Introduction. TDM Techniques. Agenda. Point-To-Point Channels

Size: px
Start display at page:

Download "Introduction. TDM Techniques. Agenda. Point-To-Point Channels"

Transcription

1 atenkommunikation SS 2007 atenkommunikation SS 2007 Introduction TM Techniques Time ivision Multiplexing (synchronous, statistical) igital Voice Transmission, PH, SH line protocol techniques (data link procedures) were developed for communication between two devices on one physical point-to-point link bandwidth of physical link is used exclusively by the two stations in case multiple communication channels are necessary between two locations multiple physical point-to-point are needed expensive solution in order to use one physical link for multiple channels multiplexing techniques were developed TM Techniques, v45 3 genda Introduction Synchronous (eterministic) TM synchronous (Statistical) TM igital Voice Transmission PH SH Point-To-Point hannels 1 B1 1 2 B2 2 1 Location point-to-point communication channels carried on multiple physical links 2 Location B TM Techniques, v45 2 TM Techniques, v45 4 Page 03-1 Page 03-2

2 atenkommunikation SS 2007 atenkommunikation SS 2007 Multiplexing / emultiplexing multiplexer is a device which can take a number of input channels and, by interleaving them, output them as one data stream on one physical trunk line 1 2 Types of TM depending on timing behavior two methods synchronous TM timeslots have constant length (capacity) and can be used in a synchronous, periodical manner asynchronous (statistical) TM timeslots have variable length and are used on demand (depending on the statistics of channel communication) B1 1 1 P1 P2 P3 P4 T Mux Trunk Line T Mux P1 P2 P3 P4 B2 2 2 TM Techniques, v45 5 TM Techniques, v45 7 Time ivision Multiplexing (TM) time division multiplexer allocates each input channel a period of time or timeslot controls bandwidth of trunk line among input channels individual time slots are assembled into frames to form a single high-speed digital data stream available transmission capacity of the trunk is time shared between various channels at the destination demultiplexer reconstructs individual channel data streams Synchronous TM Standards TM framing on the trunk line can be vendor dependent proprietary TM products can be standard based two main architectures for standardizing synchronous TM for trunk lines PH Plesiochronous igital Hierarchy eg E1 (2Mbit/s), E3 (34Mbit/s), E4, T1 (1,544Mbit/s), T3 SH - Synchronous igital Hierarchy eg STM-1 (155Mbit/s), STM-4 (622Mbit/s), STM-16 TM Techniques, v45 6 TM Techniques, v45 8 Page 03-3 Page 03-4

3 atenkommunikation SS 2007 atenkommunikation SS 2007 genda Synchronous Time ivision Multiplexing Introduction Synchronous (eterministic) TM synchronous (Statistical) TM Voice Transmission PH SH 1 B1 1 low bit rate P1 P2 P3 P4 T sync Mux high bit rate T sync Mux P1 P2 P3 P4 2 B Flag 8 bit bit B1 - B2 8 bit bit 1-2 Flag 8 bit 1-2 constant time interval TM Techniques, v45 9 TM Techniques, v45 11 Synchronous Time ivision Multiplexing synchronous TM periodically generates a frame consisting of a constant number of timeslots each timeslot of constant length timeslots can be identified by position in the frame timeslot 0, timeslot 1, frame synchronization achieved by extra flag field every input channel is assigned a reserved timeslot eg timeslot numbers refer to port numbers of a multiplexer traffic of port P1 in timeslot 1 for 1-2 channel traffic of port P2 in timeslot 2 for B1- B2 channel Trunk Speed with Synchronous TM User 1 User B1 User 1 User 1 B B Framing B B 4 64 kbit/s + F 256 kbit/s Trunk speed = Number of slots User access rate Each user gets a constant timeslot of the trunk 64 kbit/s User 2 B 64 kbit/s User B2 64 kbit/s User 2 64 kbit/s User 2 TM Techniques, v45 10 TM Techniques, v45 12 Page 03-5 Page 03-6

4 atenkommunikation SS 2007 atenkommunikation SS 2007 Idle Timeslots with Synchronous TM User 1 User B1 User 1 User 1 Timeslot with Idle Pattern 4 64 kbit/s + F 256 kbit/s If a communication channel has nothing to transmit -> Idle timeslots -> Waste of bandwidth 64 kbit/s User 2 64 kbit/s User B2 64 kbit/s User 2 64 kbit/s User 2 isadvantages bitrate on trunk line T sum of all port bitrates (P1-P4) plus frame synchronization (flag) high bitrate is required hence expensive if no data is to be sent on a channel special idle pattern will be inserted by the multiplexer in that particular timeslot waste of bandwidth of trunk line asynchronous (statistic) time division multiplex avoids both disadvantages making use of communication statistics between devices TM Techniques, v45 13 TM Techniques, v45 15 dvantages compared to pure point-to-point physical links synchronous multiplexing adds only minimal delays time necessary to packetize and depacketize a byte transmission/propagation delay on trunk the delay for transporting a byte is constant the time between two bytes to be transported is constant hence optimal for synchronous transmission requirements like traditional digital voice any line protocol could be used between devices method is protocol-transparent to endsystems channel looks like a single physical point-to-point line genda Introduction Synchronous (eterministic) TM synchronous (Statistical) TM Voice Transmission PH SH TM Techniques, v45 14 TM Techniques, v45 16 Page 03-7 Page 03-8

