High Performance CUDA Accelerated Local Optimization in Traveling Salesman Problem

Size: px
Start display at page:

Download "High Performance CUDA Accelerated Local Optimization in Traveling Salesman Problem"

Transcription

1 High Performance CUDA Accelerated Local Optimization in Traveling Salesman Problem Kamil Rocki, PhD Department of Computer Science Graduate School of Information Science and Technology The University of Tokyo

2 Why TSP? It s hard (NP-hard to be exact) Especially to parallelize But easy to understand A basic problem in CS TSPLIB - a set of standard problems Allows comparisons of algorithms It s simple to adjust the problem size Platform for the study of general methods that can be applied to a wide range of discrete optimization problems

3 Not only salesmen s headache Computer wiring Vehicle routing Crystallography Robot control pla85900.tsp It took 15 years to solve this problem (solved in 2006)

4

5 Local/Global Optimization Usually the space is huge There are many valleys and local minima Local search might terminate in one of the local minima Global search should find the best solution

6 Iterated Global Search - Global Optimization (Approximate algorithm) Local search is followed by some sort of tour randomization and it s repeated (until there s time left) perturbation Most of the time is spent in the Local Search part cost s % % % % % % % % % % % % % % s* s* % % solution space S % % % % % kroe100 ch130 ch150 kroa200 ts225 pr299 pr439 rat783 vm1084 pr2392 Thomas Stützle, Iterated Local Search & Variable Neighborhood Search MN Summerschool, Tenerife, 2003 p.9

7 Iterated Global Search - Global Optimization (Approximate algorithm) 1: procedure I TERATED L OCAL S EARCH 2: s 0 := GenerateInitialSolution() 3: s * := 2optLocalSearch (s 0 ) GPU 4: while (termination condition not met) 5: s := P erturbation (s * ) 6: s * := 2optLocalSearch (s ) GPU 7: s * := AcceptanceCriterion (s *, s * ) 8: end while 9: end procedure

8 TSP - Big valley theory (Why does ILS work?) Local minima form clusters The better the solution, the closer it is to the global optimum x Cost Cost Global minimum is somewhere in the middle x Mean distance to other solutions (a) Distance to optimal (b) ILS worsens the tour only slightly Local Search is repeated close to the previous minimum S. Baluja, A.G. Barto, K. D. Boese, J. Boyan, W. Buntine, T. Carson, R. Caruana, D. J. Cook, S. Davies, T. Dean, T. G. Dietterich, P. J. Gmytrasiewicz, S. Hazlehurst, R. Impagliazzo, A.K. Jagota, K. E. Kim, A. Mcgovern, R. Moll, A. W. Moore, L. Sanchis, L. Su, C. Tseng, K. Tumer, X. Wang, D. H. Wolpert, Justin Boyan, Wray Buntine, Arun Jagota: Statistical Machine Learning for Large-Scale Optimization, 2000

9 2-opt local optimization Exchange a pair of edges to obtain a better solution if the following condition is true distance(b,f) + distance(g,d) > distance(b,d) + distance(g,f) A B A B C C D D E E F F G G

10 2-opt local optimization In order to find such a pair need to perform: n 2 for (int i = 1; i < points - 2; i++) for (int j = i + 1; j < points - 1; j++) 2 =(n 2) (n 3)/2 checks { if (distance(i, i-1) + distance(j+1, j) > There are some pruning techniques in more complex algorithms I analyze all possible pairs distance(i, j+1) + distance(i-1, j)) update best i and j; city problem -> 49.9 Million pairs city problem -> 5 Billion pairs } remove edges (best i, best i-1) and (best j+1, best j) add edges (best i,best j+1) and (best i-1, best j)

11 Obtaining a distance Naive approach - calculate it each time it s needed Smart way - reuse the results For a 100-city problem it is approximately 5 times faster (CPU) Problem Number Memory Memory (TSPLIB) of cities needed needed (points) for LUT for coordinates (MB) (kb) kroe ch ch kroa ts pr pr rat vm pr pcb fl fnl n 2 n

12 Obtaining a distance Naive approach - calculate it each time it s needed Smart way - reuse the results For a 100-city problem it is approximately 5 times faster (CPU) For a city problem it can be slower Cache Problem Number Memory Memory (TSPLIB) of cities needed needed (points) for LUT for coordinates (MB) (kb) kroe ch ch kroa ts pr pr rat vm pr pcb fl fnl n 2 n

