HPC Advisory COUNCIL

Size: px
Start display at page:

Download "HPC Advisory COUNCIL"

Transcription

1 Inside AI

2 HPC Advisory COUNCIL Lugano 2017 Scalable Systems for Distributed Deep Learning Benchmarking, Performance Optimization and Architectures Gaurav kaul SYSTEMS ARCHITECT, INTEL DATACENTRE GROUP

3 Legal Disclaimer & Optimization Notice INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Copyright 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others. Optimization Notice Intel s compilers may or may not optimize to the same degree for non-intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision # Optimization Notice

4 Legal Notices & disclaimers This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps. Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction. Statements in this document that refer to Intel s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel s results and plans is included in Intel s SEC filings, including the annual report on Form 10-K. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate. Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others Intel Corporation.

5 Agenda Why Optimization matters on modern architectures Mapping Deep Learning to HPC Hardware Compute Kernels for Deep Learning Case Study - Optimizing Caffe and TensorFlow Key challenges Optimization techniques Performance data Scaling on Mulitnode (WIP)

6 Attainable Gflops/s Combined Amdahl s Law for Vector Multicores Speedup = 1 Serial frac + 1 Serial frac NumCores Goal: Reduce Serial Fraction and Reduce Scalar Fraction of Code 1 Scalar frac + 1 Scalar frac VectorLength Ideal Speedup: NumCores*VectorLength (requires zero scalar, zero serial work) Compute Bound Performance Most kernels of ML codes are compute bound i.e. raw FLOPS matter Roofline Model Gflops/s = min (Peak Gflops/s, Stream BW * flops/byte) Peak Compute Gflops/s Peak Compute Gflops/s without SIMD Compute intensity (flops/byte)

7 Deep Learning Convolutional Neural Network Convolution Parameters: Number of outputs/feature-maps: < 4 > Filter size: < 3 x 3 > Stride: < 2 > Pad_size (for corner case): <1> Feature maps Filter = 3 x 3 Stride = 2 Pad_size = 1

8

9

10

11

12

13

14

15 Case Study - Optimizing Deep Learning Frameworks

16 TensorFlow 2 nd generation open source machine learning framework from Google Widely used across Google in many key apps Search, Gmail, photos, translate etc General computing mathematical framework can be used on Deep Neural network Other machine learning framework HPC applications Core system provides set of key computational kernel, extendable user ops Core in C++, front end wrapper is in python specifies/drives computation Multi node support using propriety GRPC protocols

17 TensorFlow : Computation is a Dataflow Graph with Tensors Biases Google s open source machine learning framework Input Matmul Add Relu Weights Xent Labels Example from Jeff Dean s presentation

18 Performance Optimization on Modern Platforms Hierarchical Parallelism Coarse-Grained / multi-node Domain decomposition Fine-Grained Parallelism / within node Sub-domain: 1) Multi-level domain decomposition (ex. across layers) 2) Data decomposition (layer parallelism) Scaling Improve load balancing Reduce synchronization events, all-to-all comms Utilize all the cores OpenMP, MPI, TBB Reduce synchronization events, serial code Improve load balancing vectorize/simd Unit strided access per SIMD lane High vector efficiency Data alignment Efficient memory/cache use Blocking Data reuse Prefetching Memory allocation

19 Example Challenge 1: Data Layout Has Big Impact on Performance Data Layouts impacts performance Sequential access to avoid gather/scatter Have iterations in inner most loop to ensure high vector utilization Maximize data reuse; e.g. weights in a convolution layer Converting to/from optimized Layout is some times less expensive than operating on unoptimized Layout Better optimized for some operations vs

20 Example Challenge 2: Minimize Conversions Overhead End to end optimization can reduce conversions Staying in optimized layout as long as possible becomes one of the tuning goals Minimize the number of back and forth conversions Use of graph optimization techniques Native to MKL layout Convolution MKL layout to Native Max Pool Native to MKL layout Convolution MKL layout to Native

21 Example Challenge 3: Ensuring Enough Parallelism to Leverage all Cores Maximize parallelism to use all cores efficiently Intra operation/layer parallelism within operators (OpenMP) Inter operation parallelism across operators 1x1 Conv Parallel execution 3x3 Conv 5x5 Conv Convolution of tiles in parallel concat

22 Example Challenge 4: Optimizing the Data Layer Data Layer comprises 3 major ops o Read data C0 Boost thread C1 Boost thread C2 OpenMP C3 OpenMP.. Cn-1 OpenMP o Decode data: e.g. JPEG decode, decompression o Transform data Result of read, decode & transform is input to DNN layers Reduce number of cores dedicated to feed DNN o IO optimization: consider compression o Decode: consider LMDB instead of JPEG o Resizing/data processing: consider pre-processing o Then vectorize, parallelize

23 Optimizing TensorFlow & Other DL Frameworks for Intel Architecture Leverage high performant compute libraries and tools e.g. Intel Math Kernel Library, Intel Python, Intel Compiler etc. Data Format/Shape: Right format/shape for max performance: blocking, gather/scatter Data Layout: Minimize cost of data layout conversions Parallelism: Use all cores, eliminate serial sections, load imbalance Other Functions/Primitives (un-optimized in libraries): Optimize via compiler knobs, improve existing implementations Memory allocation unique characteristics and ability to reuse buffers Data layer optimizations: parallelization, vectorization, IO Optimize hyper parameters: e.g. batch size for more parallelism affects core utilization learning rate and optimizer to ensure accuracy/convergence

24 Allreduce Allreduce Allreduce Intel Machine Learning Scaling Library (MLSL) Some of the Intel MLSL features include: Alltoall Reduce Scatter Built on top of MPI, allows for use of other communication libraries Optimized to drive scalability of communication patterns L A Y E R L A Y E R FORWARD PROPAGATION L A Y E R Works across various interconnects: Intel Omni- Path Architecture, InfiniBand*, and Ethernet 1 2 BACK PROPAGATION N Common API to support deep learning frameworks (Caffe*, Theano*, Torch*, etc.) Alltoall Allgather Allreduce

