Availability and Utility of Idle Memory in Workstation Clusters. Anurag Acharya, UC-Santa Barbara Sanjeev Setia, George Mason Univ

Size: px
Start display at page:

Download "Availability and Utility of Idle Memory in Workstation Clusters. Anurag Acharya, UC-Santa Barbara Sanjeev Setia, George Mason Univ"

Transcription

1 Availability and Utility of Idle Memory in Workstation Clusters Anurag Acharya, UC-Santa Barbara Sanjeev Setia, George Mason Univ

2 Motivation Explosive growth in data intensive applications Large-scale scientific computations, data mining, multimedia apps High speed LANs access remote memory faster than local disk Exploit idle memory on workstation clusters for data intensive applications ACM Sigmetrics 99 2

3 Exploiting Idle Memory OS support for Global Memory Management GMS (Univ. of Washington), Duke, UC Berkeley No previous study of memory availability in workstation clusters User-level software Can we build something similar to Condor for harvesting idle memory on clusters of workstations? ACM Sigmetrics 99 3

4 Issues addressed What are the typical memory usage patterns on a desktop workstation? How much memory in a cluster can be expected to be idle? How much benefit can a user expect from exploiting idle memory? Can we exploit idle memory without inconveniencing workstation owners? ACM Sigmetrics 99 4

5 Outline Memory Availability Metrics Methodology Results User-level Software for exploiting idle memory Utility of exploiting idle memory ACM Sigmetrics 99 5

6 Memory Usage Memory usage Kernel File Cache Process Memory (Virtual Memory) Free Memory Free memory Idle memory In modern systems, file cache and virtual memory system unified ACM Sigmetrics 99 6

7 Idle memory Busy memory Kernel memory Resident Set Size of active processes (CPU usage > 0) Active file cache memory UNIX always maintains a pool of free pages determined by kernel variable lotsfree Idle mem = Total mem - Busy mem - Lotsfree ACM Sigmetrics 99 7

8 Active File Cache Memory Two components Open files in currently active processes are considered active Cached files that will be needed by processes that will be active in the near future Executables, library files, etc. that are mapped into process address space Files that are opened by the process ACM Sigmetrics 99 8

9 Measuring busy memory Kernel memory In Solaris, kernel statistics interface (kstat) Process Memory = Sum of RSS of active procs active processes reported by ps, top X server and periodic daemons always active RSS of a process = Private + Shared parts avoid double-counting of shared memory memtool kernel module for Solaris ACM Sigmetrics 99 9

10 Snippet of pmem output Address Kbytes Resident Shared Private Permissions Mapped File read/exec emacs 000DC read/write/exec emacs read/write/exec [ heap ] EF read/exec libc_psr.so.1 EF read/exec libmp.so.2 EF read/write/exec libmp.so.2

11 Measuring Busy Memory cont d Active File Cache Memory open files reported by lsof memory associated with files in cache reported by memtool look ahead in the gathered traces to account for cached files that will be needed in the future Caveat: approximation since we do not capture file system calls in our traces ACM Sigmetrics 99 10

12 Methodology Took snapshots of the system at 90 second intervals for several weeks on two clusters SUN workstations since kernel tools only available for Solaris George Mason cluster 23 workstations: 7 with 32 MB, 14 with 64 MB Total memory 1.4 GB UCSB cluster 29 workstations: 6 with 64 MB, 14 with 128 MB Total memory 5.2 GB ACM Sigmetrics 99 11

13 Memory Usage (64 MB Hosts) 60 Memory (MB) Avail Mem Proc Mem File Mem Dyn Kmem Stat Kmem Lotsfree Time (days)

14 Memory Usage (128 MB Hosts) 120 Memory (MB) Avail Mem Proc Mem File Mem Dyn Kmem Static Kmem Lotsfree Time (days)

15 Memory Usage (256 MB Hosts) Memory (MB) Avail Mem Proc Mem File Mem Dyn Kmem Static Kmem Lotsfree Time (days)

16 amount of memory used for dierent purposes Average (KB) Host type kernel le-cache process available 32MB hosts MB hosts MB hosts MB hosts

17 of Busy Memory with Time on a 32 MB Variation workstation 30 availmem Available Memory (MB) Time (days)

18 of Busy Memory with Time on a 256 MB Variation workstation 250 availmem Available Memory (MB) Time (days)

