CCPR John Fox, February 2005 1. A challengng problem: Iterated weghted least squares (IWLS) s a standard method of fttng generalzed lnear models to data. As descrbed

More information

Feature Reduction and Selection

Feature Reduction and Selection Feature Reducton and Selecton Dr. Shuang LIANG School of Software Engneerng TongJ Unversty Fall, 2012 Today s Topcs Introducton Problems of Dmensonalty Feature Reducton Statstc methods Prncpal Components

More information

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap Int. Journal of Math. Analyss, Vol. 8, 4, no. 5, 7-7 HIKARI Ltd, www.m-hkar.com http://dx.do.org/.988/jma.4.494 Emprcal Dstrbutons of Parameter Estmates n Bnary Logstc Regresson Usng Bootstrap Anwar Ftranto*

More information

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics Introducton G10 NAG Fortran Lbrary Chapter Introducton G10 Smoothng n Statstcs Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Smoothng Methods... 2 2.2 Smoothng Splnes and Regresson

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervsed Learnng and Clusterng Why consder unlabeled samples?. Collectng and labelng large set of samples s costly Gettng recorded speech s free, labelng s tme consumng 2. Classfer could be desgned

More information

S1 Note. Basis functions.

S1 Note. Basis functions. S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 B-splne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type

More information

Simulation: Solving Dynamic Models ABE 5646 Week 11 Chapter 2, Spring 2010

Simulation: Solving Dynamic Models ABE 5646 Week 11 Chapter 2, Spring 2010 Smulaton: Solvng Dynamc Models ABE 5646 Week Chapter 2, Sprng 200 Week Descrpton Readng Materal Mar 5- Mar 9 Evaluatng [Crop] Models Comparng a model wth data - Graphcal, errors - Measures of agreement

More information

The BGLR (Bayesian Generalized Linear Regression) R- Package. Gustavo de los Campos, Amit Pataki & Paulino Pérez. (August- 2013)

The BGLR (Bayesian Generalized Linear Regression) R- Package. Gustavo de los Campos, Amit Pataki & Paulino Pérez. (August- 2013) Bostatstcs Department Bayesan Generalzed Lnear Regresson (BGLR) The BGLR (Bayesan Generalzed Lnear Regresson) R- Package By Gustavo de los Campos, Amt Patak & Paulno Pérez (August- 03) (contact: gdeloscampos@gmal.com

More information

Machine Learning. Topic 6: Clustering

Machine Learning. Topic 6: Clustering Machne Learnng Topc 6: lusterng lusterng Groupng data nto (hopefully useful) sets. Thngs on the left Thngs on the rght Applcatons of lusterng Hypothess Generaton lusters mght suggest natural groups. Hypothess

More information

Some Advanced SPC Tools 1. Cumulative Sum Control (Cusum) Chart For the data shown in Table 9-1, the x chart can be generated.

Some Advanced SPC Tools 1. Cumulative Sum Control (Cusum) Chart For the data shown in Table 9-1, the x chart can be generated. Some Advanced SP Tools 1. umulatve Sum ontrol (usum) hart For the data shown n Table 9-1, the x chart can be generated. However, the shft taken place at sample #21 s not apparent. 92 For ths set samples,

More information

A DATA ANALYSIS CODE FOR MCNP MESH AND STANDARD TALLIES

A DATA ANALYSIS CODE FOR MCNP MESH AND STANDARD TALLIES Supercomputng n uclear Applcatons (M&C + SA 007) Monterey, Calforna, Aprl 15-19, 007, on CD-ROM, Amercan uclear Socety, LaGrange Par, IL (007) A DATA AALYSIS CODE FOR MCP MESH AD STADARD TALLIES Kenneth

More information

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

MATHEMATICS FORM ONE SCHEME OF WORK 2004

MATHEMATICS FORM ONE SCHEME OF WORK 2004 MATHEMATICS FORM ONE SCHEME OF WORK 2004 WEEK TOPICS/SUBTOPICS LEARNING OBJECTIVES LEARNING OUTCOMES VALUES CREATIVE & CRITICAL THINKING 1 WHOLE NUMBER Students wll be able to: GENERICS 1 1.1 Concept of

More information

Synthesizer 1.0. User s Guide. A Varying Coefficient Meta. nalytic Tool. Z. Krizan Employing Microsoft Excel 2007