5 atenkommunikation SS 2007 atenkommunikation SS 2007 synchronous Time ivision Multiplexing usually devices communicate in a statistical manner not all devices have data to transmit at the same time therefore it is sufficient to calculate necessary bitrate of the multiplexer trunk line according to the average bitrates caused by device communication if devices transmit simultaneously only one channel can occupy trunk line data must be buffered inside multiplexer until trunk is available again statistics must guarantee that trunk will not be monopolized by a single channel TM Techniques, v45 17 TM Operation multiplexer only generates a transmission frame if data octets are present at input ports source of data must be explicitly identified in transmission frames addressing reason for addressing there exists no constant relationship between timeslot and portnumber as with synchronous TM Note: addressing in synchronous TM is implicit by recognizing the flag of the frame and hence the position of a certain timeslot port identifier is used as address of source and sent across the trunk TM Techniques, v45 19 synchronous Time ivision Multiplexing TM Operation / Facts 1 B1 1 1 P1 P2 P3 P4 buffer T stat Mux variable time interval low bit rate buffer T stat Mux P1 P2 P3 P4 Flag P2 8 bit B1 - B2 P4 8 bit 1-2 Flag P2 8 bit B1 - B2 P3 8 bit 1-2 Flag Flag low bit rate Portidentifier P2 8 bit B1 - B2 8 bit B1 - B2 8 bit B1 - B2 Flag P4 8 bit bit B2 2 2 transmission frame can be assembled using either a single channel octet by frame suitable for character oriented terminal sessions or multiple channel octets per frame suitable for block oriented computer sessions in case of congestion buffering causes additional delays compared to synchronous TM delays are variable because of statistical behavior hence not optimal for synchronous transmission requirements like traditional digital voice sufficient for transmission requirements of bursty data transfers TM Techniques, v45 18 TM Techniques, v45 20 Page 03-9 Page 03-10

6 atenkommunikation SS 2007 atenkommunikation SS 2007 synchronous / Statistical TM TM Facts User 1 64 kbit/s User B1 64 kbit/s User 1 64 kbit/s User 1 64 kbit/s 64 kbit/s verage data rates 16 kbit/s 64 kbit/s User 2 B 64 kbit/s User B2 64 kbit/s User 2 64 kbit/s User 2 Trunk speed dimensioned for average usage Each user can send packets whenever he wants Buffering necessary if trunk already occupied B TM can be used protocol transparent however in case of buffer overflow transmission errors will be seen by devices FS errors to avoid FS errors a kind of flow control between multiplexer and device (end system) should be used which is a new element in data communication methods this is different from flow control between end systems learned so far in module about line protocols examples for flow control HW flow control based on handshake signals (eg RTS, TS) SW flow control (eg XON/XOFF) Protocol based flow control such as known in connection oriented line protocols like HL (eg RR and RNR) end system and TM have to speak the same protocol language TM Techniques, v45 21 TM Techniques, v45 23 synchronous / Statistical TM genda User 1 64 kbit/s User B1 64 kbit/s User 1 64 kbit/s 64 kbit/s 64 kbit/s User 2 64 kbit/s User B2 64 kbit/s User 2 Introduction Synchronous (eterministic) TM synchronous (Statistical) TM Voice Transmission PH SH User 1 64 kbit/s 64 kbit/s User 2 If other users are silent, one user can fully utilize his access rate TM Techniques, v45 22 TM Techniques, v45 24 Page Page 03-12

7 atenkommunikation SS 2007 atenkommunikation SS 2007 Voice Transmission digital voice transmission based on Nyquist s Theorem analogous voice can be digitized using pulse-codemodulation (PM) technique requiring a 64kbit/s digital channel voice is sampled every 125usec (8000 times per second) every sample is encoded in 8 bits used nowadays in the backbone of our telephone network today analogous transmission only between home and local office -> so called local loop synchronous TM originated from digital voice transmission Linear Quantization mplitude + mplitude - Quantization Error Time TM Techniques, v45 25 TM Techniques, v45 27 Sampling of Voice Nyquist s Theorem any analogue signal with limited bandwidth f B can be sampled and reconstructed properly when the sampling frequency is 2 f B transmission of sampling pulses allows reconstruction of original analogous signal sampling pulses are quantized resulting in binary code word which is actually transmitted Improving SNR (Signal Noise Ratio) to improve the SNR of speech signals lower amplitudes receive a finer resolution than greater amplitudes a nonlinear function (logarithmic) is used for quantization US: μ-law (Bell) Europe: -law (ITU) Power R = 2 * B * log 2 V Quantization levels Telephone channel: Hz 8000 Hz x 8 bit resolution = 64 kbit/s Frequency 300 Hz 3400 Hz TM Techniques, v45 26 nalogue input signal TM Techniques, v45 28 Page Page 03-14

8 atenkommunikation SS 2007 atenkommunikation SS 2007 Log Quantization Voice ompression Segment 3 Segment 2 Segment 1 Segment 0 mplitude Finer sampling steps at low amplitude levels, hence better SNR for silent "voice parts" Time Waveform oders Non-linear approximation of analog waveform PM (no compression), PM Vocoders speech is analyzed and compared to a codebook only codebook values are transmitted and speed synthesizer at the receiver Hybrid coders ombination of waveform coders and vocoders 48 kbps to 16 kbps Used for mobile phones ELP, GSM TM Techniques, v45 29 TM Techniques, v45 31 Encoding (PM) Standardized odec's Putting digital values in a defined form for transmission Segment 3 Segment 2 Segment 1 Segment 0 mplitude Polarity 8 bit PM sample P Se Se Se St St St Segment Step Time St PM G711 (64 kbps) daptive ifferential Pulse ode Modulation (PM) only the difference from one sample pulse to the next will be transmitted fewer bits used for encoding the difference value G726 (16, 24, 32, 40 kbps) Low elay ode Excited Linear Predictor (L-ELP) G728 (16 kbps) onjugate Structure lgebraic ode Excited Linear Predictor (S- ELP) G729 (8 kbps) ual Rate Speech oding Standard G723 is the basic standard for voice transmission in IP networks basis is the ELP-Technique of GSM uses minimal data rate of 5,3K at fair quality or 6,3K with good quality TM Techniques, v45 30 TM Techniques, v45 32 Page Page 03-16

9 atenkommunikation SS 2007 atenkommunikation SS 2007 igital voice channel S0 = igital Signal, Level 0 1 timeslot in multiplexing frames Base for hierarchical digital communication systems Equals one PM coded voice channel 64 kbit/s Each samples (byte) must arrive within 125 μs To receive 8000 samples (bytes) per second Higher order frames must ensure the same byte-rate per user(!) Multiplexing Basics S0: 1 Byte E1: 32 Byte E2: 132 Byte F 1 digital voice channel 31 digital voice channels 131 digital voice channel 125 μs 64 kbit/s 2048 kbit/s 8448 kbit/s note: S0 and higher rates can be used for any transport digital information -> data transmission TM Techniques, v45 33 TM Techniques, v45 35 Multiplexing Basics S0 8 bits of PM sample 8 bits of next PM sample eg S1/E1 time 125 μsec = 1/8000 = 1 frame timeslots genda Introduction Synchronous (eterministic) TM synchronous (Statistical) TM Voice Transmission PH SH frame rate is always 8000 frame per second at all levels of the hierarchy byte interleaved multiplexing TM Techniques, v45 34 TM Techniques, v45 36 Page Page 03-18