19 Aggregate Available Memory (ucsb) Memory (MB) Idle Hosts Only All Hosts Total Memory Time (days)

20 Aggregate Available Memory (gmu) Memory (MB) Idle Hosts Only All Hosts Total Memory Time (days)

21 Results A substantial fraction of the total memory on desktop machines is idle grows from 16 MB on 32 MB hosts to 186 MB on 256 MB hosts A large fraction of the total memory on a cluster is available 60-68% considering all hosts; 53% considering only idle hosts Many dips in memory availability on workstations => perception of memory shortage ACM Sigmetrics 99 12

22 Exploiting Idle Memory User level software inspired by Condor goals to allow data-intensive applications to use remote memory as intermediate layer in storage hierarchy between local memory and disk no social nuisance only harvest memory from idle workstations ACM Sigmetrics 99 13

23 APPLICATION mopen, mread, mwrite, mclose mopen, mclose CENTRAL MANAGER LIBRARY mread mwrite idle / active WORKSTATION W IDLE MEMORY DAEMON fork / kill RESOURCE MANAGER ACM Sigmetrics 99 14

24 Memory Recruitment Policy Based on availability study Recruit memory only from idle machines Limit recruited memory to Total Memory - (Active Memory + 15% of Total Memory + Lotsfree) Active Memory can be measured using user-level tools ACM Sigmetrics 99 15

25 Simulation Study Workload: Data-Intensive applications LU out of core LU factorization (dataset 536 MB) DMINE datamining (dataset 4 GB) DB2 5 queries on a large DB2 database (5.2 GB) RANDOM (dataset 2GB) HOTCOLD (dataset 2GB) Traces of file system calls made by these apps Memory and cpu availability traces for two weeks Repeated execution of benchmarks DB2 and DMINE with an inter-execution delay ACM Sigmetrics 99 16

26 System Model Application executes on its own workstation 4 processors, 256 MB memory, 2 disks Local disk based on Seagate Cheetah 9 avg. seek 5.8 ms, max seek 15.7 ms, RPM, transfer rate 18 MB/sec High speed network bandwidth 70 MB/sec, host-to-host latency 7.5 µs ACM Sigmetrics 99 17

27 Simulation Study Workload: 5 applications (3 real, 2 synthetic) data set sizes 536 MB GB Traces of file system calls made by these apps Memory and cpu availability traces for two weeks Repeated execution of applications System model application platform: 4 CPUs, 256 MB, 2 disks disk: RPM, transfer rate 18 MB/sec network: bandwidth 70 MB/sec, latency 7.5 µs ACM Sigmetrics 99 16

28 Results Significant benefit to exploiting idle memory on workstation clusters for applications whose footprints can fit in available memory, speedup of up to 2.1 memory recruitment policy minimizes any delays experienced by owner on workstation reclamation Simulation results validated via implementation Koussih, Acharya, Setia (HPDC 99) ACM Sigmetrics 99 17

29 Conclusions A substantial fraction of the total memory on desktop machines is not in use grows from 16 MB on 32 MB hosts to 186 MB on 256 MB hosts A large fraction of the total memory on a cluster is available 60-68% considering all hosts; 53% considering only idle hosts Memory Recruitment policy results in no adverse impact on owner while leading to speedups up to 2.1 ACM Sigmetrics 99 18

30 DMINE RANDOM Speedup lat 30, bw 10 lat 30, bw 70 lat 7.4, bw 70

File System Aging: Increasing the Relevance of File System Benchmarks

File System Aging: Increasing the Relevance of File System Benchmarks File System Aging: Increasing the Relevance of File System Benchmarks Keith A. Smith Margo I. Seltzer Harvard University Division of Engineering and Applied Sciences File System Performance Read Throughput

More information

Memory Management! Goals of this Lecture!

Memory Management! Goals of this Lecture! Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Why it works: locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware and

More information

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy Memory Management Goals of this Lecture Help you learn about: The memory hierarchy Spatial and temporal locality of reference Caching, at multiple levels Virtual memory and thereby How the hardware and

More information

Quiz for Chapter 6 Storage and Other I/O Topics 3.10

Quiz for Chapter 6 Storage and Other I/O Topics 3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: 1. [6 points] Give a concise answer to each of the following

More information

CS252 S05. CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2. I/O performance measures. I/O performance measures

CS252 S05. CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2. I/O performance measures. I/O performance measures CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2 I/O performance measures I/O performance measures diversity: which I/O devices can connect to the system? capacity: how many I/O devices

More information

Monitoring Agent for Unix OS Version Reference IBM

Monitoring Agent for Unix OS Version Reference IBM Monitoring Agent for Unix OS Version 6.3.5 Reference IBM Monitoring Agent for Unix OS Version 6.3.5 Reference IBM Note Before using this information and the product it supports, read the information in