Synthesizer 1.0. User s Guide. A Varying Coefficient Meta. nalytic Tool. Z. Krizan Employing Microsoft Excel 2007 Syntheszer 1.0 A Varyng Coeffcent Meta Meta-Analytc nalytc Tool Employng Mcrosoft Excel 007.38.17.5 User s Gude Z. Krzan 009 Table of Contents 1. Introducton and Acknowledgments 3. Operatonal Functons

More information

8.5 Special-purpose plots

8.5 Special-purpose plots K23166 2015/1/9 17:35 page 130 #156 130 CHAPTER 8. A GRAPHICAL COMPENDIUM 8.4.3 Contour plots A contour plot shows the Cartesan plan wth smlar valued ponts lnked by lnes. The most famlar versons of such

More information

Cluster Analysis of Electrical Behavior

Cluster Analysis of Electrical Behavior Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Random Varables and Probablty Dstrbutons Some Prelmnary Informaton Scales on Measurement IE231 - Lecture Notes 5 Mar 14, 2017 Nomnal scale: These are categorcal values that has no relatonshp of order or

More information

Outlier Detection based on Robust Parameter Estimates

Outlier Detection based on Robust Parameter Estimates Outler Detecton based on Robust Parameter Estmates Nor Azlda Aleng 1, Ny Ny Nang, Norzan Mohamed 3 and Kasyp Mokhtar 4 1,3 School of Informatcs and Appled Mathematcs, Unverst Malaysa Terengganu, 1030 Kuala

More information

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1 4/14/011 Outlne Dscrmnatve classfers for mage recognton Wednesday, Aprl 13 Krsten Grauman UT-Austn Last tme: wndow-based generc obect detecton basc ppelne face detecton wth boostng as case study Today:

More information

A Semi-parametric Regression Model to Estimate Variability of NO 2

A Semi-parametric Regression Model to Estimate Variability of NO 2 Envronment and Polluton; Vol. 2, No. 1; 2013 ISSN 1927-0909 E-ISSN 1927-0917 Publshed by Canadan Center of Scence and Educaton A Sem-parametrc Regresson Model to Estmate Varablty of NO 2 Meczysław Szyszkowcz

More information

TECHNIQUE OF FORMATION HOMOGENEOUS SAMPLE SAME OBJECTS. Muradaliyev A.Z.

TECHNIQUE OF FORMATION HOMOGENEOUS SAMPLE SAME OBJECTS. Muradaliyev A.Z. TECHNIQUE OF FORMATION HOMOGENEOUS SAMPLE SAME OBJECTS Muradalyev AZ Azerbajan Scentfc-Research and Desgn-Prospectng Insttute of Energetc AZ1012, Ave HZardab-94 E-mal:aydn_murad@yahoocom Importance of

More information

ECONOMICS 452* -- Stata 11 Tutorial 6. Stata 11 Tutorial 6. TOPIC: Representing Multi-Category Categorical Variables with Dummy Variable Regressors

ECONOMICS 452* -- Stata 11 Tutorial 6. Stata 11 Tutorial 6. TOPIC: Representing Multi-Category Categorical Variables with Dummy Variable Regressors ECONOMICS * -- Stata 11 Tutoral Stata 11 Tutoral TOPIC: Representng Mult-Category Categorcal Varables wth Dummy Varable Regressors DATA: wage1_econ.dta (a Stata-format dataset) TASKS: Stata 11 Tutoral

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information

Analysis of Malaysian Wind Direction Data Using ORIANA

Analysis of Malaysian Wind Direction Data Using ORIANA Modern Appled Scence March, 29 Analyss of Malaysan Wnd Drecton Data Usng ORIANA St Fatmah Hassan (Correspondng author) Centre for Foundaton Studes n Scence Unversty of Malaya, 63 Kuala Lumpur, Malaysa

More information

Wishing you all a Total Quality New Year!