25 Performance Status on Xeon (Broadwell 2S 22 Cores) Sample Topologies Benchmark Metric Higher is better Baseline performance Training Before any optimization WW01 Optimized Performance_Inference WW01 Optimized Performance_Training WW01 Speedup over Baseline AlexNet-ConvNet images/sec x AlexNet-BVLC (dummy) images/sec x AlexNet-BVLC (imagenet) images/sec x ConvNet- GoogleNet v1 images/sec x GoogleNet v3 images/sec x ResNet images/sec x RNN-Seq2Seq English to French Translation words/sec x ConvNet-VGG images/sec x

26 Performance Status on Xeon Phi (Knights Landing Bin1-68 Cores) Sample Topologies Benchmark Metric Higher is better Baseline performance Training Before any optimization WW01 Optimized Performance_Inference WW01 Optimized Performance_Training WW01 Speedup over Baseline AlexNet-ConvNet images/sec x AlexNet-BVLC (dummy) images/sec x AlexNet-BVLC (imagenet) images/sec x ConvNet-GoogleNet v1 images/sec x GoogleNet v3 images/sec x ResNet images/sec x RNN-Seq2Seq English to French Translation words/sec x ConvNet-VGG images/sec x

27 Cumulative speedup AlexNet Optimization Progression x x x 27.17x x x 2.20x 4.18x 2.16x 12.48x Baseline MKL Integration Thread Optimization Optimization Notice 6.96x 7.72x Compiler Knobs Tuning Broadwell Matrix Transpose/Data Transformations Knights Landing 9.27x Memory Allocations 13.36x 13.72x Conversions Optimization Memory Allocation Intel s compilers may or may not optimize to the same degree for non-intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.

28 Cumulative Speedup VGG Optimization Progression x x x x x 23.60x 1.00x 1.00x 3.15x 5.40x Baseline MKL Integration Thread Optimization Compiler Knobs Tuning 10.18x 13.29x 14.65x Matrix Transpose/Data Transformations Memory Allocations 19.27x Conversions Optimization Broadwell Knights Landing Optimization Notice

29 Configuration details 29 Intel Xeon processor E5-2699v4 (22 Cores, 2.2 GHz), 128GB DDR memory, Centos 7.2 based on Red Hat* Enterprise Linux 7.2 Intel Xeon Phi processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: Flat mode), 96GB DDR memory, Centos 7.2 based on Red Hat* Enterprise Linux 7.2 AlexNet and VGG benchmarks:

30 Key Challenges in Deep Learning Training Scaling of the order of Petaflop performance (a la classical HPC ) Inherent difficulty in reproducibility and provenance due to the black box nature Dependence on hyper-parameters (batch size, momentum, initialization weights etc.) Deep learning is data inefficient and requires labelled data unsupervised deep learning still infancy

31 Summary Large performance cost of DL workloads when using unoptimized frameworks Significant performance headroom from optimization on Xeon and Xeon Phi Close to 400x speedup in certain topologies on Caffe and TensorFlow Traditional vectorization and parallelization strategies apply Other unique performance challenges: hyper parameters, data layer, inter/intra layer parallelization, etc. Call to action: Try Intel optimized frameworks available today, more to come soon

32 Configuration details 2S Intel Xeon processor E5-2697A v4 on Apache Spark with MKL2017 up to 18x performance increase compared to 2S E v2 + F2JBLAS machine learning training BASELINE: Intel Xeon Processor E v2 (12 Cores, 2.7 GHz), 256GB memory, CentOS 6.6*, F2JBLAS: Relative performance 1.0 Intel Xeon processor E v2 Apache* Spark* Cluster: 1-Master + 8-Workers, 10Gbit/sec Ethernet fabric, Each system with 2 Processors, Intel Xeon processor E v2 (12 Cores, 2.7 GHz), Hyper-Threading Enabled, 256GB RAM per System, 1-240GB SSD OS Drive, 12-3TB HDDs Data Drives Per System, CentOS* 6.6, Linux el6.x86_64, Intel Intel MKL 2017 build U1_ , Cloudera Distribution for Hadoop (CDH) 5.7, Apache* Spark* standalone, OMP_NUM_THREADS=1 set in CDH*, Total Java Heap Size of 200GB for Spark* Master and Workers, Relative performance up to 3.4x Intel Xeon processor E v3 Apache* Spark* Cluster: 1-Master + 8-Workers, 10Gbit/sec Ethernet fabric, Each system with 2 Processors, Intel Xeon processor E v3 (18 Cores, 2.3 GHz), Hyper-Threading Enabled, 256GB RAM per System, 1-480GB SSD OS Drive, 12-4TB HDDs Data Drives Per System, CentOS* 7.0, Linux el7.x86_64, Intel Intel MKL 2017 build U1_ , Cloudera Distribution for Hadoop (CDH) 5.7, Apache* Spark* standalone, OMP_NUM_THREADS=1 set in CDH*, Total Java Heap Size of 200GB for Spark* Master and Workers, Relative performance up to 8.8x Intel Xeon processor E5-2697A v4 Apache* Spark* Cluster: 1-Master + 8-Workers, 10Gbit Ethernet/sec fabric, Each system with 2 Processors, Intel Xeon processor E5-2697A v4 (16 Cores, 2.6 GHz), Hyper-Threading Enabled, 256GB RAM per System, 1-800GB SSD OS Drive, GB SSDs Data Drives Per System, CentOS* 6.7, Linux el6.x86_64, Intel MKL 2017 build U1_ , Cloudera Distribution for Hadoop (CDH) 5.7, Apache* Spark* standalone, OMP_NUM_THREADS=1 set in CDH*, Total Java Heap Size of 200GB for Spark* Master and Workers, Relative performance up to 18x Machine learning algorithm used for all configurations : Alternating Least Squares ALS Machine Learning Algorithm Intel Xeon Phi Processor 7250 GoogleNet V1 Time-To-Train Scaling Efficiency up to 97% on 32 nodes 32 nodes of Intel Xeon Phi processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: flat mode), 96GB DDR4 memory, Red Hat* Enterprise Linux 6.7, export OMP_NUM_THREADS=64 (the remaining 4 cores are used for driving communication) MKL 2017 Update 1, MPI: , Endeavor KNL bin1 nodes, export I_MPI_FABRICS=tmi, export I_MPI_TMI_PROVIDER=psm2, Throughput is measured using train command. Data pre-partitioned across all nodes in the cluster before training. There is no data transferred over the fabric while training. Scaling efficiency computed as: (Single node performance / (N * Performance measured with N nodes))*100, where N = Number of nodes Intel Caffe: Intel internal version of Caffe GoogLeNetV1: batch size 1536 Intel Xeon Phi processor 7250 up to 400x performance increase with Intel Optimized Frameworks compared to baseline out of box performance BASELINE: Caffe Out Of the Box, Intel Xeon Phi processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: cache mode), 96GB memory, Centos 7.2 based on Red Hat* Enterprise Linux 7.2, BVLC-Caffe: with OpenBLAS, Relative performance 1.0 NEW: Caffe: Intel Xeon Phi processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: cache mode), 96GB memory, Centos 7.2 based on Red Hat* Enterprise Linux 7.2, Intel Caffe: : based on BVLC Caffe as of Jul 16, 2016, MKL GOLD UPDATE1, Relative performance up to 400x AlexNet used for both configuration as per image database-classification-with-deep-convolutional-neural-networks.pdf, Batch Size: 256 Intel Xeon Phi Processor 7250, 32 node cluster with Intel Omni Path Fabric up to 97% GoogleNetV1 Time-To-Train Scaling Efficiency Caffe: Intel Xeon Phi processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM: flat mode), 96GB DDR4 memory, Red Hat* Enterprise Linux 6.7, Intel Caffe: not publically available yet export OMP_NUM_THREADS=64 (the remaining 4 cores are used for driving communication) MKL 2017 Update 1, MPI: , Endeavor KNL bin1 nodes, export I_MPI_FABRICS=tmi, export I_MPI_TMI_PROVIDER=psm2, Throughput is measured using train command. Split the images across nodes and copied locally on each node at the beginning of training. No IO happens over fabric while training. GoogLeNetV1: batch size 1536 Intel Xeon Phi processor Knights Mill up to 4x estimated performance improvement over Intel Xeon Phi processor 7290 BASELINE: Intel Xeon Phi Processor 7290 (16GB, 1.50 GHz, 72 core) with 192 GB Total Memory on Red Hat Enterprise Linux* 6.7 kernel using MKL 11.3 Update 4, Relative performance 1.0 NEW: Intel Xeon phi processor family Knights Mill, Relative performance up to 4x Intel Arria FPGA energy efficiency on Caffe/AlexNet up to 25 img/s/w with FP16 at 297MHz Vanilla AlexNet Classification Implementation as specified by Training Parameters taken from Caffe open-source Framework are 224x224x3 Input, 1000x1 Output, FP16 with Shared Block- Exponents, All compute layers (incl. Fully Connected) done on the FPGA except for Softmax, Arria FPGA, -1 Speed Grade on Altera PCIe DevKit with x MHz, Power measured through on-board power monitor (FPGA POWER ONLY), ACDS 16.1 Internal Builds + OpenCL SDK 16.1 Internal Build, Compute machine is an HP Z620 Workstation, Xeon E at 3.3 GHz with 32GB RAM. The Xeon is not used for compute. Knights Mill performance : Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision # Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: Source: Intel measured everything except Knights Mill which is estimated as of November 2016