More information

Memory Management! How the hardware and OS give application pgms:" The illusion of a large contiguous address space" Protection against each other"

Memory Management! How the hardware and OS give application pgms: The illusion of a large contiguous address space Protection against each other Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Spatial and temporal locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware

More information

Virtual Memory. Reading: Silberschatz chapter 10 Reading: Stallings. chapter 8 EEL 358

Virtual Memory. Reading: Silberschatz chapter 10 Reading: Stallings. chapter 8 EEL 358 Virtual Memory Reading: Silberschatz chapter 10 Reading: Stallings chapter 8 1 Outline Introduction Advantages Thrashing Principal of Locality VM based on Paging/Segmentation Combined Paging and Segmentation

More information

Active Disks - Remote Execution

Active Disks - Remote Execution - Remote Execution for Network-Attached Storage Erik Riedel, University www.pdl.cs.cmu.edu/active UC-Berkeley Systems Seminar 8 October 1998 Outline Network-Attached Storage Opportunity Applications Performance

More information

A Comparison of File. D. Roselli, J. R. Lorch, T. E. Anderson Proc USENIX Annual Technical Conference

A Comparison of File. D. Roselli, J. R. Lorch, T. E. Anderson Proc USENIX Annual Technical Conference A Comparison of File System Workloads D. Roselli, J. R. Lorch, T. E. Anderson Proc. 2000 USENIX Annual Technical Conference File System Performance Integral component of overall system performance Optimised

More information

CS Project Report

CS Project Report CS7960 - Project Report Kshitij Sudan kshitij@cs.utah.edu 1 Introduction With the growth in services provided over the Internet, the amount of data processing required has grown tremendously. To satisfy

More information

Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories

Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories Adrian M. Caulfield Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, Steven Swanson Non-Volatile Systems

More information

ibench: Quantifying Interference in Datacenter Applications

ibench: Quantifying Interference in Datacenter Applications ibench: Quantifying Interference in Datacenter Applications Christina Delimitrou and Christos Kozyrakis Stanford University IISWC September 23 th 2013 Executive Summary Problem: Increasing utilization

More information

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

Empirical Evaluation of Latency-Sensitive Application Performance in the Cloud

Empirical Evaluation of Latency-Sensitive Application Performance in the Cloud Empirical Evaluation of Latency-Sensitive Application Performance in the Cloud Sean Barker and Prashant Shenoy University of Massachusetts Amherst Department of Computer Science Cloud Computing! Cloud

More information

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

I/O Characterization of Commercial Workloads

I/O Characterization of Commercial Workloads I/O Characterization of Commercial Workloads Kimberly Keeton, Alistair Veitch, Doug Obal, and John Wilkes Storage Systems Program Hewlett-Packard Laboratories www.hpl.hp.com/research/itc/csl/ssp kkeeton@hpl.hp.com

More information

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu A Row Buffer Locality-Aware Caching Policy for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Overview Emerging memories such as PCM offer higher density than

More information

Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal,

More information

Building an Internet-Scale Publish/Subscribe System

Building an Internet-Scale Publish/Subscribe System Building an Internet-Scale Publish/Subscribe System Ian Rose Mema Roussopoulos Peter Pietzuch Rohan Murty Matt Welsh Jonathan Ledlie Imperial College London Peter R. Pietzuch prp@doc.ic.ac.uk Harvard University

More information

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1 ITS 225: Operating Systems Operating Systems Lecture 1 Introduction & Overview Jan 15, 2004 Dr. Matthew Dailey Information Technology Program Sirindhorn International Institute of Technology Thammasat

More information

Hammer Slide: Work- and CPU-efficient Streaming Window Aggregation

Hammer Slide: Work- and CPU-efficient Streaming Window Aggregation Large-Scale Data & Systems Group Hammer Slide: Work- and CPU-efficient Streaming Window Aggregation Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, Holger Pirk Large-Scale Data & Systems (LSDS)

More information

Accelerating Parallel Analysis of Scientific Simulation Data via Zazen

Accelerating Parallel Analysis of Scientific Simulation Data via Zazen Accelerating Parallel Analysis of Scientific Simulation Data via Zazen Tiankai Tu, Charles A. Rendleman, Patrick J. Miller, Federico Sacerdoti, Ron O. Dror, and David E. Shaw D. E. Shaw Research Motivation