10 atenkommunikation SS 2007 atenkommunikation SS 2007 Multiplexing Hierarchies igital Hierarchy of Multiplexers why hierarchy and standardization? only a hierarchical digital multiplexing infrastructure which is standardized can connect millions of (low speed) customers across the city/country/world two main architectures PH - plesiochronous digital hierarchy plesio means nearly synchronous, clock differences are compensated by bit stuffing techniques / overhead bits PH is still used for low-speed lines SH - synchronous digital hierarchy overcomes deficits of PH in North merica SONET is used telecommunication backbones move very quickly to SONET/SH 64 kbit/s E1 = 30 x 64 kbit/s + Overhead E2 = 4 x 30 x 64 kbit/s + Overhead Example: European PH E3 = 4 x 4 x 30 x 64 kbit/s + O E4 = 4 x 4 x 4 x 30 x 64 kbit/s + O Note: the actual data rates are somewhat higher because of overhead bits (O) TM Techniques, v45 37 TM Techniques, v45 39 PH Hierarchy North merica / NSI Signal arrier hannels Mbit/s Signal Europe / ITU arrier hannels Mbit/s S0 S1 S1 T1 T S0 EPT-1 EPT-2 "E0" E1 E S2 S3 T2 T EPT-3 EPT-4 E3 E S4 T EPT-5 E Incompatible rates ifferent signalling schemes ifferent overhead μ-law versus -law PH Limitations PH overhead increases dramatically with high bit rates Overhead 11% 10% 9% 8% 7% 6% % % 3% % % 052 S1 S2 S3 S4 EPT-1 EPT-2 EPT-3 EPT-4 TM Techniques, v45 38 TM Techniques, v45 40 Page Page 03-20

11 atenkommunikation SS 2007 atenkommunikation SS 2007 E1 Frame Structure R Multiframe Structure Timeslot frames per second frame frame frame frame frame frame frame timeslot 0 timeslot 1 timeslot 2 timeslot 3 timeslot or 1 N N N N N 8 bits per slot 2048 Mbit/s Frame lignment Signal (FS) (every alternating frame) Not Frame lignment Signal (NFS) (every alternating frame) TM Techniques, v45 41 frame 0 frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 frame 7 frame 8 frame 9 frame 10 frame 11 frame 12 frame 13 frame 14 frame 15 timeslot 0 1 FS 0 NFS 2 FS 0 NFS 3 FS 1 NFS 4 FS 0 NFS 1 FS 1 NFS 2 FS 1 NFS 3 FS Si NFS 4 FS Si NFS timeslot 1 timeslot 31 semimultiframe 1 TM Techniques, v R Multiframe Sync - bits semimultiframe 2 E1 Frame Structure every second frame timeslot 0 contains FS used for frame synchronization (R) bit is part of an optional 4-bit R sequence provides frame checking and multiframe synchronization (larm Indication) bit so called Yellow (remote) alarm used to signal loss of signal (LOS) or out of frame (OOF) condition to the far end N (National) bits reserved for future use genda Introduction Synchronous (eterministic) TM synchronous (Statistical) TM Voice Transmission PH SH TM Techniques, v45 42 TM Techniques, v45 44 Page Page 03-22

12 atenkommunikation SS 2007 atenkommunikation SS 2007 Reasons for SONET/SH evelopment Incompatible PH standards!!! PH does not scale to very high bit rates Increasing overhead Various multiplexing procedures Switching of channels requires demultiplexing first emand for a true synchronous network No pulse stuffing between higher levels Phase shifts are compensated by floating payload and pointer technique emand for add-drop es and ring topologies Network Structure PTE Path Termination Service (Sn or En) mapping and demapping Line (Multiplex Section) Section (Regenerator Section) REG (Regen) Section termination Path (Path Section) (Regen Section) M or S Line termination ( section termination) Line (Multiplex Section) Section Section Section (Regen Section) REG (Regen) Section termination SONET(SH) Terms (Regenerator Section) PTE Path Termination Service (Sn or En) mapping and demapping TM Techniques, v45 45 TM Techniques, v45 47 SH History SONET/SH Line Rates fter divestiture of T&T Many companies -> many proprietary solutions for PH successor technology In 1984 ES (Exchange arriers Standards ssociation) started on SONET Goal: one common standard Tuned to carry US PH payloads In 1986 ITT became interested in SONET reated SH as a superset Tuned to carry European PH payloads including E4 (140 Mbit/s) SH is a world standard SONET is subset of SH Originally designed for fiber optics SONET SONET Optical Levels Electrical Level O-1 STS-1 O-3 STS-3 O-9 STS-9 O-12 STS-12 O-18 STS-18 O-24 STS-24 O-36 STS-36 O-48 STS-48 O-96 STS-96 O-192 O-768 Line Rates Mbit/s SH Levels STM-0 STM-1 STM-3 STM-4 STM-6 STM-8 STM-12 STM-16 STM-32 STS STM-64 STS STM-256 efined but later removed, and only the multiples by four were left! (oming soon) TM Techniques, v45 46 TM Techniques, v45 48 Page Page 03-24

TDM Techniques. Time Division Multiplexing (synchronous, statistical) Telco Backbones (Digital Voice Transmission, PDH, SDH)

TDM Techniques. Time Division Multiplexing (synchronous, statistical) Telco Backbones (Digital Voice Transmission, PDH, SDH) TDM Techniques Time Division Multiplexing (synchronous, statistical) Telco Backbones (Digital Voice Transmission, PDH, SDH) Agenda Introduction Synchronous (Deterministic) TDM Asynchronous (Statistical)

More information

Telco Scalable Backbones

Telco Scalable Backbones Telco Scalable Backbones PDH, SONET/SDH (C) Herbert Haas 2005/03/11 Everything that can be invented has been invented Charles H. Duell, commissioner of the US Office of Patents 1899 Agenda Basics Shannon