33

TensorFlow* on Modern Intel Architectures Jing Huang and Vivek Rane Artificial Intelligence Product Group Intel

TensorFlow* on Modern Intel Architectures Jing Huang and Vivek Rane Artificial Intelligence Product Group Intel TensorFlow* on Modern Intel Architectures Jing Huang and Vivek Rane Artificial Intelligence Product Group Intel Tensorflow* on CPU has been very slow https://www.tensorflow.org/install/install_linux UNTIL

More information

What s P. Thierry

What s P. Thierry What s new@intel P. Thierry Principal Engineer, Intel Corp philippe.thierry@intel.com CPU trend Memory update Software Characterization in 30 mn 10 000 feet view CPU : Range of few TF/s and

More information

IXPUG 16. Dmitry Durnov, Intel MPI team

IXPUG 16. Dmitry Durnov, Intel MPI team IXPUG 16 Dmitry Durnov, Intel MPI team Agenda - Intel MPI 2017 Beta U1 product availability - New features overview - Competitive results - Useful links - Q/A 2 Intel MPI 2017 Beta U1 is available! Key

More information

WITH INTEL TECHNOLOGIES

WITH INTEL TECHNOLOGIES WITH INTEL TECHNOLOGIES Commitment Is to Enable The Best Democratize technologies Advance solutions Unleash innovations Intel Xeon Scalable Processor Family Delivers Ideal Enterprise Solutions NEW Intel

More information

Intel tools for High Performance Python 데이터분석및기타기능을위한고성능 Python

Intel tools for High Performance Python 데이터분석및기타기능을위한고성능 Python Intel tools for High Performance Python 데이터분석및기타기능을위한고성능 Python Python Landscape Adoption of Python continues to grow among domain specialists and developers for its productivity benefits Challenge#1:

More information

Werner Schueler. Enterprise Account Manager, Intel

Werner Schueler. Enterprise Account Manager, Intel Werner Schueler Enterprise Account Manager, Intel The next big wave mainframes Standardsbased servers Cloud computing Data deluge COMPUTE breakthrough Innovation surge Artificial intelligence 12X AI Compute

More information

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries.

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. Munara Tolubaeva Technical Consulting Engineer 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. notices and disclaimers Intel technologies features and benefits depend

More information

Achieving 2.5X 1 Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization

Achieving 2.5X 1 Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization white paper Internet Discovery Artificial Intelligence (AI) Achieving.X Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization As one of the world s preeminent

More information

HPCG on Intel Xeon Phi 2 nd Generation, Knights Landing. Alexander Kleymenov and Jongsoo Park Intel Corporation SC16, HPCG BoF

HPCG on Intel Xeon Phi 2 nd Generation, Knights Landing. Alexander Kleymenov and Jongsoo Park Intel Corporation SC16, HPCG BoF HPCG on Intel Xeon Phi 2 nd Generation, Knights Landing Alexander Kleymenov and Jongsoo Park Intel Corporation SC16, HPCG BoF 1 Outline KNL results Our other work related to HPCG 2 ~47 GF/s per KNL ~10