More information

Adapted from: TRENDS AND ATTRIBUTES OF HORIZONTAL AND VERTICAL COMPUTING ARCHITECTURES

Adapted from: TRENDS AND ATTRIBUTES OF HORIZONTAL AND VERTICAL COMPUTING ARCHITECTURES Adapted from: TRENDS AND ATTRIBUTES OF HORIZONTAL AND VERTICAL COMPUTING ARCHITECTURES Tom Atwood Business Development Manager Sun Microsystems, Inc. Takeaways Understand the technical differences between

More information

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question:

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question: Database Workload + Low throughput (0.8 IPC on an 8-wide superscalar. 1/4 of SPEC) + Naturally threaded (and widely used) application - Already high cache miss rates on a single-threaded machine (destructive

More information

Active Disks For Large-Scale Data Mining and Multimedia

Active Disks For Large-Scale Data Mining and Multimedia For Large-Scale Data Mining and Multimedia Erik Riedel University www.pdl.cs.cmu.edu/active NSIC/NASD Workshop June 8th, 1998 Outline Opportunity Applications Performance Model Speedups in Prototype Opportunity

More information

virtual memory Page 1 CSE 361S Disk Disk

virtual memory Page 1 CSE 361S Disk Disk CSE 36S Motivations for Use DRAM a for the Address space of a process can exceed physical memory size Sum of address spaces of multiple processes can exceed physical memory Simplify Management 2 Multiple

More information

Multimedia Streaming. Mike Zink

Multimedia Streaming. Mike Zink Multimedia Streaming Mike Zink Technical Challenges Servers (and proxy caches) storage continuous media streams, e.g.: 4000 movies * 90 minutes * 10 Mbps (DVD) = 27.0 TB 15 Mbps = 40.5 TB 36 Mbps (BluRay)=

More information

Measuring VMware Environments

Measuring VMware Environments Measuring VMware Environments Massimo Orlando EPV Technologies In the last years many companies adopted VMware as a way to consolidate more Windows images on a single server. As in any other environment,

More information

Anticipatory scheduling: a disk scheduling framework to overcome deceptive idleness in synchronous I/O

Anticipatory scheduling: a disk scheduling framework to overcome deceptive idleness in synchronous I/O Anticipatory scheduling: a disk scheduling framework to overcome deceptive idleness in synchronous I/O Proceedings of the 18th ACM symposium on Operating systems principles, 2001 Anticipatory Disk Scheduling

More information

Warming up Storage-level Caches with Bonfire

Warming up Storage-level Caches with Bonfire Warming up Storage-level Caches with Bonfire Yiying Zhang Gokul Soundararajan Mark W. Storer Lakshmi N. Bairavasundaram Sethuraman Subbiah Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau 2 Does on-demand

More information

Computer Architecture

Computer Architecture Computer Architecture Architecture The art and science of designing and constructing buildings A style and method of design and construction Design, the way components fit together Computer Architecture

More information

Anticipatory Disk Scheduling. Rice University

Anticipatory Disk Scheduling. Rice University Anticipatory Disk Scheduling Sitaram Iyer Peter Druschel Rice University Disk schedulers Reorder available disk requests for performance by seek optimization, proportional resource allocation, etc. Any

More information

CFLRU:A A Replacement Algorithm for Flash Memory

CFLRU:A A Replacement Algorithm for Flash Memory CFLRU:A A Replacement Algorithm for Flash Memory CASES'06, October 23 25, 2006, Seoul, Korea. Copyright 2006 ACM 1-59593-543-6/06/0010 Yen-Ting Liu Outline Introduction CFLRU Algorithm Simulation Implementation

More information

Chapter 8: Virtual Memory. Operating System Concepts

Chapter 8: Virtual Memory. Operating System Concepts Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2009 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapter 11: Implementing File Systems

Chapter 11: Implementing File Systems Chapter 11: Implementing File Systems Operating System Concepts 99h Edition DM510-14 Chapter 11: Implementing File Systems File-System Structure File-System Implementation Directory Implementation Allocation

More information

Princeton University. Computer Science 217: Introduction to Programming Systems. The Memory/Storage Hierarchy and Virtual Memory

Princeton University. Computer Science 217: Introduction to Programming Systems. The Memory/Storage Hierarchy and Virtual Memory Princeton University Computer Science 27: Introduction to Programming Systems The Memory/Storage Hierarchy and Virtual Memory Goals of this Lecture Help you learn about: Locality and caching The memory

More information

A Performance Puzzle: B-Tree Insertions are Slow on SSDs or What Is a Performance Model for SSDs?