Wishing you all a Total Quality New Year! Total Qualty Management and Sx Sgma Post Graduate Program 214-15 Sesson 4 Vnay Kumar Kalakband Assstant Professor Operatons & Systems Area 1 Wshng you all a Total Qualty New Year! Hope you acheve Sx sgma

More information

Adjustment methods for differential measurement errors in multimode surveys

Adjustment methods for differential measurement errors in multimode surveys Adjustment methods for dfferental measurement errors n multmode surveys Salah Merad UK Offce for Natonal Statstcs ESSnet MM DCSS, Fnal Meetng Wesbaden, Germany, 4-5 September 2014 Outlne Introducton Stablsng

More information

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers IOSR Journal of Electroncs and Communcaton Engneerng (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue, Ver. IV (Mar - Apr. 04), PP 0-07 Content Based Image Retreval Usng -D Dscrete Wavelet wth

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Spatial Extreme Value Using Bayesian Hierarchical Model For Precipitation Return Levels Prediction

Spatial Extreme Value Using Bayesian Hierarchical Model For Precipitation Return Levels Prediction PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 6 7 MAY 06 Spatal Extreme Value Usng Bayesan Herarchcal Model For Precptaton

More information

Lecture 5: Multilayer Perceptrons

Lecture 5: Multilayer Perceptrons Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented

More information

Determining the Optimal Bandwidth Based on Multi-criterion Fusion

Determining the Optimal Bandwidth Based on Multi-criterion Fusion Proceedngs of 01 4th Internatonal Conference on Machne Learnng and Computng IPCSIT vol. 5 (01) (01) IACSIT Press, Sngapore Determnng the Optmal Bandwdth Based on Mult-crteron Fuson Ha-L Lang 1+, Xan-Mn

More information

CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION

CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION 48 CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION 3.1 INTRODUCTION The raw mcroarray data s bascally an mage wth dfferent colors ndcatng hybrdzaton (Xue

More information

Multilevel Analysis with Informative Weights

Multilevel Analysis with Informative Weights Secton on Survey Research Methods JSM 2008 Multlevel Analyss wth Informatve Weghts Frank Jenkns Westat, 650 Research Blvd., Rockvlle, MD 20850 Abstract Multlevel modelng has become common n large scale

More information

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide Lobachevsky State Unversty of Nzhn Novgorod Polyhedron Quck Start Gude Nzhn Novgorod 2016 Contents Specfcaton of Polyhedron software... 3 Theoretcal background... 4 1. Interface of Polyhedron... 6 1.1.

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

7/12/2016. GROUP ANALYSIS Martin M. Monti UCLA Psychology AGGREGATING MULTIPLE SUBJECTS VARIANCE AT THE GROUP LEVEL

7/12/2016. GROUP ANALYSIS Martin M. Monti UCLA Psychology AGGREGATING MULTIPLE SUBJECTS VARIANCE AT THE GROUP LEVEL GROUP ANALYSIS Martn M. Mont UCLA Psychology NITP AGGREGATING MULTIPLE SUBJECTS When we conduct mult-subject analyss we are tryng to understand whether an effect s sgnfcant across a group of people. Whether

More information

Data Mining: Model Evaluation

Data Mining: Model Evaluation Data Mnng: Model Evaluaton Aprl 16, 2013 1 Issues: Evaluatng Classfcaton Methods Accurac classfer accurac: predctng class label predctor accurac: guessng value of predcted attrbutes Speed tme to construct

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

Multi-Group Confirmatory Factor Analysis for Testing Measurement Invariance in Mixed Item Format Data

Multi-Group Confirmatory Factor Analysis for Testing Measurement Invariance in Mixed Item Format Data Journal of Modern Appled Statstcal Methods Copyrght 2008 JMASM, Inc. November, 2008, Vol. 7, No. 2, 471-477 1538 9472/08/$95.00 Mult-Group Confrmatory Factor Analyss for Testng Measurement Invarance n

More information

APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT

APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT 3. - 5. 5., Brno, Czech Republc, EU APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT Abstract Josef TOŠENOVSKÝ ) Lenka MONSPORTOVÁ ) Flp TOŠENOVSKÝ

More information

Three supervised learning methods on pen digits character recognition dataset

Three supervised learning methods on pen digits character recognition dataset Three supervsed learnng methods on pen dgts character recognton dataset Chrs Flezach Department of Computer Scence and Engneerng Unversty of Calforna, San Dego San Dego, CA 92093 cflezac@cs.ucsd.edu Satoru

More information

Available online at ScienceDirect. Procedia Environmental Sciences 26 (2015 )