More information

Telco Scalable Backbones PDH, SONET/SDH

Telco Scalable Backbones PDH, SONET/SDH Telco Scalable Backbones PDH, SONET/SDH (C) Herbert Haas 2005/03/11 1 Everything that can be invented has been invented Charles H. Duell, commissioner of the US Office of Patents 1899 2 Agenda Basics Shannon

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about backbone networks After this lecture, you should know WDM, PDH, SDH and ATM understand

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about landline backbone networks After this lecture, you should know WDM, PDH, SDH and

More information

SONET. By Sadhish Prabhu. Unit II

SONET. By Sadhish Prabhu. Unit II SONET By Sadhish Prabhu History Digital carrier systems The hierarchy of digital signals that the telephone network uses. Trunks and access links organized in DS (digital signal) hierarchy Problem: rates

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS SYNCHRONOUS OPTICAL NETWORK (SONET) Synchronous Optical Network (SONET) is a standard for optical telecommunications transport. SONET defines optical carrier (OC) levels

More information

Transmission Technology Ses SDH

Transmission Technology Ses SDH Transmission Technology Ses SDH ALTTC/TX1/SDH/CONCEPTS 1 CONTENTS SDH PROTECTION PLANNING SYNCHRONISATION ALTTC/TX1/SDH/CONCEPTS 2 SDH: DISCUSSION AREA WHAT IS SDH? EVOLUTION DRIVING FORCES LIMITATIONS

More information

Synchronous Optical Networks SONET. Computer Networks: SONET

Synchronous Optical Networks SONET. Computer Networks: SONET Synchronous Optical Networks SONET 1 Telephone Networks {Brief History} Digital carrier systems The hierarchy of digital signals that the telephone network uses. Trunks and access links organized in DS

More information

What is SDH? Telecommunications Standards Primer. Plesiochronous Digital Hierarchy (PDH) Limitations of PDH Network

What is SDH? Telecommunications Standards Primer. Plesiochronous Digital Hierarchy (PDH) Limitations of PDH Network Página 1 de 7 Telecommunications Standards Primer What is SDH? This document is intended as an introductory guide to the Synchronous Digital Hierarchy (SDH) standard. The following is a representative

More information

Chapter 4 Transmission Systems and the Telephone Network. School of Info. Sci. & Eng. Shandong Univ.

Chapter 4 Transmission Systems and the Telephone Network. School of Info. Sci. & Eng. Shandong Univ. Chapter 4 Transmission Systems and the Telephone Network School of Info. Sci. & Eng. Shandong Univ. Skip in Chapter 3 Articles 3.8.7, 3.8.8 (polynomial math for CRC codes) Skip in Chapter 4 4.2.2 (SONET

More information

2. Modelling of telecommunication systems (part 1)

2. Modelling of telecommunication systems (part 1) 2. Modelling of telecommunication systems (part ) lect02.ppt S-38.45 - Introduction to Teletraffic Theory - Fall 999 2. Modelling of telecommunication systems (part ) Contents Telecommunication networks

More information

Communication Networks

Communication Networks Communication Networks Chapter 3 Multiplexing Frequency Division Multiplexing (FDM) Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency

More information

Synchronous Optical Networks (SONET) Advanced Computer Networks

Synchronous Optical Networks (SONET) Advanced Computer Networks Synchronous Optical Networks (SONET) Advanced Computer Networks SONET Outline Brief History SONET Overview SONET Rates SONET Ring Architecture Add/Drop Multiplexor (ADM) Section, Line and Path Virtual

More information

COPYRIGHTED MATERIAL INTRODUCTION TO OPTICAL TRANSPORT CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION TO OPTICAL TRANSPORT CHAPTER 1 CHAPTER 1 INTRODUCTION TO OPTICAL TRANSPORT This chapter covers the history of the development of SDH, SONET, and OTN. For consistency in the terminology used in this book I have included a list of conventions.

More information

Network Topologies & Error Performance Monitoring in SDH Technology

Network Topologies & Error Performance Monitoring in SDH Technology Network Topologies & Error Performance Monitoring in SDH Technology Shiva Sharma Electronics and Communications Department Dronacharya College of Engineering Gurgaon, Haryana Shiva.92@hotmail.com Abstract

More information

Chapter 8: Multiplexing

Chapter 8: Multiplexing NET 456 High Speed Networks Chapter 8: Multiplexing Dr. Anis Koubaa Reformatted slides from textbook Data and Computer Communications, Ninth Edition by William Stallings, 1 (c) Pearson Education - Prentice

More information

Lecture 2 Physical Layer - Multiplexing

Lecture 2 Physical Layer - Multiplexing DATA AND COMPUTER COMMUNICATIONS Lecture 2 Physical Layer - Multiplexing Mei Yang Based on Lecture slides by William Stallings 1 MULTIPLEXING multiple links on 1 physical line common on long-haul, high

More information

Lecture 15: Multiplexing (2)

Lecture 15: Multiplexing (2) Lecture 15: Multiplexing (2) Last Lecture Multiplexing (1) Source: chapter 8 This Lecture Multiplexing (2) Source: chapter8 Next Lecture Circuit switching (1) Source: chapter9 Digital Carrier Systems Hierarchy

More information

PHYSICAL LAYER TIMING

PHYSICAL LAYER TIMING PHYSICAL LAYER TIMING Physical Layer Timing Timing in TDM Networks Synchronous Multiplexing (TDM) Transferring Timing (Timing Distribution) Stratum Levels Slips Asynchronous Multiplexing (TDM) Timing in

More information

WAN technology which are to be discussed:

WAN technology which are to be discussed: WAN Technology Operates at 3 layer OSI model as below: 1. PHY 2. Data Link 3. Network Most of WAN technology are packetswitched network categorized as Switched Virtual circuit Network ( 3-phase, connection

More information

Subject Data Communication. Subject Code 15CS46. Module 2 (Part 2) Multiplexing and Switching

Subject Data Communication. Subject Code 15CS46. Module 2 (Part 2) Multiplexing and Switching 1. What is multiplexing? What are types of multiplexing? (Dec 2012) Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link. If the

More information

TELECOMMUNICATION SYSTEMS

TELECOMMUNICATION SYSTEMS TELECOMMUNICATION SYSTEMS By Syed Bakhtawar Shah Abid Lecturer in Computer Science 1 Public Switched Telephone Network Structure The Local Loop Trunks and Multiplexing Switching 2 Network Structure Minimize