A Performance Puzzle: B-Tree Insertions are Slow on SSDs or What Is a Performance Model for SSDs? 1 A Performance Puzzle: B-Tree Insertions are Slow on SSDs or What Is a Performance Model for SSDs? Bradley C. Kuszmaul MIT CSAIL, & Tokutek 3 iibench - SSD Insert Test 25 2 Rows/Second 15 1 5 2,, 4,,

More information

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Row Buffer Locality Aware Caching Policies for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Executive Summary Different memory technologies have different

More information

Decoupling Datacenter Studies from Access to Large-Scale Applications: A Modeling Approach for Storage Workloads

Decoupling Datacenter Studies from Access to Large-Scale Applications: A Modeling Approach for Storage Workloads Decoupling Datacenter Studies from Access to Large-Scale Applications: A Modeling Approach for Storage Workloads Christina Delimitrou 1, Sriram Sankar 2, Kushagra Vaid 2, Christos Kozyrakis 1 1 Stanford

More information

Performance Modeling and Analysis of Flash based Storage Devices

Performance Modeling and Analysis of Flash based Storage Devices Performance Modeling and Analysis of Flash based Storage Devices H. Howie Huang, Shan Li George Washington University Alex Szalay, Andreas Terzis Johns Hopkins University MSST 11 May 26, 2011 NAND Flash

More information

Virtual Asymmetric Multiprocessor for Interactive Performance of Consolidated Desktops

Virtual Asymmetric Multiprocessor for Interactive Performance of Consolidated Desktops Virtual Asymmetric Multiprocessor for Interactive Performance of Consolidated Desktops Hwanju Kim 12, Sangwook Kim 1, Jinkyu Jeong 1, and Joonwon Lee 1 Sungkyunkwan University 1 University of Cambridge

More information

How Data Volume Affects Spark Based Data Analytics on a Scale-up Server

How Data Volume Affects Spark Based Data Analytics on a Scale-up Server How Data Volume Affects Spark Based Data Analytics on a Scale-up Server Ahsan Javed Awan EMJD-DC (KTH-UPC) (https://www.kth.se/profile/ajawan/) Mats Brorsson(KTH), Vladimir Vlassov(KTH) and Eduard Ayguade(UPC

More information

Storage Management 1

Storage Management 1 Storage Management Goals of this Lecture Help you learn about: Locality and caching Typical storage hierarchy Virtual memory How the hardware and OS give applications the illusion of a large, contiguous,

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

Dynamic Partitioned Global Address Spaces for Power Efficient DRAM Virtualization

Dynamic Partitioned Global Address Spaces for Power Efficient DRAM Virtualization Dynamic Partitioned Global Address Spaces for Power Efficient DRAM Virtualization Jeffrey Young, Sudhakar Yalamanchili School of Electrical and Computer Engineering, Georgia Institute of Technology Talk

More information

Pushing the Limits. ADSM Symposium Sheelagh Treweek September 1999 Oxford University Computing Services 1

Pushing the Limits. ADSM Symposium Sheelagh Treweek September 1999 Oxford University Computing Services 1 Pushing the Limits ADSM Symposium Sheelagh Treweek sheelagh.treweek@oucs.ox.ac.uk September 1999 Oxford University Computing Services 1 Overview History of ADSM services at Oxford October 1995 - started

More information

Experiences with the Parallel Virtual File System (PVFS) in Linux Clusters

Experiences with the Parallel Virtual File System (PVFS) in Linux Clusters Experiences with the Parallel Virtual File System (PVFS) in Linux Clusters Kent Milfeld, Avijit Purkayastha, Chona Guiang Texas Advanced Computing Center The University of Texas Austin, Texas USA Abstract

More information

Walking Four Machines by the Shore

Walking Four Machines by the Shore Walking Four Machines by the Shore Anastassia Ailamaki www.cs.cmu.edu/~natassa with Mark Hill and David DeWitt University of Wisconsin - Madison Workloads on Modern Platforms Cycles per instruction 3.0

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 11: File System Implementation Prof. Alan Mislove (amislove@ccs.neu.edu) File-System Structure File structure Logical storage unit Collection

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Review: Memory Accesses 2 Impact of Program Structure on Memory Performance o Consider an array named data with 128*128 elements o Each

More information

OPERATING SYSTEM. Chapter 12: File System Implementation

OPERATING SYSTEM. Chapter 12: File System Implementation OPERATING SYSTEM Chapter 12: File System Implementation Chapter 12: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation Methods Free-Space Management

More information

Seagate Enterprise SATA SSD with DuraWrite Technology Competitive Evaluation

Seagate Enterprise SATA SSD with DuraWrite Technology Competitive Evaluation August 2018 Seagate Enterprise SATA SSD with DuraWrite Technology Competitive Seagate Enterprise SATA SSDs with DuraWrite Technology have the best performance for compressible Database, Cloud, VDI Software