13 Obtaining a distance Naive approach - calculate it each time it s needed Smart way - reuse the results For a 100-city problem it is approximately 5 times faster (CPU) For a city problem it can be slower Cache With multiple cores, it becomes slower Cache/memory Problem Number Memory Memory (TSPLIB) of cities needed needed (points) for LUT for coordinates (MB) (kb) kroe ch ch kroa ts pr pr rat vm pr pcb fl fnl n 2 n

14 LUT (Look Up Table) vs recalculation Not-so-clever algorithm Time Clever algorithm Number of cores

15 A change in algorithm design - sequential Memory is free, reuse computed results Use sophisticated algorithms, prune the search space

16 A change in algorithm design - parallel Memory is free, reuse computed results Limited memory (size, throughput), computing is free (almost) Use sophisticated algorithms, prune the search space Sometimes brute-force search might be faster (especially on GPUs) Avoiding divergence Same amount of time to process 10, 100 even elements in parallel But -> empty flops

17 GPU implementation GPU uses this simple function for EUC_2D problems device int calculatedistance2d (unsigned int i, unsigned int j, city_coords* coords) { //registers + shared memory register float dx, dy; dx = coords[i].x - coords[j].x; dy = coords[i].y - coords[j].y; } return (int)(sqrtf(dx * dx + dy * dy) + 0.5f); //6 FLOPs + sqrt

18 GPU implementation dist(i,j) = dist (j,i), dist (i,i) = 0 Example for 32 threads Matrix of city pairs to be checked for a possible swap, each pair corresponds to one GPU job N 0,1 0 0,2 1 1,2 2 0,3 3 1,3 4 2,3 5 0,4 6 1,4 7 2,4 8 3,4 9 0,5 10 1,5 11 2,5 12 3,5 13 4,5 14 0,6 15 1,6 16 2,6 17 3,6 18 4,6 19 5,6 20 0,7 21 1,7 22 2,7 23 3,7 24 4,7 25 5,7 26 6,7 27 Iteration 1 Iteration 2 0,8 28 1,8 29 2,8 30 3,8 31 4,8 32 5,8 33 6,8 34 7,8 35 0,9 37 1,9 38 2,9 39 3,9 40 4,9 41 5,9 42 6,9 43 7,9 44 8,9 45 Iteration 3 N N Iteration 4 Each thread has to check: Iteration 5 if (distance(i, i-1) + distance(j+1, j) > Iteration 6 distance(i, j+1) + distance(i-1, j)) update best i and j; N Iteration 7

19 Optimizations Preorder the coordinates in the route s order on CPU The reads from the global memory are no longer scattered - much faster 8B needed instead of 10B per city Route Array of coordinates Get coordinates of point at position n x = coordinates[route[n]].x y = coordinates[route[n]].y Total size: n * sizeof(route data type) + 2 * n * sizeof(coordinate data type) No unnecessary address calculations The problem can be split if it s too big for the shared memory s size Route + coordinates = Array of ordered coordinates Get coordinates of point at position n x = ordered_coordinates[n].x y = ordered_coordinates[n].y Total size: 2 * n * sizeof(coordinate data type)

20 GPU implementation An overview of the algorithm: 1. Copy the ordered coordinates to the GPU global memory (CPU) 2. Execute the kernel 3. Copy the ordered coordinates to the shared memory 4. Calculate swap effect of one pair 5. Find the best value and store it in the global memory 6. Read the result (CPU)

21 What if coordinates size exceeds the size of shared memory? This part requires 2*m float2 elements to be calculated Let s assume a big problem N too big for the shared memory This part requires 2*m float2 elements to be calculated This part requires 2*m float2 elements to be calculated N coordinates range (N-2m+1,N-m) coordinates range (N-m+1,N) N coordinates range (0,m) coordinates range (m+1,2m)

22 What if coordinates size exceeds the size of shared memory? Problem of size N Assuming local memory of limited size m coordinates Needed data: two arrays coordinates range (m/2+1,m) 0 N coordinates range (N-m/2+1,N) 0 N coordinates range (N-m/2+1,N) Total size: 2 * 2 * n * sizeof(coordinate data type) coordinates range (m/2+1,m) It is possible to calculate distances in arbitrary segments

23 What if coordinates size exceeds the size of shared memory? Arbitrarily big problems can be solved 2 sets of coordinates needed Work can be split and run on multiple devices device int calculatedistance2d( unsigned int i, unsigned int j, city_coords* coordsa, city_coords* coordsb) { register float dx, dy; dx = coordsa[i].x - coordsb[j].x; dy = coordsa[i].y - coordsb[j].y; } return (int)(sqrtf(dx * dx + dy * dy) + 0.5f);