More information

Chapter - 7. Multiplexing and circuit switches

Chapter - 7. Multiplexing and circuit switches Chapter - 7 Multiplexing and circuit switches Multiplexing Multiplexing is used to combine multiple communication links into a single stream. The aim is to share an expensive resource. For example several

More information

UNIT-II OVERVIEW OF PHYSICAL LAYER SWITCHING & MULTIPLEXING

UNIT-II OVERVIEW OF PHYSICAL LAYER SWITCHING & MULTIPLEXING 1 UNIT-II OVERVIEW OF PHYSICAL LAYER SWITCHING & MULTIPLEXING Syllabus: Physical layer and overview of PL Switching: Multiplexing: frequency division multiplexing, wave length division multiplexing, synchronous

More information

01-VOIP-ADVANCED Agenda Voice over IP RTP SIP

01-VOIP-ADVANCED Agenda Voice over IP RTP SIP Voice over IP (VoIP) VoIP Fundamentals RTP, SIP Agenda Voice over IP RTP SIP VOIP-ADVANCED 2 Page 01-1 Voice over IP (VoIP) VoIP begins with digital voice A D Analog-to-digital conversion speech sampling

More information

Transport Network Technologies

Transport Network Technologies Course 34310 Introduction to Communication Technology Course 34311 Introduction to Networks for Telecommunication and Data Communication Transport Network Technologies October 23, 2010 Lars Staalhagen

More information

CHAPTER TWO LITERATURE REVIEW

CHAPTER TWO LITERATURE REVIEW CHAPTER TWO LITERATURE REVIEW 2.1 Introduction. This chapter provides in detail about the multiple access technologies and the OCDMA system. It starts with a discussion on various existing multiple-access

More information

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy)

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy) ATM Asynchronous Transfer Mode (and some SDH) (Synchronous Digital Hierarchy) Why use ATM? Circuit switched connections: After initial setup no processing in network nodes Fixed bit rates, fixed time delay

More information

WAN Technologies (to interconnect IP routers) Mario Baldi

WAN Technologies (to interconnect IP routers) Mario Baldi WAN Technologies (to interconnect IP routers) Mario Baldi www.baldi.info WAN_Technologies - 1 Copyright: see page 2 Copyright Notice This set of transparencies, hereinafter referred to as slides, is protected

More information

SDH Principle. Copyright 2012 Huawei Technologies Co., Ltd. All rights reserved.

SDH Principle.   Copyright 2012 Huawei Technologies Co., Ltd. All rights reserved. SDH Principle www.huawei.com Objectives Upon completion of this course, you will be able to: Understand the basic of SDH multiplexing standard Know the features, applications and advantages of SDH based

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum PCS FMRadi o/ TV Short wave Radi o AM Broadcast Ul trasoni c Soni c Vi si ble Li ght Infrared Li ght Ul travi ol et X- Rays Frequency 1 khz 1 M Hz 1 G Hz 1 THz 1 Y Hz 1 ZHz Wavelength

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 10 Circuit Switching and Packet Switching

William Stallings Data and Computer Communications 7 th Edition. Chapter 10 Circuit Switching and Packet Switching William Stallings Data and Computer Communications 7 th Edition Chapter 10 Circuit Switching and Packet Switching Switching Networks Long distance transmission is typically done over a network of switched

More information

Lecture 6 Datalink Framing, Switching. From Signals to Packets

Lecture 6 Datalink Framing, Switching. From Signals to Packets Lecture 6 Datalink Framing, Switching David Andersen Department of Computer Science Carnegie Mellon University 15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/s05/ 1 From Signals to

More information

Application Note. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals. Precision, Stability, Innovation, Support.

Application Note. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals. Precision, Stability, Innovation, Support. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals Application Note Number 14 TELECOM NETWORKS PROFESSIONAL MANUFACTURING POWER & UTILITIES DIGITAL BROADCASING TIME & FREQUENCY TIME

More information

3201 Computer Networks (Final Exam) (Model Answer)

3201 Computer Networks (Final Exam) (Model Answer) El-Shorouk Academy Acad. Year : 2011/ 2012 Higher Institute for Computer & Term : Second Information Technology Year : 3 rd Department of Information System No. Questions : 5 3201 Computer Networks (Final

More information

Circuit Switching and Packet Switching

Circuit Switching and Packet Switching Chapter 10: Circuit Switching and Packet Switching CS420/520 Axel Krings Page 1 Switching Networks Long distance transmission is typically done over a network of switched nodes Nodes not concerned with

More information

S Optical Networks Course Lecture 5: TDM-Based Networks

S Optical Networks Course Lecture 5: TDM-Based Networks S-72.3340 Optical Networks Course Lecture 5: TDM-Based Networks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9 451 2318,

More information

Optical networking technology

Optical networking technology 1 Optical networking technology Technological advances in semiconductor products have essentially been the primary driver for the growth of networking that led to improvements and simplification in the

More information

Synopsis of Basic VoIP Concepts

Synopsis of Basic VoIP Concepts APPENDIX B The Catalyst 4224 Access Gateway Switch (Catalyst 4224) provides Voice over IP (VoIP) gateway applications for a micro branch office. This chapter introduces some basic VoIP concepts. This chapter

More information

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing.