More information

Anticipatory Disk Scheduling. Rice University

Anticipatory Disk Scheduling. Rice University Anticipatory Disk Scheduling Sitaram Iyer Peter Druschel Rice University Disk schedulers Reorder available disk requests for performance by seek optimization, proportional resource allocation, etc. Any

More information

CSE544 Database Architecture

CSE544 Database Architecture CSE544 Database Architecture Tuesday, February 1 st, 2011 Slides courtesy of Magda Balazinska 1 Where We Are What we have already seen Overview of the relational model Motivation and where model came from

More information

Vamsidhar Thummala. Joint work with Shivnath Babu, Songyun Duan, Nedyalkov Borisov, and Herodotous Herodotou Duke University 20 th May 2009

Vamsidhar Thummala. Joint work with Shivnath Babu, Songyun Duan, Nedyalkov Borisov, and Herodotous Herodotou Duke University 20 th May 2009 Vamsidhar Thummala Joint work with Shivnath Babu, Songyun Duan, Nedyalkov Borisov, and Herodotous Herodotou Duke University 20 th May 2009 Claim: Current techniques for managing systems have limitations

More information

Performance Sentry VM Provider Objects April 11, 2012

Performance Sentry VM Provider Objects April 11, 2012 Introduction This document describes the Performance Sentry VM (Sentry VM) Provider performance data objects defined using the VMware performance groups and counters. This version of Performance Sentry

More information

Chapter 05. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 05. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 05 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.

More information

Chapter 12: File System Implementation

Chapter 12: File System Implementation Chapter 12: File System Implementation Chapter 12: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation Methods Free-Space Management Efficiency

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory 1 Learning Outcomes An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. 2 Memory Management Unit (or TLB) The position and function

More information

REFERENCE ARCHITECTURE Microsoft SQL Server 2016 Data Warehouse Fast Track. FlashStack 70TB Solution with Cisco UCS and Pure Storage FlashArray//X

REFERENCE ARCHITECTURE Microsoft SQL Server 2016 Data Warehouse Fast Track. FlashStack 70TB Solution with Cisco UCS and Pure Storage FlashArray//X REFERENCE ARCHITECTURE Microsoft SQL Server 2016 Data Warehouse Fast Track FlashStack 70TB Solution with Cisco UCS and Pure Storage FlashArray//X FLASHSTACK REFERENCE ARCHITECTURE September 2018 TABLE

More information

Performance of computer systems

Performance of computer systems Performance of computer systems Many different factors among which: Technology Raw speed of the circuits (clock, switching time) Process technology (how many transistors on a chip) Organization What type

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory Learning Outcomes An understanding of page-based virtual memory in depth. Including the R000 s support for virtual memory. Memory Management Unit (or TLB) The position and function of the

More information

Aerie: Flexible File-System Interfaces to Storage-Class Memory [Eurosys 2014] Operating System Design Yongju Song

Aerie: Flexible File-System Interfaces to Storage-Class Memory [Eurosys 2014] Operating System Design Yongju Song Aerie: Flexible File-System Interfaces to Storage-Class Memory [Eurosys 2014] Operating System Design Yongju Song Outline 1. Storage-Class Memory (SCM) 2. Motivation 3. Design of Aerie 4. File System Features

More information

Veritas Storage Foundation and. Sun Solaris ZFS. A performance study based on commercial workloads. August 02, 2007

Veritas Storage Foundation and. Sun Solaris ZFS. A performance study based on commercial workloads. August 02, 2007 Veritas Storage Foundation and Sun Solaris ZFS A performance study based on commercial workloads August 02, 2007 Introduction...3 Executive Summary...4 About Veritas Storage Foundation...5 Veritas Storage

More information

I/O Systems (3): Clocks and Timers. CSE 2431: Introduction to Operating Systems

I/O Systems (3): Clocks and Timers. CSE 2431: Introduction to Operating Systems I/O Systems (3): Clocks and Timers CSE 2431: Introduction to Operating Systems 1 Outline Clock Hardware Clock Software Soft Timers 2 Two Types of Clocks Simple clock: tied to the 110- or 220-volt power

More information

Chapter 10: File System Implementation

Chapter 10: File System Implementation Chapter 10: File System Implementation Chapter 10: File System Implementation File-System Structure" File-System Implementation " Directory Implementation" Allocation Methods" Free-Space Management " Efficiency