24 Results 2-opt step processing time 10,000s Approximately 22 billion comparisons/s 1,000s (3960X) A distance(b,f) + distance(g,d) > distance(b,d) + distance(g,f) B A B 100s C C D D 10s E E F F 1s G G 0.1s 0.01s For a city problem 0.001s s pair need to be checked s kroe100 kroa200 pr439 pr2392 fnl4461 d15112 pla85900 ara tsp

25 Results Time needed for a single local optimization run GTX 680 Compared to Intel i7-3960x CPU Up to 300x speedup (single core, no SSE) Up to 40x speedup (Intel OpenCL) Table II 2-OPT - TIME NEEDED FOR A SINGLE RUN, CUDA, GPU: GTX680, CPU: I NTEL I X Problem GPU Host to Device GPU 2-opt Time to Initial Optimized (TSPLIB) kernel device to host total checks/s first Length Length time copy copy time (Millions) minimum full 2-opt time time 2-opt from MF berlin52 20 µs 50 µs 11 µs 81 µs µs kroe µs 50 µs 11 µs 82 µs µs ch µs 50 µs 11 µs 82 µs µs ch µs 50 µs 11 µs 84 µs µs kroa µs 50 µs 11 µs 85 µs ms ts µs 50 µs 11 µs 85µs ms pr µs 50 µs 11 µs 87 µs ms pr µs 50 µs 11 µs 93 µs ms rat µs 51 µs 11 µs 115 µs ms vm µs 51 µs 11 µs 142 µs ms pr µs 53 µs 11 µs 363 µs ms pcb µs 55 µs 11 µs 547 µs ms fl µs 54 µs 11 µs 788 µs ms fnl µs 58 µs 11 µs 815 µs ms rl µs 59 µs 11 µs 1079 µs ms pla µs 58 µs 11 µs 1616 µs ms usa µs 66 µs 11 µs 4805 µs s d µs 69 µs 11 µs 6043 µs s d µs 75 µs 11 µs 9014 µs s sw ms 85 µs 11 µs ms s pla ms 96 µs 11 µs ms s pla ms 205 µs 11 µs ms s sra ms 249 µs 11 µs ms s usa ms 287 µs 11 µs ms s ara s 740 µs 11 µs s s lra s 1774 µs 11 µs s m lrb s 2833 µs 11 µs s h

26 Results 1 Kepler GPUs 2 Kepler GPUs 4 Kepler GPUs 8 Kepler GPUs

27 I have implemented and published LOGO TSP Solver LOGO - LOcal GPU Optimization CUDA + OpenCL Linux/Mac: Source code, Windows: Binary with GUI GPL License + More resources about LOGO (slides, papers)

28 Summary Big TSP problems can be solved very quickly on GPU! (The fastest GPU TSP Solver?) Sometimes naive algorithms might run faster overall in parallel Large and very large problems typically can be decomposed into smaller ones and fit fast memory Avoid memory accesses (true for both CPUs and GPUs now) Memory is a scarce resource, FLOPs are abundant Exploit locality by manually reordering data (additional 0.1s of preprocessing may save 1s somewhere else)

High Performance GPU Accelerated Local Optimization in TSP

High Performance GPU Accelerated Local Optimization in TSP 2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum High Performance GPU Accelerated Local Optimization in TSP Kamil Rocki, Reiji Suda The University of

More information

The Traveling Salesman Problem: State of the Art

The Traveling Salesman Problem: State of the Art The Traveling Salesman Problem: State of the Art Thomas Stützle stuetzle@informatik.tu-darmstadt.de http://www.intellektik.informatik.tu-darmstadt.de/ tom. Darmstadt University of Technology Department

More information

a local optimum is encountered in such a way that further improvement steps become possible.

a local optimum is encountered in such a way that further improvement steps become possible. Dynamic Local Search I Key Idea: Modify the evaluation function whenever a local optimum is encountered in such a way that further improvement steps become possible. I Associate penalty weights (penalties)

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

underlying iterative best improvement procedure based on tabu attributes. Heuristic Optimization

underlying iterative best improvement procedure based on tabu attributes. Heuristic Optimization Tabu Search Key idea: Use aspects of search history (memory) to escape from local minima. Simple Tabu Search: I Associate tabu attributes with candidate solutions or solution components. I Forbid steps

More information

CSE 591: GPU Programming. Using CUDA in Practice. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591: GPU Programming. Using CUDA in Practice. Klaus Mueller. Computer Science Department Stony Brook University CSE 591: GPU Programming Using CUDA in Practice Klaus Mueller Computer Science Department Stony Brook University Code examples from Shane Cook CUDA Programming Related to: score boarding load and store