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing. /9/008 From Signals to Packets Lecture Datalink Framing, Switching Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Carnegie Mellon University Analog Signal Digital

More information

Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan

Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan RESEARCH ARTICLE Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan SharadaOhatkar*, Sanjay Thakare**, RachnaChavan*, Mugdha Kulkarni *,

More information

Communication Fundamentals in Computer Networks

Communication Fundamentals in Computer Networks Lecture 5 Communication Fundamentals in Computer Networks M. Adnan Quaium Assistant Professor Department of Electrical and Electronic Engineering Ahsanullah University of Science and Technology Room 4A07

More information

Speech-Coding Techniques. Chapter 3

Speech-Coding Techniques. Chapter 3 Speech-Coding Techniques Chapter 3 Introduction Efficient speech-coding techniques Advantages for VoIP Digital streams of ones and zeros The lower the bandwidth, the lower the quality RTP payload types

More information

SONET/SDH. By Iqtidar Ali

SONET/SDH. By Iqtidar Ali SONET/SDH By Iqtidar Ali SONET/SDH SONET/SDH means Synchronous Optical Network (SONET) was developed by ANSI. Synchronous Digital Hierarchy (SDH) was developed by ITU-T. The high bandwidth of fiber optic

More information

Networks 15.2 Multiplexing Technologies Access Networks 15.5 Common Peripheral Interfaces

Networks 15.2 Multiplexing Technologies Access Networks 15.5 Common Peripheral Interfaces Chapter 15 Computer and Multimedia Networks 15.11 Basics of Computer and Multimedia Networks 15.2 Multiplexing Technologies 15.3 LAN and WAN 15.4 Access Networks 15.5 Common Peripheral Interfaces 15.6

More information

MULTIPLEXER / DEMULTIPLEXER IMPLEMENTATION USING A CCSDS FORMAT

MULTIPLEXER / DEMULTIPLEXER IMPLEMENTATION USING A CCSDS FORMAT MULTIPLEXER / DEMULTIPLEXER IMPLEMENTATION USING A CCSDS FORMAT Item Type text; Proceedings Authors Grebe, David L. Publisher International Foundation for Telemetering Journal International Telemetering

More information

Digital Speech Coding

Digital Speech Coding Digital Speech Processing David Tipper Associate Professor Graduate Program of Telecommunications and Networking University of Pittsburgh Telcom 2700/INFSCI 1072 Slides 7 http://www.sis.pitt.edu/~dtipper/tipper.html

More information

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching.

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching. Asynchronous Transfer Mode (ATM) Networks! All source media is first broken down into a stream of fixed sized units known as cells.! Cell streams relating to different media types are multiplexed together

More information

DuSLIC Infineons High Modem Performance Codec

DuSLIC Infineons High Modem Performance Codec DuSLIC Infineons High Performance Codec Introduction s that use the regular telephone network are and will be the dominant technology for the internet access and other data applications. The reasons among

More information

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB)

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB) 1. INTRODUCTION NETWORK PARADIGMS Bandwidth (Mbps) 1000 ATM LANS Gigabit Ethernet ATM 100 10 Fast Ethernet FDDI SMDS (DQDB) Voice, Image, Video, Data 1 Ethernet/ Token Ring/ Token Bus Frame Relay X.25

More information

CSCI-1680 Physical Layer Link Layer I Rodrigo Fonseca

CSCI-1680 Physical Layer Link Layer I Rodrigo Fonseca CSCI-1680 Physical Layer Link Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia Snowcast milestone today! 4-7pm Sign up at http://tinyurl.com/cs168-calendar

More information

Frequency: it refers to the number of periods in 1 s. It is formally expressed in Hertz (Hz)

Frequency: it refers to the number of periods in 1 s. It is formally expressed in Hertz (Hz) Chapter2: Peak amplitude: it is the absolute value of the highest intensity. Frequency: it refers to the number of periods in 1 s. It is formally expressed in Hertz (Hz) Phase: it describes the position

More information

Lecture (05) Network interface Layer media & switching II

Lecture (05) Network interface Layer media & switching II Lecture (05) Network interface Layer media & switching II By: ElShafee ١ Agenda Circuit switching technology (cont,..) Packet switching technique Telephone network ٢ Circuit switching technology (cont,..)

More information

SONET Testing and Maintenance

SONET Testing and Maintenance a step ahead Application Series SONET Testing and Maintenance 302 Enzo Drive San Jose CA 95138 USA ph 1 408 363 8000 fax 1 408 363 8313 info@sunrisetelecom.com www.sunrisetelecom.com Publication Number

More information

GSM Network and Services

GSM Network and Services GSM Network and Services Voice coding 1 From voice to radio waves voice/source coding channel coding block coding convolutional coding interleaving encryption burst building modulation diff encoding symbol

More information

IP over. Mario Baldi. Politecnico di Torino. (Technical University of Turin) IPinterconnection - 1 Copyright: si veda nota a pag.

IP over. Mario Baldi. Politecnico di Torino. (Technical University of Turin)  IPinterconnection - 1 Copyright: si veda nota a pag. IP over ATM SDH DWDM Mario Baldi Politecnico di Torino (Technical University of Turin) www.baldi.info IPinterconnection - 1 Copyright: si veda nota a pag. 2 Nota di Copyright This set of transparencies,

More information

NTNU The. rt Networks. 1.1: Explain. Norwegian

NTNU The. rt Networks. 1.1: Explain. Norwegian NTNU The Norwegian Universityy of Science and Technology Department of Telematics TTM 4105 - Access and Transpor rt Networks Exercise 2 Multiplexi ing - solution n. Task 1: Fundamental variants of multiplexing

More information

Advantages and disadvantages

Advantages and disadvantages Advantages and disadvantages Advantages Disadvantages Asynchronous transmission Simple, doesn't require synchronization of both communication sides Cheap, timing is not as critical as for synchronous transmission,

More information

learntelecoms interactive e-learning suite of courses: SyncNet v6 SDH-based broadband networks SyncNet

learntelecoms interactive e-learning suite of courses: SyncNet v6 SDH-based broadband networks SyncNet Tel: 0845 0949 120 Email: info@ptt.co.uk Web site: www.ptt.co.uk SyncNet SyncNet v6 SDH-based broadband networks SyncNet is a suite of interactive, multimedia e-learning courses. provides training in the

More information

ECE 653: Computer Networks Mid Term Exam all

ECE 653: Computer Networks Mid Term Exam all ECE 6: Computer Networks Mid Term Exam 16 November 004. Answer all questions. Always be sure to answer each question concisely but precisely! All questions have points each. 1. What are the different layers

More information

FPGA BASED IMPLEMENTATION OF STM-16 FRAMER IP CORE

FPGA BASED IMPLEMENTATION OF STM-16 FRAMER IP CORE FPGA BASED IMPLEMENTATION OF STM-16 FRAMER IP CORE 1 T.SHIVARAJA, 2 RASHMI PRIYADARSHINI, 3 RAJA JITENDRA NAYAKA 1 Mtech-4th Sem,ECE department, RITM Yelahanka Bangalore, Karnataka, India 2 Asst. Professor,

More information

Table of Contents 1 E-CPOS Interface Configuration 1-1

Table of Contents 1 E-CPOS Interface Configuration 1-1 Table of Contents 1 E-CPOS Interface Configuration 1-1 Overview 1-1 SONET 1-1 SDH 1-1 E-CPOS 1-5 Configuring an E-CPOS Interface 1-6 Configuring an E-CPOS Interface 1-6 Configuring the Operating Mode of

More information

Ch. 4 - WAN, Wide Area Networks

Ch. 4 - WAN, Wide Area Networks 1 X.25 - access 2 X.25 - connection 3 X.25 - packet format 4 X.25 - pros and cons 5 Frame Relay 6 Frame Relay - access 7 Frame Relay - frame format 8 Frame Relay - addressing 9 Frame Relay - access rate

More information

CPOS Interface. Synchronous digital hierarchy (SDH), defined by CCITT (today s ITU-T), uses a SONET rate subset.