More information

Efficient On-Demand Operations in Distributed Infrastructures

Efficient On-Demand Operations in Distributed Infrastructures Efficient On-Demand Operations in Distributed Infrastructures Steve Ko and Indranil Gupta Distributed Protocols Research Group University of Illinois at Urbana-Champaign 2 One-Line Summary We need to design

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

CSE 120: Principles of Operating Systems. Lecture 10. File Systems. November 6, Prof. Joe Pasquale

CSE 120: Principles of Operating Systems. Lecture 10. File Systems. November 6, Prof. Joe Pasquale CSE 120: Principles of Operating Systems Lecture 10 File Systems November 6, 2003 Prof. Joe Pasquale Department of Computer Science and Engineering University of California, San Diego 2003 by Joseph Pasquale

More information

OPERATING SYSTEM. Chapter 9: Virtual Memory

OPERATING SYSTEM. Chapter 9: Virtual Memory OPERATING SYSTEM Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory

More information

File. File System Implementation. File Metadata. File System Implementation. Direct Memory Access Cont. Hardware background: Direct Memory Access

File. File System Implementation. File Metadata. File System Implementation. Direct Memory Access Cont. Hardware background: Direct Memory Access File File System Implementation Operating Systems Hebrew University Spring 2009 Sequence of bytes, with no structure as far as the operating system is concerned. The only operations are to read and write

More information

Chapter 12: File System Implementation. Operating System Concepts 9 th Edition

Chapter 12: File System Implementation. Operating System Concepts 9 th Edition Chapter 12: File System Implementation Silberschatz, Galvin and Gagne 2013 Chapter 12: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation Methods

More information

Processor Architecture and Interconnect

Processor Architecture and Interconnect Processor Architecture and Interconnect What is Parallelism? Parallel processing is a term used to denote simultaneous computation in CPU for the purpose of measuring its computation speeds. Parallel Processing

More information

Bridging the Processor/Memory Performance Gap in Database Applications

Bridging the Processor/Memory Performance Gap in Database Applications Bridging the Processor/Memory Performance Gap in Database Applications Anastassia Ailamaki Carnegie Mellon http://www.cs.cmu.edu/~natassa Memory Hierarchies PROCESSOR EXECUTION PIPELINE L1 I-CACHE L1 D-CACHE

More information

Ch. 7: Benchmarks and Performance Tests

Ch. 7: Benchmarks and Performance Tests Ch. 7: Benchmarks and Performance Tests Kenneth Mitchell School of Computing & Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 Kenneth Mitchell, CS & EE dept., SCE, UMKC p. 1/3 Introduction

More information

Chapter 12: File System Implementation

Chapter 12: File System Implementation Chapter 12: File System Implementation Silberschatz, Galvin and Gagne 2013 Chapter 12: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation Methods

More information

S4D-Cache: Smart Selective SSD Cache for Parallel I/O Systems

S4D-Cache: Smart Selective SSD Cache for Parallel I/O Systems S4D-Cache: Smart Selective SSD Cache for Parallel I/O Systems Shuibing He, Xian-He Sun, Bo Feng Department of Computer Science Illinois Institute of Technology Speed Gap Between CPU and Hard Drive http://www.velobit.com/storage-performance-blog/bid/114532/living-with-the-2012-hdd-shortage

More information

Design and Performance Evaluation of Networked Storage Architectures

Design and Performance Evaluation of Networked Storage Architectures Design and Performance Evaluation of Networked Storage Architectures Xubin He (Hexb@ele.uri.edu) July 25,2002 Dept. of Electrical and Computer Engineering University of Rhode Island Outline Introduction

More information

A Comparison of Capacity Management Schemes for Shared CMP Caches

A Comparison of Capacity Management Schemes for Shared CMP Caches A Comparison of Capacity Management Schemes for Shared CMP Caches Carole-Jean Wu and Margaret Martonosi Princeton University 7 th Annual WDDD 6/22/28 Motivation P P1 P1 Pn L1 L1 L1 L1 Last Level On-Chip

More information

Performance Measurement and Evaluation Tool for Large-scale Systems

Performance Measurement and Evaluation Tool for Large-scale Systems Performance Measurement and Evaluation Tool for Large-scale Systems Hong Ong ORNL hongong@ornl.gov December 7 th, 2005 Acknowledgements This work is sponsored in parts by: The High performance Computing

More information

Dynamic Load balancing for I/O- and Memory- Intensive workload in Clusters using a Feedback Control Mechanism

Dynamic Load balancing for I/O- and Memory- Intensive workload in Clusters using a Feedback Control Mechanism Dynamic Load balancing for I/O- and Memory- Intensive workload in Clusters using a Feedback Control Mechanism Xiao Qin, Hong Jiang, Yifeng Zhu, David R. Swanson Department of Computer Science and Engineering