More information

HEURISTICS optimization algorithms like 2-opt or 3-opt

HEURISTICS optimization algorithms like 2-opt or 3-opt Parallel 2-Opt Local Search on GPU Wen-Bao Qiao, Jean-Charles Créput Abstract To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with

More information

Warped parallel nearest neighbor searches using kd-trees

Warped parallel nearest neighbor searches using kd-trees Warped parallel nearest neighbor searches using kd-trees Roman Sokolov, Andrei Tchouprakov D4D Technologies Kd-trees Binary space partitioning tree Used for nearest-neighbor search, range search Application:

More information

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM TWMS J. App. Eng. Math. V.7, N.1, 2017, pp. 101-109 A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM F. NURIYEVA 1, G. KIZILATES 2, Abstract. The Multiple Traveling Salesman Problem (mtsp)

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

Complete Local Search with Memory

Complete Local Search with Memory Complete Local Search with Memory Diptesh Ghosh Gerard Sierksma SOM-theme A Primary Processes within Firms Abstract Neighborhood search heuristics like local search and its variants are some of the most

More information

Monte Carlo Simplification Model for Traveling Salesman Problem

Monte Carlo Simplification Model for Traveling Salesman Problem Appl. Math. Inf. Sci. 9, No. 2, 721-727 (215) 721 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/1.12785/amis/922 Monte Carlo Simplification Model for Traveling Salesman

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Di Zhao Ohio State University MVAPICH User Group (MUG) Meeting, August , Columbus Ohio

Di Zhao Ohio State University MVAPICH User Group (MUG) Meeting, August , Columbus Ohio Di Zhao zhao.1029@osu.edu Ohio State University MVAPICH User Group (MUG) Meeting, August 26-27 2013, Columbus Ohio Nvidia Kepler K20X Intel Xeon Phi 7120 Launch Date November 2012 Q2 2013 Processor Per-processor

More information

Accelerating image registration on GPUs

Accelerating image registration on GPUs Accelerating image registration on GPUs Harald Köstler, Sunil Ramgopal Tatavarty SIAM Conference on Imaging Science (IS10) 13.4.2010 Contents Motivation: Image registration with FAIR GPU Programming Combining

More information

ACCELERATING THE ANT COLONY OPTIMIZATION

ACCELERATING THE ANT COLONY OPTIMIZATION ACCELERATING THE ANT COLONY OPTIMIZATION BY SMART ANTS, USING GENETIC OPERATOR Hassan Ismkhan Department of Computer Engineering, University of Bonab, Bonab, East Azerbaijan, Iran H.Ismkhan@bonabu.ac.ir

More information

SLS Methods: An Overview

SLS Methods: An Overview HEURSTC OPTMZATON SLS Methods: An Overview adapted from slides for SLS:FA, Chapter 2 Outline 1. Constructive Heuristics (Revisited) 2. terative mprovement (Revisited) 3. Simple SLS Methods 4. Hybrid SLS

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v6.5 August 2014 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v7.0 March 2015 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Introduction to GPGPU and GPU-architectures

Introduction to GPGPU and GPU-architectures Introduction to GPGPU and GPU-architectures Henk Corporaal Gert-Jan van den Braak http://www.es.ele.tue.nl/ Contents 1. What is a GPU 2. Programming a GPU 3. GPU thread scheduling 4. GPU performance bottlenecks

More information

High-Performance and Parallel Computing

High-Performance and Parallel Computing 9 High-Performance and Parallel Computing 9.1 Code optimization To use resources efficiently, the time saved through optimizing code has to be weighed against the human resources required to implement

More information

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Orlis Christos Kartsiotis George Samaras Nikolaos Margaritis Konstantinos

More information

CS 179: GPU Programming. Lecture 7

CS 179: GPU Programming. Lecture 7 CS 179: GPU Programming Lecture 7 Week 3 Goals: More involved GPU-accelerable algorithms Relevant hardware quirks CUDA libraries Outline GPU-accelerated: Reduction Prefix sum Stream compaction Sorting(quicksort)

More information

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt TABU search and Iterated Local Search classical OR methods Outline TSP optimization problem Tabu Search (TS) (most important) Iterated Local Search (ILS) tks@imm.dtu.dk Informatics and Mathematical Modeling

More information

TABU search and Iterated Local Search classical OR methods

TABU search and Iterated Local Search classical OR methods TABU search and Iterated Local Search classical OR methods tks@imm.dtu.dk Informatics and Mathematical Modeling Technical University of Denmark 1 Outline TSP optimization problem Tabu Search (TS) (most

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem A Tabu Search Heuristic for the Generalized Traveling Salesman Problem Jacques Renaud 1,2 Frédéric Semet 3,4 1. Université Laval 2. Centre de Recherche sur les Technologies de l Organisation Réseau 3.