CPOS Interface. Synchronous digital hierarchy (SDH), defined by CCITT (today s ITU-T), uses a SONET rate subset. SONET/SDH Synchronous Optical Network (SONET), a synchronous transmission system defined by ANSI, is an international standard transmission protocol. It adopts optical transmission where transmission rates

More information

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION CCITT G.709 THE INTERNATIONAL TELEGRAPH AND TELEPHONE CONSULTATIVE COMMITTEE (11/1988) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS General

More information

Internet Architecture and Protocol

Internet Architecture and Protocol Internet Architecture and Protocol Set# 04 Wide Area Networks Delivered By: Engr Tahir Niazi Wide Area Network Basics Cover large geographical area Network of Networks WANs used to be characterized with

More information

Digital Communication Networks

Digital Communication Networks Digital Communication Networks MIT PROFESSIONAL INSTITUTE, 6.20s July 25-29, 2005 Professor Muriel Medard, MIT Professor, MIT Slide 1 Digital Communication Networks Introduction Slide 2 Course syllabus

More information

DATA COMMUNICATIONS AND COMPUTER NETWORKS

DATA COMMUNICATIONS AND COMPUTER NETWORKS DATA COMMUNICATIONS AND COMPUTER NETWORKS Second Edition PRAKASH C. GUPTA Formerly Head Department of Information Technology Maharashtra Institute of Technology Pune Delhi-110092 2014 DATA COMMUNICATIONS

More information

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites Asynchronous Transfer Mode Page 12.i DigiPoints Volume 1 Module 12 Asynchronous Transfer Mode Summary This last module of, covers ATM, and provides an end-to-end data communications model that draws on

More information

TRANSPORT OF SDH ELEMENTS ON PDH NETWORKS: FRAME AND MULTIPLEXING STRUCTURES ITU-T

TRANSPORT OF SDH ELEMENTS ON PDH NETWORKS: FRAME AND MULTIPLEXING STRUCTURES ITU-T INTERNATIONAL TELECOMMUNICATION UNION ITU-T G.832 TELECOMMUNICATION (11/93) STANDARDIZATION SECTOR OF ITU DIGITAL NETWORKS TRANSPORT OF SDH ELEMENTS ON PDH NETWORKS: FRAME AND MULTIPLEXING STRUCTURES ITU-T

More information

Differences Between SONET and SDH Framing in Optical Networks

Differences Between SONET and SDH Framing in Optical Networks Differences Between SONET and SDH Framing in Optical Networks Document ID: 16180 Contents Introduction Prerequisites Requirements Components Used Conventions SONET and SDH Framing ATM Over SONET Packet

More information

Chapter 6 Questions. Problems

Chapter 6 Questions. Problems Chapter 6 Questions Q6-1. Q6-2. Q6-3. Q6-4. Q6-5. Q6-6. Q6-7. Describe the goals of multiplexing. List three main multiplexing techniques mentioned in this chapter. Distinguish between a link and a channel

More information

ATM Logical Connections: VCC. ATM Logical Connections: VPC

ATM Logical Connections: VCC. ATM Logical Connections: VPC ATM Logical Connections: VCC Logical Connections in ATM are referred to as virtual channel connections (VCCs). Virtual channel (VC) is a generic term used to describe unidirectional transport of ATM cells

More information

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007.

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007. Modems, DSL, and Multiplexing CS158a Chris Pollett Feb 19, 2007. Outline Finish up Modems DSL Multiplexing The fastest modems Last day, we say the combinations and phases used to code symbols on a 2400

More information

PPP. Point-to-Point Protocol

PPP. Point-to-Point Protocol PPP Point-to-Point Protocol 1 Introduction One of the most common types of WAN connection is the point-to-point connection. Point-to-point connections are used to connect LANs to service provider WANs,

More information

ITU-T G.832. Transport of SDH elements on PDH networks Frame and multiplexing structures

ITU-T G.832. Transport of SDH elements on PDH networks Frame and multiplexing structures INTERNATIONAL TELECOMMUNICATION UNION ITU-T G.832 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (10/98) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital transmission systems

More information

Multichannel STM-1 Port Adapter for the Cisco 7500 Series Router

Multichannel STM-1 Port Adapter for the Cisco 7500 Series Router Multichannel STM-1 Port Adapter for the Cisco 7500 Series Router This feature module describes the Multichannel STM-1 Port Adapter (PA-MC-STM-1). It includes information on the benefits of this port adapter,

More information

COPYRIGHTED MATERIAL INTRODUCTION AND OVERVIEW

COPYRIGHTED MATERIAL INTRODUCTION AND OVERVIEW 1 INTRODUCTION AND OVERVIEW The past few decades have seen the merging of computer and communication technologies Wide-area and local-area computer networks have been deployed to interconnect computers

More information

Module 1. Introduction. Version 2, CSE IIT, Kharagpur

Module 1. Introduction. Version 2, CSE IIT, Kharagpur Module 1 Introduction Version 2, CSE IIT, Kharagpur Introduction In this module we shall highlight some of the basic aspects of computer networks in two lessons. In lesson 1.1 we shall start with the historical

More information

Circuit Emulation over IP

Circuit Emulation over IP (CEoIP) provides a virtual circuit through an IP network--similar to a leased line--to integrate solutions that require a time-sensitive, bit-transparent transport into IP networks. Data, with proprietary