Available online at   ScienceDirect. Procedia Environmental Sciences 26 (2015 ) Avalable onlne at www.scencedrect.com ScenceDrect Proceda Envronmental Scences 26 (2015 ) 109 114 Spatal Statstcs 2015: Emergng Patterns Calbratng a Geographcally Weghted Regresson Model wth Parameter-Specfc

More information

ECONOMICS 452* -- Stata 12 Tutorial 6. Stata 12 Tutorial 6. TOPIC: Representing Multi-Category Categorical Variables with Dummy Variable Regressors

ECONOMICS 452* -- Stata 12 Tutorial 6. Stata 12 Tutorial 6. TOPIC: Representing Multi-Category Categorical Variables with Dummy Variable Regressors ECONOMICS 45* -- Stata 1 Tutoral 6 Stata 1 Tutoral 6 TOPIC: Representng Mult-Category Categorcal Varables wth Dummy Varable Regressors DATA: wage1_econ45.dta (a Stata-format dataset) TASKS: Stata 1 Tutoral

More information

UNIVERSITY OF CALIFORNIA. Los Angeles. Development of. Statistical Online Computational Resources. and Teaching Tools

UNIVERSITY OF CALIFORNIA. Los Angeles. Development of. Statistical Online Computational Resources. and Teaching Tools UNIVERSITY OF CALIFORNIA Los Angeles Development of Statstcal Onlne Computatonal Resources and Teachng Tools A thess submtted n partal satsfacton of the requrements for the degree Master of Scence n Statstcs

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

C. Markert-Hahn, K. Schiffl, M. Strohmeier, Nonclinical Statistics Conference,

C. Markert-Hahn, K. Schiffl, M. Strohmeier, Nonclinical Statistics Conference, Roche Pharma Producton Penzberg Practcal Applcatons of Statstcal Process Control C. Markert-Hahn, K. Schffl, M. Strohmeer, Roche Dagnostcs GmbH, Penzberg Operatonal Excellence Statstcs Nonclncal Statstcs

More information

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc.

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. [Type text] [Type text] [Type text] ISSN : 97-735 Volume Issue 9 BoTechnology An Indan Journal FULL PAPER BTAIJ, (9), [333-3] Matlab mult-dmensonal model-based - 3 Chnese football assocaton super league

More information

Mixed Linear System Estimation and Identification

Mixed Linear System Estimation and Identification 48th IEEE Conference on Decson and Control, Shangha, Chna, December 2009 Mxed Lnear System Estmaton and Identfcaton A. Zymns S. Boyd D. Gornevsky Abstract We consder a mxed lnear system model, wth both

More information

Biostatistics 615/815

Biostatistics 615/815 The E-M Algorthm Bostatstcs 615/815 Lecture 17 Last Lecture: The Smplex Method General method for optmzaton Makes few assumptons about functon Crawls towards mnmum Some recommendatons Multple startng ponts

More information

TN348: Openlab Module - Colocalization

TN348: Openlab Module - Colocalization TN348: Openlab Module - Colocalzaton Topc The Colocalzaton module provdes the faclty to vsualze and quantfy colocalzaton between pars of mages. The Colocalzaton wndow contans a prevew of the two mages

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Mult-stable Percepton Necker Cube Spnnng dancer lluson, Nobuuk Kaahara Fttng and Algnment Computer Vson Szelsk 6.1 James Has Acknowledgment: Man sldes from Derek Hoem, Lana Lazebnk, and Grauman&Lebe 2008

More information

Data Foundations: Data Types and Data Preprocessing. Introduction. Data, tasks and simple visualizations. Data sets. Some key data factors?

Data Foundations: Data Types and Data Preprocessing. Introduction. Data, tasks and simple visualizations. Data sets. Some key data factors? Insttute for Vsualzaton and Percepton Research Insttute for Vsualzaton and Percepton Research Data Foundatons: Data Types and Data Preprocessng Lecture 2 - Data Foundatons September 8, 2010 Georges Grnsten,

More information

Oracle Database: SQL and PL/SQL Fundamentals Certification Course

Oracle Database: SQL and PL/SQL Fundamentals Certification Course Oracle Database: SQL and PL/SQL Fundamentals Certfcaton Course 1 Duraton: 5 Days (30 hours) What you wll learn: Ths Oracle Database: SQL and PL/SQL Fundamentals tranng delvers the fundamentals of SQL and

More information

Parameter estimation for incomplete bivariate longitudinal data in clinical trials