More information

SFS: Random Write Considered Harmful in Solid State Drives

SFS: Random Write Considered Harmful in Solid State Drives SFS: Random Write Considered Harmful in Solid State Drives Changwoo Min 1, 2, Kangnyeon Kim 1, Hyunjin Cho 2, Sang-Won Lee 1, Young Ik Eom 1 1 Sungkyunkwan University, Korea 2 Samsung Electronics, Korea

More information

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk 5-23 March 23, 2 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III system Motivation #: DRAM a Cache for The full address space is quite large: 32-bit

More information

CS152 Computer Architecture and Engineering Lecture 19: I/O Systems

CS152 Computer Architecture and Engineering Lecture 19: I/O Systems CS152 Computer Architecture and Engineering Lecture 19: I/O Systems April 5, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

Storage Hierarchy Management for Scientific Computing

Storage Hierarchy Management for Scientific Computing Storage Hierarchy Management for Scientific Computing by Ethan Leo Miller Sc. B. (Brown University) 1987 M.S. (University of California at Berkeley) 1990 A dissertation submitted in partial satisfaction

More information

Improving Peer-to-Peer Resource Usage Through Idle Cycle Prediction

Improving Peer-to-Peer Resource Usage Through Idle Cycle Prediction Improving Peer-to-Peer Resource Usage Through Idle Cycle Prediction Elton Nicoletti Mathias, Andrea Schwertner Charão, Marcelo Pasin LSC - Laboratório de Sistemas de Computação UFSM - Universidade Federal

More information

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics Systemprogrammering 27 Föreläsning 4 Topics The memory hierarchy Motivations for VM Address translation Accelerating translation with TLBs Random-Access (RAM) Key features RAM is packaged as a chip. Basic

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #23: VM I 2006-08-08 CS 61C L23 VM I (1) Andy Carle Outline Cache Review Virtual Memory CS 61C L23 VM I (2) Improving Miss Penalty

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

ENGR 3950U / CSCI 3020U Midterm Exam SOLUTIONS, Fall 2012 SOLUTIONS

ENGR 3950U / CSCI 3020U Midterm Exam SOLUTIONS, Fall 2012 SOLUTIONS SOLUTIONS ENGR 3950U / CSCI 3020U (Operating Systems) Midterm Exam October 23, 2012, Duration: 80 Minutes (10 pages, 12 questions, 100 Marks) Instructor: Dr. Kamran Sartipi Question 1 (Computer Systgem)

More information

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy Systemprogrammering 29 Föreläsning 4 Topics! The memory hierarchy! Motivations for VM! Address translation! Accelerating translation with TLBs Random-Access (RAM) Key features! RAM is packaged as a chip.!

More information

CISC 360. Virtual Memory Dec. 4, 2008

CISC 360. Virtual Memory Dec. 4, 2008 CISC 36 Virtual Dec. 4, 28 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache for the Disk Address space of a process

More information

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007.

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007. Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS Marcin Zukowski Sandor Heman, Niels Nes, Peter Boncz CWI, Amsterdam VLDB 2007 Outline Scans in a DBMS Cooperative Scans Benchmarks DSM version VLDB,

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

Performance of Multithreaded Chip Multiprocessors and Implications for Operating System Design

Performance of Multithreaded Chip Multiprocessors and Implications for Operating System Design Performance of Multithreaded Chip Multiprocessors and Implications for Operating System Design Based on papers by: A.Fedorova, M.Seltzer, C.Small, and D.Nussbaum Pisa November 6, 2006 Multithreaded Chip

More information

An analysis of Web Server performance with an accelerator

An analysis of Web Server performance with an accelerator An analysis of Web Server performance with an accelerator S.Jha, F. Sabrina, B. Samuels, and M. Hassan School of Computer Science and Engineering The University of New South Wales Sydney, NSW 2052 Australia

More information

Understanding the performance of an X user environment

Understanding the performance of an X user environment Understanding the performance of an X550 11-user environment Overview NComputing s desktop virtualization technology enables significantly lower computing costs by letting multiple users share a single

More information

CSC501 Operating Systems Principles. OS Structure

CSC501 Operating Systems Principles. OS Structure CSC501 Operating Systems Principles OS Structure 1 Announcements q TA s office hour has changed Q Thursday 1:30pm 3:00pm, MRC-409C Q Or email: awang@ncsu.edu q From department: No audit allowed 2 Last

More information