WISE: Large Scale Content Based Web Image Search. Michael Isard Joint with: Qifa Ke, Jian Sun, Zhong Wu Microsoft Research Silicon Valley

Size: px
Start display at page:

Download "WISE: Large Scale Content Based Web Image Search. Michael Isard Joint with: Qifa Ke, Jian Sun, Zhong Wu Microsoft Research Silicon Valley"

Transcription

1 WISE: Large Scale Content Based Web Image Search Michael Isard Joint with: Qifa Ke, Jian Sun, Zhong Wu Microsoft Research Silicon Valley 1

2 A picture is worth a thousand words. Query by Images What leaf? Artist? Higher resolution? : Who else using this? Bank web site? ? Ad. in e bay? 2

3 Partial Duplicate Image Search Given a query image find its partial duplicates Given a query image, find its partial duplicates from a database of web images

4 Two Major Challenges How to represent images No text annotations or labels Noise and modification How to efficiently index and query images Large number of images (millions)? Index 4

5 Image Representation: Bag of Words [CVPR 09, ICCV 09] 1: Feature extraction: Bundle Features 2: Quantization 3: Representation Detection [Lowe 2004, Matas et al 2002, Winder et al 2007] Code book Descriptor ID Bag of words [Sivic&Zisserman 2003] Normalization , Description [Lowe 2004, Winder et al 2007] 999,999 1,000,000 5

6 6

7 Matching query to database Use an index Each visual word has a posting list Lists every imagecontaining the word At query time Look up the posting list for each query word Merge lists to find candidate images Partial match: don t need every word to be present 7

8 How much work to query? Disk based index, bottleneck is random reads One seek per posting list Also one seek per matching image To fetch thumbnail etc Keep as little information as possible in posting lists, to keep index size small 8

9 Index Pipeline Implemented in a large computer cluster 256 nodes, using Dryad/DryadLINQ y Image Crawler Content Chunk Feature Extractor Bundled Features Feature Quantizer Visual Words Indexer Media DB (Thumbnail, URL) Inverted Index Crawler Local lfeatures Visual Word Index 9

10 Query Pipeline Query Image Feature Extractor Bundled Features Feature Quantizer Visual Words GUI Results Media DB (Thumbnail, URL) Index Server Inverted Index Search Results (chunkid, imgid) 10

11 Bag of Words: Limitations Quantization Lost discriminative power Sensitive to image variations and noises Soft quantization Quantization Descriptor [Philbin et al, CVPR 2008] 999,999 Hamming embedding [Jegou et al, ECCV 2008] ID ,000

12 Geometric verification In practice, bag of words is too weak Does not exploit any geometry Post process to check spatial illayout of matching features Requires a disk seek per image Only used as a re ranking step to shortlist of matched images 12

13 Geometric Re ranking map Re rank top images baseline (bag-of-words) baseline + reranking Number of images

14 Geometry in the index Previous works: Jegou et al ECCV 2008 Try to match similar orientations andscales Perdoch et al CVPR 2009 Match oriented features more effectively Still feature by feature Globalgeometric consitency applied at the end 14

15 Single Feature is Weak + +

16 Neighboring Features?

17 Define Neighboring Features Previous works knn voting [Sivic&Zisserman 2003] Higher order spatial features [Liu et al][yuan et al][tirilly et al][quack et al] Post geometric spatial verification [Lowe 2004][Chum et al 2007][Nister 2006][Philbin et al 2007] Geometric Min Hash [Chum et al 2009] Challenges Repeatable Partial matching Scalable: simple enough to build into index

18 Define Neighboring Features DoG Features [Lowe 2004] MSER Features [Matas et al 2002] point features region features repeatable repeatable

19 Define Neighboring Features DoG Features [Lowe 2004] MSER Features [Matas et al 2002] point features region features repeatable repeatable region groups points?