Parameter estimation for incomplete bivariate longitudinal data in clinical trials Parameter estmaton for ncomplete bvarate longtudnal data n clncal trals Naum M. Khutoryansky Novo Nordsk Pharmaceutcals, Inc., Prnceton, NJ ABSTRACT Bvarate models are useful when analyzng longtudnal data

More information

A Multivariate Analysis of Static Code Attributes for Defect Prediction

A Multivariate Analysis of Static Code Attributes for Defect Prediction Research Paper) A Multvarate Analyss of Statc Code Attrbutes for Defect Predcton Burak Turhan, Ayşe Bener Department of Computer Engneerng, Bogazc Unversty 3434, Bebek, Istanbul, Turkey {turhanb, bener}@boun.edu.tr

More information

A Statistical Model Selection Strategy Applied to Neural Networks

A Statistical Model Selection Strategy Applied to Neural Networks A Statstcal Model Selecton Strategy Appled to Neural Networks Joaquín Pzarro Elsa Guerrero Pedro L. Galndo joaqun.pzarro@uca.es elsa.guerrero@uca.es pedro.galndo@uca.es Dpto Lenguajes y Sstemas Informátcos

More information

Phd Program in Transportation. Transport Demand Modeling. Session 7

Phd Program in Transportation. Transport Demand Modeling. Session 7 Phd Program n Transportaton Transport Demand Modelng Lus Martínez (based on the Lessons of Anabela Rbero TDM2010) Sesson 7 Generalzed Lnear Models Phd n Transportaton / Transport Demand Modellng 1/48 Outlne

More information

Adaptive Regression in SAS/IML

Adaptive Regression in SAS/IML Adaptve Regresson n SAS/IML Davd Katz, Davd Katz Consultng, Ashland, Oregon ABSTRACT Adaptve Regresson algorthms allow the data to select the form of a model n addton to estmatng the parameters. Fredman

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

Classification / Regression Support Vector Machines

Classification / Regression Support Vector Machines Classfcaton / Regresson Support Vector Machnes Jeff Howbert Introducton to Machne Learnng Wnter 04 Topcs SVM classfers for lnearly separable classes SVM classfers for non-lnearly separable classes SVM

More information

Estimating Regression Coefficients using Weighted Bootstrap with Probability

Estimating Regression Coefficients using Weighted Bootstrap with Probability Norazan M R, Habshah Md, A H M R Imon Estmatng Regresson Coeffcents usng Weghted Bootstrap wth Probablty NORAZAN M R, HABSHAH MIDI AND A H M R IMON Faculty of Computer and Mathematcal Scences, Unversty

More information

Announcements. Supervised Learning

Announcements. Supervised Learning Announcements See Chapter 5 of Duda, Hart, and Stork. Tutoral by Burge lnked to on web page. Supervsed Learnng Classfcaton wth labeled eamples. Images vectors n hgh-d space. Supervsed Learnng Labeled eamples

More information

Unsupervised Learning

Unsupervised Learning Pattern Recognton Lecture 8 Outlne Introducton Unsupervsed Learnng Parametrc VS Non-Parametrc Approach Mxture of Denstes Maxmum-Lkelhood Estmates Clusterng Prof. Danel Yeung School of Computer Scence and

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Decson surface s a hyperplane (lne n 2D) n feature space (smlar to the Perceptron) Arguably, the most mportant recent dscovery n machne learnng In a nutshell: map the data to a predetermned

More information

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT-6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvde-and-conquer method, solves problems

More information

Radial Basis Functions

Radial Basis Functions Radal Bass Functons Mesh Reconstructon Input: pont cloud Output: water-tght manfold mesh Explct Connectvty estmaton Implct Sgned dstance functon estmaton Image from: Reconstructon and Representaton of

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms Heaps and Heapsort Reference: CLRS Chapter 6 Topcs: Heaps Heapsort Prorty queue Huo Hongwe Recap and overvew The story so far... Inserton sort runnng tme of Θ(n 2 ); sorts

More information

Introduction to Programming. Lecture 13: Container data structures. Container data structures. Topics for this lecture. A basic issue with containers

Introduction to Programming. Lecture 13: Container data structures. Container data structures. Topics for this lecture. A basic issue with containers 1 2 Introducton to Programmng Bertrand Meyer Lecture 13: Contaner data structures Last revsed 1 December 2003 Topcs for ths lecture 3 Contaner data structures 4 Contaners and genercty Contan other objects