More information

CABLE NETWORKS INTRODUCTION TO CABLE NETWORK TECHNOLOGIES AND PROTOCOLS

CABLE NETWORKS INTRODUCTION TO CABLE NETWORK TECHNOLOGIES AND PROTOCOLS CABLE NETWORKS INTRODUCTION TO CABLE NETWORK TECHNOLOGIES AND PROTOCOLS Peter R. Egli 1/15 Contents 1. Cable network architecture 2. Relevant cable network standards 3. DOCSIS 2/15 1. Cable Network architecture

More information

Lecture 3: Modulation & Layering"

Lecture 3: Modulation & Layering Lecture 3: Modulation & Layering" CSE 123: Computer Networks Alex C. Snoeren HW 1 out Today, due 10/09! Lecture 3 Overview" Encoding schemes Shannon s Law and Nyquist Limit Clock recovery Manchester, NRZ,

More information

White paper Application note

White paper Application note Applications of the Stand-Alone Synchronization Equipment in optical networks and the Synchronous Digital Hierarchy (SDH) White paper Application note Number 07 TELECOM NETWORKS PROFESSIONAL MANUFACTURING

More information

UNIT- 2 Physical Layer and Overview of PL Switching

UNIT- 2 Physical Layer and Overview of PL Switching UNIT- 2 Physical Layer and Overview of PL Switching 2.1 MULTIPLEXING Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link. Figure

More information

Chapter 1 Introduction

Chapter 1 Introduction Emerging multimedia, high-speed data, and imaging applications are generating a demand for public networks to be able to multiplex and switch simultaneously a wide spectrum of data rates. These networks

More information

Introduction To Optical Networks Optical Networks: A Practical Perspective

Introduction To Optical Networks Optical Networks: A Practical Perspective Introduction To Optical Networks Optical Networks: A Practical Perspective Galen Sasaki Galen Sasaki University of Hawaii 1 Galen Sasaki University of Hawaii 2 Galen Sasaki University of Hawaii 3 Telecommunications

More information

voice-enabling.book Page 72 Friday, August 23, :19 AM

voice-enabling.book Page 72 Friday, August 23, :19 AM voice-enabling.book Page 72 Friday, August 23, 2002 11:19 AM voice-enabling.book Page 73 Friday, August 23, 2002 11:19 AM C H A P T E R 4 Offering Bundled and Data Services Chapter 2, VoIP Network Architectures:

More information

New Approaches to Optical Packet Switching in Carrier Networks. Thomas C. McDermott Chiaro Networks Richardson, Texas

New Approaches to Optical Packet Switching in Carrier Networks. Thomas C. McDermott Chiaro Networks Richardson, Texas New Approaches to Optical Packet Switching in Carrier Networks Thomas C. McDermott Chiaro Networks Richardson, Texas Outline Introduction, Vision, Problem statement Approaches to Optical Packet Switching

More information

Simple Optical Network Architectures

Simple Optical Network Architectures Simple Optical Network Architectures Point to Point Link The simplest optical communication system is that linking two points. The length of such links may be a small as 100 m for say, a computer data

More information

Wireless Networks. Communication Networks

Wireless Networks. Communication Networks Wireless Networks Communication Networks Types of Communication Networks Traditional Traditional local area network (LAN) Traditional wide area network (WAN) Higher-speed High-speed local area network

More information

Installation and Operation Manual VF-30/VF-60. Single/Dual E1 Digital Voice Compression Modules. Megaplex-2100 Version 11 MEGAPLEX-2100 MODULES

Installation and Operation Manual VF-30/VF-60. Single/Dual E1 Digital Voice Compression Modules. Megaplex-2100 Version 11 MEGAPLEX-2100 MODULES Installation and Operation Manual VF-30/VF-60 Single/Dual E1 Digital Voice Compression Modules Megaplex-2100 Version 11 MEGAPLEX-2100 MODULES VF-30/VF-60 Single/Dual E1 Digital Voice Compression Modules

More information

Application of wavelet filtering to image compression

Application of wavelet filtering to image compression Application of wavelet filtering to image compression LL3 HL3 LH3 HH3 LH2 HL2 HH2 HL1 LH1 HH1 Fig. 9.1 Wavelet decomposition of image. Application to image compression Application to image compression

More information

For internal circulation of BSNL only

For internal circulation of BSNL only E3-E4 E4 (CFA) Overview of SDH AGENDA SDH & PDH Hierarchy SDH Network Survivability Synchronous All elements are synchronized with one master clock. DIGITAL Information is in binary. SDH OVERVIEW HIERARCHY

More information

Reference Access and Interconnection Offer

Reference Access and Interconnection Offer 1. Commercial Proposal for Reference Access and Interconnection Offer Sub Annex E Technical Specification Table of Contents 1 General... 3 2 Physical and Electrical Interface... 4 3 Transmission... 7 4

More information

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006 CS 123: Lecture 12, LANs, and Ethernet George Varghese October 24, 2006 Selective Reject Modulus failure Example w = 2, Max = 3 0 0 1 3 0 A(1) A(2) 1 0 retransmit A(1) A(2) buffer Case 1 Case 2 reject

More information

Framing and Stuffing. Advanced Computer Networks

Framing and Stuffing. Advanced Computer Networks Framing and Stuffing Advanced Computer Networks Framing & Stuffing Outline Synchronous vs Asynchronous Transmissions Asynchronous Character Transmissions Framing Identifying Synchronous Block Boundaries

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS SWITCHING A switch is a mechanism that allows us to interconnect links to form a larger network. A switch is a multi-input, multi-output device, which transfers packets

More information

COMPUTER NETWORK Model Test Paper

COMPUTER NETWORK Model Test Paper Model Test Paper Question no. 1 is compulsory. Attempt all parts. Q1. Each question carries equal marks. (5*5 marks) A) Difference between Transmission Control Protocol (TCP) and User Datagram Protocol.

More information

COMPUTER NETWORKS UNIT I. 1. What are the three criteria necessary for an effective and efficient networks?

COMPUTER NETWORKS UNIT I. 1. What are the three criteria necessary for an effective and efficient networks? Question Bank COMPUTER NETWORKS Short answer type questions. UNIT I 1. What are the three criteria necessary for an effective and efficient networks? The most important criteria are performance, reliability

More information