More information

H.J. Lu, Sunil K Pandey. Intel. November, 2018

H.J. Lu, Sunil K Pandey. Intel. November, 2018 H.J. Lu, Sunil K Pandey Intel November, 2018 Issues with Run-time Library on IA Memory, string and math functions in today s glibc are optimized for today s Intel processors: AVX/AVX2/AVX512 FMA It takes

More information

April 2 nd, Bob Burroughs Director, HPC Solution Sales

April 2 nd, Bob Burroughs Director, HPC Solution Sales April 2 nd, 2019 Bob Burroughs Director, HPC Solution Sales Today - Introducing 2 nd Generation Intel Xeon Scalable Processors how Intel Speeds HPC performance Work Time System Peak Efficiency Software

More information

Bei Wang, Dmitry Prohorov and Carlos Rosales

Bei Wang, Dmitry Prohorov and Carlos Rosales Bei Wang, Dmitry Prohorov and Carlos Rosales Aspects of Application Performance What are the Aspects of Performance Intel Hardware Features Omni-Path Architecture MCDRAM 3D XPoint Many-core Xeon Phi AVX-512

More information

Intel Advisor XE Future Release Threading Design & Prototyping Vectorization Assistant

Intel Advisor XE Future Release Threading Design & Prototyping Vectorization Assistant Intel Advisor XE Future Release Threading Design & Prototyping Vectorization Assistant Parallel is the Path Forward Intel Xeon and Intel Xeon Phi Product Families are both going parallel Intel Xeon processor

More information

Agenda. Optimization Notice Copyright 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda. Optimization Notice Copyright 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Agenda VTune Amplifier XE OpenMP* Analysis: answering on customers questions about performance in the same language a program was written in Concepts, metrics and technology inside VTune Amplifier XE OpenMP

More information

Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature. Intel Software Developer Conference London, 2017

Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature. Intel Software Developer Conference London, 2017 Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature Intel Software Developer Conference London, 2017 Agenda Vectorization is becoming more and more important What is

More information

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,

More information

High Performance Computing The Essential Tool for a Knowledge Economy

High Performance Computing The Essential Tool for a Knowledge Economy High Performance Computing The Essential Tool for a Knowledge Economy Rajeeb Hazra Vice President & General Manager Technical Computing Group Datacenter & Connected Systems Group July 22 nd 2013 1 What

More information

Intel Xeon Phi Coprocessor. Technical Resources. Intel Xeon Phi Coprocessor Workshop Pawsey Centre & CSIRO, Aug Intel Xeon Phi Coprocessor

Intel Xeon Phi Coprocessor. Technical Resources. Intel Xeon Phi Coprocessor Workshop Pawsey Centre & CSIRO, Aug Intel Xeon Phi Coprocessor Technical Resources Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPETY RIGHTS

More information

IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor

IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor D.Sc. Mikko Byckling 17th Workshop on High Performance Computing in Meteorology October 24 th 2016, Reading, UK Legal Disclaimer & Optimization

More information

Enabling the future of Artificial intelligence

Enabling the future of Artificial intelligence Enabling the future of Artificial intelligence Contents AI Overview Intel Nervana AI products Hardware Software Intel Nervana Deep Learning Platform Learn more - Intel Nervana AI Academy Artificial Intelligence,

More information

Vectorization Advisor: getting started

Vectorization Advisor: getting started Vectorization Advisor: getting started Before you analyze Run GUI or Command Line Set-up environment Linux: source /advixe-vars.sh Windows: \advixe-vars.bat Run GUI or Command

More information

Data center: The center of possibility

Data center: The center of possibility Data center: The center of possibility Diane bryant Executive vice president & general manager Data center group, intel corporation Data center: The center of possibility The future is Thousands of Clouds

More information

Intel Many Integrated Core (MIC) Architecture

Intel Many Integrated Core (MIC) Architecture Intel Many Integrated Core (MIC) Architecture Karl Solchenbach Director European Exascale Labs BMW2011, November 3, 2011 1 Notice and Disclaimers Notice: This document contains information on products

More information

Sample for OpenCL* and DirectX* Video Acceleration Surface Sharing

Sample for OpenCL* and DirectX* Video Acceleration Surface Sharing Sample for OpenCL* and DirectX* Video Acceleration Surface Sharing User s Guide Intel SDK for OpenCL* Applications Sample Documentation Copyright 2010 2013 Intel Corporation All Rights Reserved Document

More information

OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel

OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel Clang * : An Excellent C++ Compiler LLVM * : Collection of modular and reusable compiler and toolchain technologies Created by Chris Lattner

More information

Opportunities and Challenges in Sparse Linear Algebra on Many-Core Processors with High-Bandwidth Memory

Opportunities and Challenges in Sparse Linear Algebra on Many-Core Processors with High-Bandwidth Memory Opportunities and Challenges in Sparse Linear Algebra on Many-Core Processors with High-Bandwidth Memory Jongsoo Park, Parallel Computing Lab, Intel Corporation with contributions from MKL team 1 Algorithm/

More information

12th ANNUAL WORKSHOP 2016 NVME OVER FABRICS. Presented by Phil Cayton Intel Corporation. April 6th, 2016

12th ANNUAL WORKSHOP 2016 NVME OVER FABRICS. Presented by Phil Cayton Intel Corporation. April 6th, 2016 12th ANNUAL WORKSHOP 2016 NVME OVER FABRICS Presented by Phil Cayton Intel Corporation April 6th, 2016 NVM Express * Organization Scaling NVMe in the datacenter Architecture / Implementation Overview Standardization

More information

Becca Paren Cluster Systems Engineer Software and Services Group. May 2017

Becca Paren Cluster Systems Engineer Software and Services Group. May 2017 Becca Paren Cluster Systems Engineer Software and Services Group May 2017 Clusters are complex systems! Challenge is to reduce this complexity barrier for: Cluster architects System administrators Application

More information

Повышение энергоэффективности мобильных приложений путем их распараллеливания. Примеры. Владимир Полин

Повышение энергоэффективности мобильных приложений путем их распараллеливания. Примеры. Владимир Полин Повышение энергоэффективности мобильных приложений путем их распараллеливания. Примеры. Владимир Полин Legal Notices This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS

More information

Installation Guide and Release Notes

Installation Guide and Release Notes Intel C++ Studio XE 2013 for Windows* Installation Guide and Release Notes Document number: 323805-003US 26 June 2013 Table of Contents 1 Introduction... 1 1.1 What s New... 2 1.1.1 Changes since Intel

More information

INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT UPDATE ON OPENSWR: A SCALABLE HIGH- PERFORMANCE SOFTWARE RASTERIZER FOR SCIVIS Jefferson Amstutz Intel

More information

Data-Centric Innovation Summit NAVEEN RAO CORPORATE VICE PRESIDENT & GENERAL MANAGER ARTIFICIAL INTELLIGENCE PRODUCTS GROUP

Data-Centric Innovation Summit NAVEEN RAO CORPORATE VICE PRESIDENT & GENERAL MANAGER ARTIFICIAL INTELLIGENCE PRODUCTS GROUP Data-Centric Innovation Summit NAVEEN RAO CORPORATE VICE PRESIDENT & GENERAL MANAGER ARTIFICIAL INTELLIGENCE PRODUCTS GROUP Data center logic silicon Tam ~30% cagr Ai is exploding $8-10B Emerging as a

More information

Sayantan Sur, Intel. ExaComm Workshop held in conjunction with ISC 2018

Sayantan Sur, Intel. ExaComm Workshop held in conjunction with ISC 2018 Sayantan Sur, Intel ExaComm Workshop held in conjunction with ISC 2018 Legal Disclaimer & Optimization Notice Software and workloads used in performance tests may have been optimized for performance only

More information

OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing

OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing Intel SDK for OpenCL* Applications Sample Documentation Copyright 2010 2012 Intel Corporation All Rights Reserved Document Number: 327281-001US

More information

Intel. Rack Scale Design: A Deeper Perspective on Software Manageability for the Open Compute Project Community. Mohan J. Kumar Intel Fellow

Intel. Rack Scale Design: A Deeper Perspective on Software Manageability for the Open Compute Project Community. Mohan J. Kumar Intel Fellow Intel Rack Scale Design: A Deeper Perspective on Software Manageability for the Open Compute Project Community Mohan J. Kumar Intel Fellow Agenda Rack Scale Design (RSD) Overview Manageability for RSD

More information

Jacek Czaja, Machine Learning Engineer, AI Product Group

Jacek Czaja, Machine Learning Engineer, AI Product Group Jacek Czaja, Machine Learning Engineer, AI Product Group Legal Disclaimer & Optimization Notice INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

More information

Achieving High Performance. Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013

Achieving High Performance. Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013 Achieving High Performance Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013 Does Instruction Set Matter? We find that ARM and x86 processors are simply engineering design points optimized

More information

Contributors: Surabhi Jain, Gengbin Zheng, Maria Garzaran, Jim Cownie, Taru Doodi, and Terry L. Wilmarth

Contributors: Surabhi Jain, Gengbin Zheng, Maria Garzaran, Jim Cownie, Taru Doodi, and Terry L. Wilmarth Presenter: Surabhi Jain Contributors: Surabhi Jain, Gengbin Zheng, Maria Garzaran, Jim Cownie, Taru Doodi, and Terry L. Wilmarth May 25, 2018 ROME workshop (in conjunction with IPDPS 2018), Vancouver,

More information

Fast forward. To your <next>

Fast forward. To your <next> Fast forward To your Navin Shenoy EXECUTIVE VICE PRESIDENT GENERAL MANAGER, DATA CENTER GROUP CLOUD ECONOMICS INTELLIGENT DATA PRACTICES NETWORK TRANSFORMATION Intel Xeon Scalable Platform The

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

Kirill Rogozhin. Intel

Kirill Rogozhin. Intel Kirill Rogozhin Intel From Old HPC principle to modern performance model Old HPC principles: 1. Balance principle (e.g. Kung 1986) hw and software parameters altogether 2. Compute Density, intensity, machine

More information

Running Docker* Containers on Intel Xeon Phi Processors

Running Docker* Containers on Intel Xeon Phi Processors Running Docker* Containers on Intel Xeon Phi Processors White Paper March 2017 Revision 001 Document Number: 335644-001US Notice: This document contains information on products in the design phase of development.

More information

Achieving Peak Performance on Intel Hardware. Intel Software Developer Conference London, 2017

Achieving Peak Performance on Intel Hardware. Intel Software Developer Conference London, 2017 Achieving Peak Performance on Intel Hardware Intel Software Developer Conference London, 2017 Welcome Aims for the day You understand some of the critical features of Intel processors and other hardware

More information

MICHAL MROZEK ZBIGNIEW ZDANOWICZ

MICHAL MROZEK ZBIGNIEW ZDANOWICZ MICHAL MROZEK ZBIGNIEW ZDANOWICZ Legal Notices and Disclaimers INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY

More information

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends Collaborators: Richard T. Mills, Argonne National Laboratory Sarat Sreepathi, Oak Ridge National Laboratory Forrest M. Hoffman, Oak Ridge National Laboratory Jitendra Kumar, Oak Ridge National Laboratory

More information

NVMe Over Fabrics: Scaling Up With The Storage Performance Development Kit

NVMe Over Fabrics: Scaling Up With The Storage Performance Development Kit NVMe Over Fabrics: Scaling Up With The Storage Performance Development Kit Ben Walker Data Center Group Intel Corporation 2018 Storage Developer Conference. Intel Corporation. All Rights Reserved. 1 Notices

More information

Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature

Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature Visualizing and Finding Optimization Opportunities with Intel Advisor Roofline feature Intel Software Developer Conference Frankfurt, 2017 Klaus-Dieter Oertel, Intel Agenda Intel Advisor for vectorization

More information

Installation Guide and Release Notes

Installation Guide and Release Notes Intel Parallel Studio XE 2013 for Linux* Installation Guide and Release Notes Document number: 323804-003US 10 March 2013 Table of Contents 1 Introduction... 1 1.1 What s New... 1 1.1.1 Changes since Intel

More information

HPC. Accelerating. HPC Advisory Council Lugano, CH March 15 th, Herbert Cornelius Intel

HPC. Accelerating. HPC Advisory Council Lugano, CH March 15 th, Herbert Cornelius Intel 15.03.2012 1 Accelerating HPC HPC Advisory Council Lugano, CH March 15 th, 2012 Herbert Cornelius Intel Legal Disclaimer 15.03.2012 2 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.