More information

Sparse Training Data Tutorial of Parameter Server

Sparse Training Data Tutorial of Parameter Server Carnegie Mellon University Sparse Training Data Tutorial of Parameter Server Mu Li! CSD@CMU & IDL@Baidu! muli@cs.cmu.edu High-dimensional data are sparse Why high dimension?! make the classifier s job

More information

From Biological Cells to Populations of Individuals: Complex Systems Simulations with CUDA (S5133)

From Biological Cells to Populations of Individuals: Complex Systems Simulations with CUDA (S5133) From Biological Cells to Populations of Individuals: Complex Systems Simulations with CUDA (S5133) Dr Paul Richmond Research Fellow University of Sheffield (NVIDIA CUDA Research Centre) Overview Complex

More information

JCudaMP: OpenMP/Java on CUDA

JCudaMP: OpenMP/Java on CUDA JCudaMP: OpenMP/Java on CUDA Georg Dotzler, Ronald Veldema, Michael Klemm Programming Systems Group Martensstraße 3 91058 Erlangen Motivation Write once, run anywhere - Java Slogan created by Sun Microsystems

More information

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni CUDA Optimizations WS 2014-15 Intelligent Robotics Seminar 1 Table of content 1 Background information 2 Optimizations 3 Summary 2 Table of content 1 Background information 2 Optimizations 3 Summary 3

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability 1 History of GPU

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability History of GPU

More information

Parallel Systems. Project topics

Parallel Systems. Project topics Parallel Systems Project topics 2016-2017 1. Scheduling Scheduling is a common problem which however is NP-complete, so that we are never sure about the optimality of the solution. Parallelisation is a

More information

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant

More information

GPU Acceleration for Seismic Interpretation Algorithms

GPU Acceleration for Seismic Interpretation Algorithms GPU Acceleration for Seismic Interpretation Algorithms Jon Marbach, Ph.D. Pate Motter TerraSpark Geosciences 2012 TerraSpark Geosciences, LLC. All Rights Reserved. Talk overview Who am I? (~1min) Who is

More information

Accelerating local search algorithms for the travelling salesman problem through the effective use of GPU

Accelerating local search algorithms for the travelling salesman problem through the effective use of GPU Available online at www.sciencedirect.com ScienceDirect Transportation Research Procedia 22 (2017) 409 418 www.elsevier.com/locate/procedia 19th EURO Working Group on Transportation Meeting, EWGT2016,

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

OpenCL implementation of PSO: a comparison between multi-core CPU and GPU performances

OpenCL implementation of PSO: a comparison between multi-core CPU and GPU performances OpenCL implementation of PSO: a comparison between multi-core CPU and GPU performances Stefano Cagnoni 1, Alessandro Bacchini 1,2, Luca Mussi 1 1 Dept. of Information Engineering, University of Parma,

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Scalable Multi Agent Simulation on the GPU Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Reasoning Explicit State machine, serial Implicit Compute intensive Fits SIMT well Collision avoidance Motivation

More information

L20: Putting it together: Tree Search (Ch. 6)!

L20: Putting it together: Tree Search (Ch. 6)! Administrative L20: Putting it together: Tree Search (Ch. 6)! November 29, 2011! Next homework, CUDA, MPI (Ch. 3) and Apps (Ch. 6) - Goal is to prepare you for final - We ll discuss it in class on Thursday

More information

Double-Precision Matrix Multiply on CUDA

Double-Precision Matrix Multiply on CUDA Double-Precision Matrix Multiply on CUDA Parallel Computation (CSE 60), Assignment Andrew Conegliano (A5055) Matthias Springer (A995007) GID G--665 February, 0 Assumptions All matrices are square matrices

More information

Large Scale Parallel Monte Carlo Tree Search on GPU

Large Scale Parallel Monte Carlo Tree Search on GPU Large Scale Parallel Monte Carlo Tree Search on Kamil Rocki The University of Tokyo Graduate School of Information Science and Technology Department of Computer Science 1 Tree search Finding a solution