More information

Modeling, Manipulating, and Visualizing Continuous Volumetric Data: A Novel Spline-based Approach

Modeling, Manipulating, and Visualizing Continuous Volumetric Data: A Novel Spline-based Approach Modelng, Manpulatng, and Vsualzng Contnuous Volumetrc Data: A Novel Splne-based Approach Jng Hua Center for Vsual Computng, Department of Computer Scence SUNY at Stony Brook Talk Outlne Introducton and

More information

Applying Continuous Action Reinforcement Learning Automata(CARLA) to Global Training of Hidden Markov Models

Applying Continuous Action Reinforcement Learning Automata(CARLA) to Global Training of Hidden Markov Models Applyng Contnuous Acton Renforcement Learnng Automata(CARLA to Global Tranng of Hdden Markov Models Jahanshah Kabudan, Mohammad Reza Meybod, and Mohammad Mehd Homayounpour Department of Computer Engneerng

More information

NGPM -- A NSGA-II Program in Matlab

NGPM -- A NSGA-II Program in Matlab Verson 1.4 LIN Song Aerospace Structural Dynamcs Research Laboratory College of Astronautcs, Northwestern Polytechncal Unversty, Chna Emal: lsssswc@163.com 2011-07-26 Contents Contents... 1. Introducton...

More information

CSCI 5417 Information Retrieval Systems Jim Martin!

CSCI 5417 Information Retrieval Systems Jim Martin! CSCI 5417 Informaton Retreval Systems Jm Martn! Lecture 11 9/29/2011 Today 9/29 Classfcaton Naïve Bayes classfcaton Ungram LM 1 Where we are... Bascs of ad hoc retreval Indexng Term weghtng/scorng Cosne

More information

IP Camera Configuration Software Instruction Manual

IP Camera Configuration Software Instruction Manual IP Camera 9483 - Confguraton Software Instructon Manual VBD 612-4 (10.14) Dear Customer, Wth your purchase of ths IP Camera, you have chosen a qualty product manufactured by RADEMACHER. Thank you for the

More information

Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications 14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of Bozen-Bolzano Faculty of Computer Scence Academc Year 011-01 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of

More information

Skew Angle Estimation and Correction of Hand Written, Textual and Large areas of Non-Textual Document Images: A Novel Approach

Skew Angle Estimation and Correction of Hand Written, Textual and Large areas of Non-Textual Document Images: A Novel Approach Angle Estmaton and Correcton of Hand Wrtten, Textual and Large areas of Non-Textual Document Images: A Novel Approach D.R.Ramesh Babu Pyush M Kumat Mahesh D Dhannawat PES Insttute of Technology Research

More information

Stata 12/13 Tutorial 4

Stata 12/13 Tutorial 4 Stata /3 Tutoral 4 TOPIC: Condtonal and Margnal Effects of Contnuous Explanatory Varables n Lnear Regresson Models DATA: auto.dta (a Stata-format dataset frst created n Stata /3 Tutoral ) TASKS: Stata

More information

Help for Time-Resolved Analysis TRI2 version 2.4 P Barber,

Help for Time-Resolved Analysis TRI2 version 2.4 P Barber, Help for Tme-Resolved Analyss TRI2 verson 2.4 P Barber, 22.01.10 Introducton Tme-resolved Analyss (TRA) becomes avalable under the processng menu once you have loaded and selected an mage that contans

More information

Wavefront Reconstructor

Wavefront Reconstructor A Dstrbuted Smplex B-Splne Based Wavefront Reconstructor Coen de Vsser and Mchel Verhaegen 14-12-201212 2012 Delft Unversty of Technology Contents Introducton Wavefront reconstructon usng Smplex B-Splnes

More information

Stata data file Log file (explained below) ASCII (text) file

Stata data file Log file (explained below) ASCII (text) file Usng Stata Welcome to Stata, one of the most un-user frendly programs ever created. Although later versons have some features to make t easer to use, they more than make up for t by not beng 00% compatble

More information

Hybridization of Expectation-Maximization and K-Means Algorithms for Better Clustering Performance