More information

Getting Started with Intel SDK for OpenCL Applications

Getting Started with Intel SDK for OpenCL Applications Getting Started with Intel SDK for OpenCL Applications Webinar #1 in the Three-part OpenCL Webinar Series July 11, 2012 Register Now for All Webinars in the Series Welcome to Getting Started with Intel

More information

Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor

Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor * Some names and brands may be claimed as the property of others. Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor E.J. Bylaska 1, M. Jacquelin

More information

Jackson Marusarz Software Technical Consulting Engineer

Jackson Marusarz Software Technical Consulting Engineer Jackson Marusarz Software Technical Consulting Engineer What Will Be Covered Overview Memory/Thread analysis New Features Deep dive into debugger integrations Demo Call to action 2 Analysis Tools for Diagnosis

More information

Bitonic Sorting. Intel SDK for OpenCL* Applications Sample Documentation. Copyright Intel Corporation. All Rights Reserved

Bitonic Sorting. Intel SDK for OpenCL* Applications Sample Documentation. Copyright Intel Corporation. All Rights Reserved Intel SDK for OpenCL* Applications Sample Documentation Copyright 2010 2012 Intel Corporation All Rights Reserved Document Number: 325262-002US Revision: 1.3 World Wide Web: http://www.intel.com Document

More information

Sergey Maidanov. Software Engineering Manager for Intel Distribution for Python*

Sergey Maidanov. Software Engineering Manager for Intel Distribution for Python* Sergey Maidanov Software Engineering Manager for Intel Distribution for Python* Introduction Python is among the most popular programming languages Especially for prototyping But very limited use in production

More information

Efficient Parallel Programming on Xeon Phi for Exascale

Efficient Parallel Programming on Xeon Phi for Exascale Efficient Parallel Programming on Xeon Phi for Exascale Eric Petit, Intel IPAG, Seminar at MDLS, Saclay, 29th November 2016 Legal Disclaimers Intel technologies features and benefits depend on system configuration

More information

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager Intel Math Kernel Library (Intel MKL) BLAS Victor Kostin Intel MKL Dense Solvers team manager Intel MKL BLAS/Sparse BLAS Original ( dense ) BLAS available from www.netlib.org Additionally Intel MKL provides

More information

Crosstalk between VMs. Alexander Komarov, Application Engineer Software and Services Group Developer Relations Division EMEA

Crosstalk between VMs. Alexander Komarov, Application Engineer Software and Services Group Developer Relations Division EMEA Crosstalk between VMs Alexander Komarov, Application Engineer Software and Services Group Developer Relations Division EMEA 2 September 2015 Legal Disclaimer & Optimization Notice INFORMATION IN THIS DOCUMENT

More information

Bitonic Sorting Intel OpenCL SDK Sample Documentation

Bitonic Sorting Intel OpenCL SDK Sample Documentation Intel OpenCL SDK Sample Documentation Document Number: 325262-002US Legal Information INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

More information

Fast-track Hybrid IT Transformation with Intel Data Center Blocks for Cloud

Fast-track Hybrid IT Transformation with Intel Data Center Blocks for Cloud Fast-track Hybrid IT Transformation with Intel Data Center Blocks for Cloud Kyle Corrigan, Cloud Product Line Manager, Intel Server Products Group Wagner Diaz, Product Marketing Engineer, Intel Data Center

More information

Memory & Thread Debugger

Memory & Thread Debugger Memory & Thread Debugger Here is What Will Be Covered Overview Memory/Thread analysis New Features Deep dive into debugger integrations Demo Call to action Intel Confidential 2 Analysis Tools for Diagnosis

More information

Intel Parallel Studio XE 2011 for Windows* Installation Guide and Release Notes

Intel Parallel Studio XE 2011 for Windows* Installation Guide and Release Notes Intel Parallel Studio XE 2011 for Windows* Installation Guide and Release Notes Document number: 323803-001US 4 May 2011 Table of Contents 1 Introduction... 1 1.1 What s New... 2 1.2 Product Contents...

More information

Alexei Katranov. IWOCL '16, April 21, 2016, Vienna, Austria

Alexei Katranov. IWOCL '16, April 21, 2016, Vienna, Austria Alexei Katranov IWOCL '16, April 21, 2016, Vienna, Austria Hardware: customization, integration, heterogeneity Intel Processor Graphics CPU CPU CPU CPU Multicore CPU + integrated units for graphics, media

More information

Using CNN Across Intel Architecture

Using CNN Across Intel Architecture white paper Artificial Intelligence Object Classification Intel AI Builders Object Classification Using CNN Across Intel Architecture Table of Contents Abstract...1 1. Introduction...1 2. Setting up a

More information

Real World Development examples of systems / iot

Real World Development examples of systems / iot Real World Development examples of systems / iot Intel Software Developer Conference Seoul 2017 Jon Kim Software Consulting Engineer Contents IOT end-to-end Scalability with Intel x86 Architect Real World

More information

Accelerate Deep Learning Inference with openvino toolkit

Accelerate Deep Learning Inference with openvino toolkit Accelerate Deep Learning Inference with openvino toolkit Priyanka Bagade, IoT Developer Evangelist, Intel Core and Visual Computing Group Optimization Notice Intel s compilers may or may not optimize to

More information

Intel Software Development Products Licensing & Programs Channel EMEA

Intel Software Development Products Licensing & Programs Channel EMEA Intel Software Development Products Licensing & Programs Channel EMEA Intel Software Development Products Advanced Performance Distributed Performance Intel Software Development Products Foundation of

More information

Small File I/O Performance in Lustre. Mikhail Pershin, Joe Gmitter Intel HPDD April 2018

Small File I/O Performance in Lustre. Mikhail Pershin, Joe Gmitter Intel HPDD April 2018 Small File I/O Performance in Lustre Mikhail Pershin, Joe Gmitter Intel HPDD April 2018 Overview Small File I/O Concerns Data on MDT (DoM) Feature Overview DoM Use Cases DoM Performance Results Small File

More information

Accelerate Machine Learning on macos with Intel Integrated Graphics. Hisham Chowdhury May 23, 2018