More information

Parallelism. CS6787 Lecture 8 Fall 2017

Parallelism. CS6787 Lecture 8 Fall 2017 Parallelism CS6787 Lecture 8 Fall 2017 So far We ve been talking about algorithms We ve been talking about ways to optimize their parameters But we haven t talked about the underlying hardware How does

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

Preparing seismic codes for GPUs and other

Preparing seismic codes for GPUs and other Preparing seismic codes for GPUs and other many-core architectures Paulius Micikevicius Developer Technology Engineer, NVIDIA 2010 SEG Post-convention Workshop (W-3) High Performance Implementations of

More information

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0 Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nsight VSE APOD

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

A Memetic Algorithm for the Generalized Traveling Salesman Problem

A Memetic Algorithm for the Generalized Traveling Salesman Problem A Memetic Algorithm for the Generalized Traveling Salesman Problem Gregory Gutin Daniel Karapetyan Abstract The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling

More information

Candidate set parallelization strategies for Ant Colony Optimization on the GPU

Candidate set parallelization strategies for Ant Colony Optimization on the GPU Candidate set parallelization strategies for Ant Colony Optimization on the GPU Laurence Dawson and Iain A. Stewart School of Engineering and Computing Sciences, Durham University, Durham, United Kingdom,

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017 INTRODUCTION TO OPENACC Analyzing and Parallelizing with OpenACC, Feb 22, 2017 Objective: Enable you to to accelerate your applications with OpenACC. 2 Today s Objectives Understand what OpenACC is and

More information

CUDA. Matthew Joyner, Jeremy Williams

CUDA. Matthew Joyner, Jeremy Williams CUDA Matthew Joyner, Jeremy Williams Agenda What is CUDA? CUDA GPU Architecture CPU/GPU Communication Coding in CUDA Use cases of CUDA Comparison to OpenCL What is CUDA? What is CUDA? CUDA is a parallel

More information

A Parallel Architecture for the Generalized Traveling Salesman Problem

A Parallel Architecture for the Generalized Traveling Salesman Problem A Parallel Architecture for the Generalized Traveling Salesman Problem Max Scharrenbroich AMSC 663 Project Proposal Advisor: Dr. Bruce L. Golden R. H. Smith School of Business 1 Background and Introduction

More information

Parallel Implementation of Travelling Salesman Problem using Ant Colony Optimization

Parallel Implementation of Travelling Salesman Problem using Ant Colony Optimization Parallel Implementation of Travelling Salesman Problem using Ant Colony Optimization Gaurav Bhardwaj Department of Computer Science and Engineering Maulana Azad National Institute of Technology Bhopal,

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

CS 179 Lecture 4. GPU Compute Architecture

CS 179 Lecture 4. GPU Compute Architecture CS 179 Lecture 4 GPU Compute Architecture 1 This is my first lecture ever Tell me if I m not speaking loud enough, going too fast/slow, etc. Also feel free to give me lecture feedback over email or at

More information

Evaluation and Exploration of Next Generation Systems for Applicability and Performance Volodymyr Kindratenko Guochun Shi

Evaluation and Exploration of Next Generation Systems for Applicability and Performance Volodymyr Kindratenko Guochun Shi Evaluation and Exploration of Next Generation Systems for Applicability and Performance Volodymyr Kindratenko Guochun Shi National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

More information

Parallelization Strategies for Local Search Algorithms on Graphics Processing Units

Parallelization Strategies for Local Search Algorithms on Graphics Processing Units Parallelization Strategies for Local Search Algorithms on Graphics Processing Units Audrey Delévacq, Pierre Delisle, and Michaël Krajecki CReSTIC, Université de Reims Champagne-Ardenne, Reims, France Abstract

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Optimizing Data Locality for Iterative Matrix Solvers on CUDA

Optimizing Data Locality for Iterative Matrix Solvers on CUDA Optimizing Data Locality for Iterative Matrix Solvers on CUDA Raymond Flagg, Jason Monk, Yifeng Zhu PhD., Bruce Segee PhD. Department of Electrical and Computer Engineering, University of Maine, Orono,

More information

Introduction to Algorithms: Brute-Force Algorithms

Introduction to Algorithms: Brute-Force Algorithms Introduction to Algorithms: Brute-Force Algorithms Introduction to Algorithms Brute Force Powering a Number Selection Sort Exhaustive Search 0/1 Knapsack Problem Assignment Problem CS 421 - Analysis of

More information

FMM implementation on CPU and GPU. Nail A. Gumerov (Lecture for CMSC 828E)