Hybridization of Expectation-Maximization and K-Means Algorithms for Better Clustering Performance BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 2 Sofa 2016 Prnt ISSN: 1311-9702; Onlne ISSN: 1314-4081 DOI: 10.1515/cat-2016-0017 Hybrdzaton of Expectaton-Maxmzaton

More information

Solutions to Programming Assignment Five Interpolation and Numerical Differentiation

Solutions to Programming Assignment Five Interpolation and Numerical Differentiation College of Engneerng and Coputer Scence Mechancal Engneerng Departent Mechancal Engneerng 309 Nuercal Analyss of Engneerng Systes Sprng 04 Nuber: 537 Instructor: Larry Caretto Solutons to Prograng Assgnent

More information

A PATTERN RECOGNITION APPROACH TO IMAGE SEGMENTATION

A PATTERN RECOGNITION APPROACH TO IMAGE SEGMENTATION 1 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volume 4, Number 2/2003, pp.000-000 A PATTERN RECOGNITION APPROACH TO IMAGE SEGMENTATION Tudor BARBU Insttute

More information

An Entropy-Based Approach to Integrated Information Needs Assessment

An Entropy-Based Approach to Integrated Information Needs Assessment Dstrbuton Statement A: Approved for publc release; dstrbuton s unlmted. An Entropy-Based Approach to ntegrated nformaton Needs Assessment June 8, 2004 Wllam J. Farrell Lockheed Martn Advanced Technology

More information

EXTENDED BIC CRITERION FOR MODEL SELECTION

EXTENDED BIC CRITERION FOR MODEL SELECTION IDIAP RESEARCH REPORT EXTEDED BIC CRITERIO FOR ODEL SELECTIO Itshak Lapdot Andrew orrs IDIAP-RR-0-4 Dalle olle Insttute for Perceptual Artfcal Intellgence P.O.Box 59 artgny Valas Swtzerland phone +4 7

More information

APPLICATION OF A COMPUTATIONALLY EFFICIENT GEOSTATISTICAL APPROACH TO CHARACTERIZING VARIABLY SPACED WATER-TABLE DATA

APPLICATION OF A COMPUTATIONALLY EFFICIENT GEOSTATISTICAL APPROACH TO CHARACTERIZING VARIABLY SPACED WATER-TABLE DATA RFr"W/FZD JAN 2 4 1995 OST control # 1385 John J Q U ~ M Argonne Natonal Laboratory Argonne, L 60439 Tel: 708-252-5357, Fax: 708-252-3 611 APPLCATON OF A COMPUTATONALLY EFFCENT GEOSTATSTCAL APPROACH TO

More information

Distribution Analysis

Distribution Analysis Chapter II Dstrbuton Analyss D... (Absolute and Relatve Frequences) Let X be a characterstc possessng the attrbutesa, =,,..., k. The absolute frequency of the attrbutea, =,,..., k s defned as follows:

More information

GWR 3 Software for Geographically Weighted Regression

GWR 3 Software for Geographically Weighted Regression GWR 3 Software for Geographcally Weghted Regresson Martn Charlton Stewart Fotherngham Chrs Brunsdon Spatal Analyss Research Group Department of Geography Unversty of Newcastle upon Tyne Newcastle upon

More information

Abstract. 2.0 Some Fundamental Concepts of AIC. 1.0 Introduction

Abstract. 2.0 Some Fundamental Concepts of AIC. 1.0 Introduction Model Selecton n Lnear Mxed Effects Models Usng SAS PROC MIXED Long Ngo, Ischema Research, San Francsco ; Unversty of Calforna, Berkeley, CA Rchard Brand, Unversty of Calforna, Berkeley, CA Abstract Although

More information

Using Neural Networks and Support Vector Machines in Data Mining

Using Neural Networks and Support Vector Machines in Data Mining Usng eural etworks and Support Vector Machnes n Data Mnng RICHARD A. WASIOWSKI Computer Scence Department Calforna State Unversty Domnguez Hlls Carson, CA 90747 USA Abstract: - Multvarate data analyss

More information

Information Retrieval

Information Retrieval Anmol Bhasn abhasn[at]cedar.buffalo.edu Moht Devnan mdevnan[at]cse.buffalo.edu Sprng 2005 #$ "% &'" (! Informaton Retreval )" " * + %, ##$ + *--. / "#,0, #'",,,#$ ", # " /,,#,0 1"%,2 '",, Documents are

More information