Accelerate Machine Learning on macos with Intel Integrated Graphics. Hisham Chowdhury May 23, 2018 Accelerate Machine Learning on macos with Intel Integrated Graphics Hisham Chowdhury May 23, 2018 Apple Machine Learning Stack Machine Learning Application 1 Machine Learning Application 2 Vision Natural

More information

Expressing and Analyzing Dependencies in your C++ Application

Expressing and Analyzing Dependencies in your C++ Application Expressing and Analyzing Dependencies in your C++ Application Pablo Reble, Software Engineer Developer Products Division Software and Services Group, Intel Agenda TBB and Flow Graph extensions Composable

More information

FAST FORWARD TO YOUR <NEXT> CREATION

FAST FORWARD TO YOUR <NEXT> CREATION FAST FORWARD TO YOUR CREATION THE ULTIMATE PROFESSIONAL WORKSTATIONS POWERED BY INTEL XEON PROCESSORS 7 SEPTEMBER 2017 WHAT S NEW INTRODUCING THE NEW INTEL XEON SCALABLE PROCESSOR BREAKTHROUGH PERFORMANCE

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

Re-Architecting Cloud Storage with Intel 3D XPoint Technology and Intel 3D NAND SSDs

Re-Architecting Cloud Storage with Intel 3D XPoint Technology and Intel 3D NAND SSDs Re-Architecting Cloud Storage with Intel 3D XPoint Technology and Intel 3D NAND SSDs Jack Zhang yuan.zhang@intel.com, Cloud & Enterprise Storage Architect Santa Clara, CA 1 Agenda Memory Storage Hierarchy

More information

Data life cycle monitoring using RoBinHood at scale. Gabriele Paciucci Solution Architect Bruno Faccini Senior Support Engineer September LAD

Data life cycle monitoring using RoBinHood at scale. Gabriele Paciucci Solution Architect Bruno Faccini Senior Support Engineer September LAD Data life cycle monitoring using RoBinHood at scale Gabriele Paciucci Solution Architect Bruno Faccini Senior Support Engineer September 2015 - LAD Agenda Motivations Hardware and software setup The first

More information

A Simple Path to Parallelism with Intel Cilk Plus

A Simple Path to Parallelism with Intel Cilk Plus Introduction This introductory tutorial describes how to use Intel Cilk Plus to simplify making taking advantage of vectorization and threading parallelism in your code. It provides a brief description

More information

Deep learning prevalence. first neuroscience department. Spiking Neuron Operant conditioning First 1 Billion transistor processor

Deep learning prevalence. first neuroscience department. Spiking Neuron Operant conditioning First 1 Billion transistor processor WELCOME TO Operant conditioning 1938 Spiking Neuron 1952 first neuroscience department 1964 Deep learning prevalence mid 2000s The Turing Machine 1936 Transistor 1947 First computer science department

More information

Intel SDK for OpenCL* - Sample for OpenCL* and Intel Media SDK Interoperability

Intel SDK for OpenCL* - Sample for OpenCL* and Intel Media SDK Interoperability Intel SDK for OpenCL* - Sample for OpenCL* and Intel Media SDK Interoperability User s Guide Copyright 2010 2012 Intel Corporation All Rights Reserved Document Number: 327283-001US Revision: 1.0 World

More information

Intel Parallel Studio XE 2015

Intel Parallel Studio XE 2015 2015 Create faster code faster with this comprehensive parallel software development suite. Faster code: Boost applications performance that scales on today s and next-gen processors Create code faster:

More information

Knights Corner: Your Path to Knights Landing

Knights Corner: Your Path to Knights Landing Knights Corner: Your Path to Knights Landing James Reinders, Intel Wednesday, September 17, 2014; 9-10am PDT Photo (c) 2014, James Reinders; used with permission; Yosemite Half Dome rising through forest

More information

Performance Profiler. Klaus-Dieter Oertel Intel-SSG-DPD IT4I HPC Workshop, Ostrava,

Performance Profiler. Klaus-Dieter Oertel Intel-SSG-DPD IT4I HPC Workshop, Ostrava, Performance Profiler Klaus-Dieter Oertel Intel-SSG-DPD IT4I HPC Workshop, Ostrava, 08-09-2016 Faster, Scalable Code, Faster Intel VTune Amplifier Performance Profiler Get Faster Code Faster With Accurate

More information

Intel Parallel Studio XE 2015 Composer Edition for Linux* Installation Guide and Release Notes

Intel Parallel Studio XE 2015 Composer Edition for Linux* Installation Guide and Release Notes Intel Parallel Studio XE 2015 Composer Edition for Linux* Installation Guide and Release Notes 23 October 2014 Table of Contents 1 Introduction... 1 1.1 Product Contents... 2 1.2 Intel Debugger (IDB) is

More information

ENVISION TECHNOLOGY CONFERENCE. Functional intel (ia) BLA PARTHAS, INTEL PLATFORM ARCHITECT

ENVISION TECHNOLOGY CONFERENCE. Functional intel (ia) BLA PARTHAS, INTEL PLATFORM ARCHITECT ENVISION TECHNOLOGY CONFERENCE Functional Safety @ intel (ia) BLA PARTHAS, INTEL PLATFORM ARCHITECT Legal Notices & Disclaimers This document contains information on products, services and/or processes

More information

Sayantan Sur, Intel. SEA Symposium on Overlapping Computation and Communication. April 4 th, 2018

Sayantan Sur, Intel. SEA Symposium on Overlapping Computation and Communication. April 4 th, 2018 Sayantan Sur, Intel SEA Symposium on Overlapping Computation and Communication April 4 th, 2018 Legal Disclaimer & Benchmark results were obtained prior to implementation of recent software patches and

More information

Efficiently Introduce Threading using Intel TBB

Efficiently Introduce Threading using Intel TBB Introduction This guide will illustrate how to efficiently introduce threading using Intel Threading Building Blocks (Intel TBB), part of Intel Parallel Studio XE. It is a widely used, award-winning C++

More information

Jim Cownie, Johnny Peyton with help from Nitya Hariharan and Doug Jacobsen

Jim Cownie, Johnny Peyton with help from Nitya Hariharan and Doug Jacobsen Jim Cownie, Johnny Peyton with help from Nitya Hariharan and Doug Jacobsen Features We Discuss Synchronization (lock) hints The nonmonotonic:dynamic schedule Both Were new in OpenMP 4.5 May have slipped

More information

The Transition to PCI Express* for Client SSDs

The Transition to PCI Express* for Client SSDs The Transition to PCI Express* for Client SSDs Amber Huffman Senior Principal Engineer Intel Santa Clara, CA 1 *Other names and brands may be claimed as the property of others. Legal Notices and Disclaimers

More information

Kevin O Leary, Intel Technical Consulting Engineer

Kevin O Leary, Intel Technical Consulting Engineer Kevin O Leary, Intel Technical Consulting Engineer Moore s Law Is Going Strong Hardware performance continues to grow exponentially We think we can continue Moore's Law for at least another 10 years."