FMM implementation on CPU and GPU. Nail A. Gumerov (Lecture for CMSC 828E) FMM implementation on CPU and GPU Nail A. Gumerov (Lecture for CMSC 828E) Outline Two parts of the FMM Data Structure Flow Chart of the Run Algorithm FMM Cost/Optimization on CPU Programming on GPU Fast

More information

Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs

Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs Yanhao Chen 1, Ari B. Hayes 1, Chi Zhang 2, Timothy Salmon 1, Eddy Z. Zhang 1 1. Rutgers University 2. University of Pittsburgh Sparse

More information

Data parallel algorithms, algorithmic building blocks, precision vs. accuracy

Data parallel algorithms, algorithmic building blocks, precision vs. accuracy Data parallel algorithms, algorithmic building blocks, precision vs. accuracy Robert Strzodka Architecture of Computing Systems GPGPU and CUDA Tutorials Dresden, Germany, February 25 2008 2 Overview Parallel

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Nikolai Sakharnykh - NVIDIA San Jose Convention Center, San Jose, CA September 21, 2010 Introduction Tridiagonal solvers very popular

More information

Multi Agent Navigation on GPU. Avi Bleiweiss

Multi Agent Navigation on GPU. Avi Bleiweiss Multi Agent Navigation on GPU Avi Bleiweiss Reasoning Explicit Implicit Script, storytelling State machine, serial Compute intensive Fits SIMT architecture well Navigation planning Collision avoidance

More information

Accelerated Machine Learning Algorithms in Python

Accelerated Machine Learning Algorithms in Python Accelerated Machine Learning Algorithms in Python Patrick Reilly, Leiming Yu, David Kaeli reilly.pa@husky.neu.edu Northeastern University Computer Architecture Research Lab Outline Motivation and Goals

More information

CMSC 858M/AMSC 698R. Fast Multipole Methods. Nail A. Gumerov & Ramani Duraiswami. Lecture 20. Outline

CMSC 858M/AMSC 698R. Fast Multipole Methods. Nail A. Gumerov & Ramani Duraiswami. Lecture 20. Outline CMSC 858M/AMSC 698R Fast Multipole Methods Nail A. Gumerov & Ramani Duraiswami Lecture 20 Outline Two parts of the FMM Data Structures FMM Cost/Optimization on CPU Fine Grain Parallelization for Multicore

More information

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS.

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS. Welcome Design and Analysis of Algorithms Razvan Bunescu School of EECS bunescu@ohio.edu 1 Course Description Course Description: This course provides an introduction to the modern study of computer algorithms.

More information

Fundamentals of Computer Science II

Fundamentals of Computer Science II Fundamentals of Computer Science II Keith Vertanen Museum 102 kvertanen@mtech.edu http://katie.mtech.edu/classes/csci136 CSCI 136: Fundamentals of Computer Science II Keith Vertanen Textbook Resources

More information

Cache Performance II 1

Cache Performance II 1 Cache Performance II 1 cache operation (associative) 111001 index offset valid tag valid tag data data 1 10 1 00 00 11 AA BB tag 1 11 1 01 B4 B5 33 44 = data (B5) AND = AND OR is hit? (1) 2 cache operation

More information

A memetic algorithm for symmetric traveling salesman problem

A memetic algorithm for symmetric traveling salesman problem ISSN 1750-9653, England, UK International Journal of Management Science and Engineering Management Vol. 3 (2008) No. 4, pp. 275-283 A memetic algorithm for symmetric traveling salesman problem Keivan Ghoseiri

More information

AN 831: Intel FPGA SDK for OpenCL

AN 831: Intel FPGA SDK for OpenCL AN 831: Intel FPGA SDK for OpenCL Host Pipelined Multithread Subscribe Send Feedback Latest document on the web: PDF HTML Contents Contents 1 Intel FPGA SDK for OpenCL Host Pipelined Multithread...3 1.1

More information

RESEARCH ARTICLE. Accelerating Ant Colony Optimization for the Traveling Salesman Problem on the GPU

RESEARCH ARTICLE. Accelerating Ant Colony Optimization for the Traveling Salesman Problem on the GPU The International Journal of Parallel, Emergent and Distributed Systems Vol. 00, No. 00, Month 2011, 1 21 RESEARCH ARTICLE Accelerating Ant Colony Optimization for the Traveling Salesman Problem on the

More information

CUDA OPTIMIZATION WITH NVIDIA NSIGHT VISUAL STUDIO EDITION

CUDA OPTIMIZATION WITH NVIDIA NSIGHT VISUAL STUDIO EDITION April 4-7, 2016 Silicon Valley CUDA OPTIMIZATION WITH NVIDIA NSIGHT VISUAL STUDIO EDITION CHRISTOPH ANGERER, NVIDIA JAKOB PROGSCH, NVIDIA 1 WHAT YOU WILL LEARN An iterative method to optimize your GPU