More information

Ernesto Su, Hideki Saito, Xinmin Tian Intel Corporation. OpenMPCon 2017 September 18, 2017

Ernesto Su, Hideki Saito, Xinmin Tian Intel Corporation. OpenMPCon 2017 September 18, 2017 Ernesto Su, Hideki Saito, Xinmin Tian Intel Corporation OpenMPCon 2017 September 18, 2017 Legal Notice and Disclaimers By using this document, in addition to any agreements you have with Intel, you accept

More information

Intel Cluster Checker 3.0 webinar

Intel Cluster Checker 3.0 webinar Intel Cluster Checker 3.0 webinar June 3, 2015 Christopher Heller Technical Consulting Engineer Q2, 2015 1 Introduction Intel Cluster Checker 3.0 is a systems tool for Linux high performance compute clusters

More information

Using Intel VTune Amplifier XE for High Performance Computing

Using Intel VTune Amplifier XE for High Performance Computing Using Intel VTune Amplifier XE for High Performance Computing Vladimir Tsymbal Performance, Analysis and Threading Lab 1 The Majority of all HPC-Systems are Clusters Interconnect I/O I/O... I/O I/O Message

More information

LIBXSMM Library for small matrix multiplications. Intel High Performance and Throughput Computing (EMEA) Hans Pabst, March 12 th 2015

LIBXSMM Library for small matrix multiplications. Intel High Performance and Throughput Computing (EMEA) Hans Pabst, March 12 th 2015 LIBXSMM Library for small matrix multiplications. Intel High Performance and Throughput Computing (EMEA) Hans Pabst, March 12 th 2015 Abstract Library for small matrix-matrix multiplications targeting

More information

DEVITO AUTOMATED HIGH-PERFORMANCE FINITE DIFFERENCES FOR GEOPHYSICAL EXPLORATION

DEVITO AUTOMATED HIGH-PERFORMANCE FINITE DIFFERENCES FOR GEOPHYSICAL EXPLORATION DEVITO AUTOMATED HIGH-PERFORMANCE FINITE DIFFERENCES FOR GEOPHYSICAL EXPLORATION F. Luporini 1, C. Yount 4, M. Louboutin 3, N. Kukreja 1, P. Witte 2, M. Lange 5, P. Kelly 1, F. Herrmann 3, G.Gorman 1 1Imperial

More information

Mikhail Dvorskiy, Jim Cownie, Alexey Kukanov

Mikhail Dvorskiy, Jim Cownie, Alexey Kukanov Mikhail Dvorskiy, Jim Cownie, Alexey Kukanov What is the Parallel STL? C++17 C++ Next An extension of the C++ Standard Template Library algorithms with the execution policy argument Support for parallel

More information

INTEL MKL Vectorized Compact routines

INTEL MKL Vectorized Compact routines INTEL MKL Vectorized Compact routines Mesut Meterelliyoz, Peter Caday, Timothy B. Costa, Kazushige Goto, Louise Huot, Sarah Knepper, Arthur Araujo Mitrano, Shane Story 2018 BLIS RETREAT 09/17/2018 OUTLINE

More information

Collecting OpenCL*-related Metrics with Intel Graphics Performance Analyzers

Collecting OpenCL*-related Metrics with Intel Graphics Performance Analyzers Collecting OpenCL*-related Metrics with Intel Graphics Performance Analyzers Collecting Important OpenCL*-related Metrics with Intel GPA System Analyzer Introduction Intel SDK for OpenCL* Applications

More information

Sarah Knepper. Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018

Sarah Knepper. Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018 Sarah Knepper Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018 Outline Motivation Problem statement and solutions Simple example Performance comparison 2 Motivation Partial differential equations

More information

Intel s Architecture for NFV

Intel s Architecture for NFV Intel s Architecture for NFV Evolution from specialized technology to mainstream programming Net Futures 2015 Network applications Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION

More information

Michael Kinsner, Dirk Seynhaeve IWOCL 2018

Michael Kinsner, Dirk Seynhaeve IWOCL 2018 Michael Kinsner, Dirk Seynhaeve IWOCL 2018 Topics 1. FPGA overview 2. Motivating application classes 3. Host pipes 4. Some data 2 FPGA: Fine-grained Massive Parallelism Intel Stratix 10 FPGA: Over 5 Million

More information

What s New August 2015

What s New August 2015 What s New August 2015 Significant New Features New Directory Structure OpenMP* 4.1 Extensions C11 Standard Support More C++14 Standard Support Fortran 2008 Submodules and IMPURE ELEMENTAL Further C Interoperability

More information

Andreas Schneider. Markus Leberecht. Senior Cloud Solution Architect, Intel Deutschland. Distribution Sales Manager, Intel Deutschland

Andreas Schneider. Markus Leberecht. Senior Cloud Solution Architect, Intel Deutschland. Distribution Sales Manager, Intel Deutschland Markus Leberecht Senior Cloud Solution Architect, Intel Deutschland Andreas Schneider Distribution Sales Manager, Intel Deutschland Legal Disclaimers 2016 Intel Corporation. Intel, the Intel logo, Xeon

More information

Scaling Out Python* To HPC and Big Data

Scaling Out Python* To HPC and Big Data Scaling Out Python* To HPC and Big Data Sergey Maidanov Software Engineering Manager for Intel Distribution for Python* What Problems We Solve: Scalable Performance Make Python usable beyond prototyping

More information