More information

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Michael Boyer, David Tarjan, Scott T. Acton, and Kevin Skadron University of Virginia IPDPS 2009 Outline Leukocyte

More information

Parallel Implementation of the Max_Min Ant System for the Travelling Salesman Problem on GPU

Parallel Implementation of the Max_Min Ant System for the Travelling Salesman Problem on GPU Parallel Implementation of the Max_Min Ant System for the Travelling Salesman Problem on GPU Gaurav Bhardwaj Department of Computer Science and Engineering Maulana Azad National Institute of Technology

More information

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs Gordon Erlebacher Department of Scientific Computing Sept. 28, 2012 with Dimitri Komatitsch (Pau,France) David Michea

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

Note: In physical process (e.g., annealing of metals), perfect ground states are achieved by very slow lowering of temperature.

Note: In physical process (e.g., annealing of metals), perfect ground states are achieved by very slow lowering of temperature. Simulated Annealing Key idea: Vary temperature parameter, i.e., probability of accepting worsening moves, in Probabilistic Iterative Improvement according to annealing schedule (aka cooling schedule).

More information

Accelerating high-end compositing with CUDA in NUKE. Jon Wadelton NUKE Product Manager

Accelerating high-end compositing with CUDA in NUKE. Jon Wadelton NUKE Product Manager Accelerating high-end compositing with CUDA in NUKE Jon Wadelton NUKE Product Manager 2 Overview What is NUKE? Image processing - exploiting the GPU The Foundry Approach Simple examples in NUKEX Real world

More information

Towards a Performance- Portable FFT Library for Heterogeneous Computing

Towards a Performance- Portable FFT Library for Heterogeneous Computing Towards a Performance- Portable FFT Library for Heterogeneous Computing Carlo C. del Mundo*, Wu- chun Feng* *Dept. of ECE, Dept. of CS Virginia Tech Slides Updated: 5/19/2014 Forecast (Problem) AMD Radeon

More information

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Tim Davis (Texas A&M University) with Sanjay Ranka, Mohamed Gadou (University of Florida) Nuri Yeralan (Microsoft) NVIDIA

More information

A TALENTED CPU-TO-GPU MEMORY MAPPING TECHNIQUE

A TALENTED CPU-TO-GPU MEMORY MAPPING TECHNIQUE A TALENTED CPU-TO-GPU MEMORY MAPPING TECHNIQUE Abu Asaduzzaman, Deepthi Gummadi, and Chok M. Yip Department of Electrical Engineering and Computer Science Wichita State University Wichita, Kansas, USA

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

A Parallel GPU Version of the Traveling Salesman Problem

A Parallel GPU Version of the Traveling Salesman Problem A Parallel GPU Version of the Traveling Salesman Problem Molly A. O Neil, Dan Tamir, and Martin Burtscher Department of Computer Science, Texas State University, San Marcos, TX Abstract - This paper describes

More information

Ant Colony Optimization Parallel Algorithm for GPU

Ant Colony Optimization Parallel Algorithm for GPU Ant Colony Optimization Parallel Algorithm for GPU Honours Project - COMP 4905 Carleton University Karim Tantawy 100710608 Supervisor: Dr. Tony White, School of Computer Science April 10 th 2011 Abstract

More information

Graph Applications, Class Notes, CS 3137 1 Traveling Salesperson Problem Web References: http://www.tsp.gatech.edu/index.html http://www-e.uni-magdeburg.de/mertens/tsp/tsp.html TSP applets A Hamiltonian

More information

Optimisation Myths and Facts as Seen in Statistical Physics

Optimisation Myths and Facts as Seen in Statistical Physics Optimisation Myths and Facts as Seen in Statistical Physics Massimo Bernaschi Institute for Applied Computing National Research Council & Computer Science Department University La Sapienza Rome - ITALY

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA 3D ADI Method for Fluid Simulation on Multiple GPUs Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA Introduction Fluid simulation using direct numerical methods Gives the most accurate result Requires

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

Accelerating Dynamic Binary Translation with GPUs

Accelerating Dynamic Binary Translation with GPUs Accelerating Dynamic Binary Translation with GPUs Chung Hwan Kim, Srikanth Manikarnike, Vaibhav Sharma, Eric Eide, Robert Ricci School of Computing, University of Utah {chunghwn,smanikar,vaibhavs,eeide,ricci}@utah.edu

More information