20 Bundled Feature: Definition Bundled Feature = A set of DOG features bundled by a MSER region MSER region DoG interest points

21 Bundled Feature: Definition Bundled Features

22 Matching Bundles: Membership Query bundle q = {q j } = { } Matched bundle p = { p i } Membership score: M ( ; ) 4 m q p q p Voting weight: vq ( ) M ( qp ; ) 4 j m Sim( I1, I2) v( q j ) 4 16 qj qj

23 Matching Bundles: Membership Query bundle q = {q j } = { } Matched bundles p 1, p 2, p 3 Membership score: M ( ; ) 2 m q p q p 1 1 p 1 M ( m q ; p ) 2 q p 2 1 M ( m q ; p ) 2 3 q p3 p 3 Sim( I1, I2) v( q j ) 8 q j p 3 p 2 vq ( ) max M ( qp ; ) q j m k j p v ( q ) 2 2 v q1 k ( ) 2 v ( q ) max(1, 2) 2 3 v( q ) 2 4 q

24 Matching Bundles: Geometric Constraint y query candidate query candidate order in query img: 1 < 2 < 3 < 4 order in query img: 1 < 2 < 3 < 4 order in target img: 1 < 3 < 4 < 5 matching order: 5 > 2 > 1 < 3 order inconsistency: = 0 inconsistency: = 2 Penalize inconsistent relative orders: M ( qp ; ) O p O p g q i q i 1

25 Matching Bundles: Formulation Bundle matching score: M( q; p) M ( qp ; ) M ( qp ; ) Image matching score: m membership geometric constraint g vq ( ) max M( qp ; ) q j p k Sim( I1, I2) v( q j ) { q } j k j q Repeatable Partial matching Scalable?

26 Inverted Index (without Bundles) Visual word Posting Image ID Image ID =

27 Inverted Index with Bundles Visual word Posting Image ID Bundle Bits Image ID = 27 1 p 1 p bits 5 bits 5 bits Bundle ID X-Order Y-Order 27, [3,1,1] 2 p 3 27, [1,2,1] 27, [2,2,2]

28 Retrieval Query Image I q Inverted index with bundle bits 1,1, [2,5,9] 3,1, [3,4,5] 9,2, [3,2,5] 10, 1, [1,1,2] 12,1, [1.1.2] 10, 1, [2,2,1] Top candidate images p 1 p 2 p 3

29 Experimental Settings Image database: 1M web images from query click log Ground truth partial duplicates 780 known partial duplicate images in 19 groups Baseline bag of words Visual word vocabulary size = 1 M Soft quantization factor = features per image

30 Partial Duplicate Example

31 Partial Duplicate Example

32 Example Query Results Query Challenging cases

33 Evaluation: Precision Recall A query returns N images T : correct matches A : expected matches Precision = T N Recall = T A Precision Recall

34 Comparison: Precision Recall Query image: Baseline bag of words (started from 13 th ) Bundled features (started from 13 th )

35 More Precision Recall Comparisons

36 Evaluation: map Average Precision (AP) for one query: Area under Precision Recall curve AP map: mean of AP s from all testing queries

37 map: Baseline Bag of Words map baseline HE bundled(membership) bundled bundled + HE Number of images

38 map: Hamming Embedding (HE) map baseline HE bundled(membership) bundled bundled + HE Number of images

39 map: Bundle (Membership) map baseline HE bundled(membership) bundled bundled + HE Number of images

40 map: Bundle (both terms) map baseline HE bundled(membership) bundled bundled + HE Number of images 26% 40%

41 map: Bundle + HE map baseline HE bundled(membership) bundled bundled + HE Number of images 49%

42 Bundle VS. Geometric Re ranking map Re rank top images baseline (bag-of-words) bundle baseline + reranking bundle + reranking Number of images

43 Bundle + Geometric Re ranking Re rank top images 0.65 map % 77% baseline (bag-of-words) bundle baseline + reranking bundle + reranking Number of images

44 More Results

45 Failure Case

46 Demo Setup Client Web Server Index Servers Document Server 6 million images 46

47 Demo Query image Results 47

48 Conclusion Bundle feature More discriminative Enforce spatial constraints while traversing index Partial match Scalable: built into index 9 bits 5 bits 5 bits Bundle ID X-Order Y-Order

49 Thanks!

Bundling Features for Large Scale Partial-Duplicate Web Image Search

Bundling Features for Large Scale Partial-Duplicate Web Image Search Bundling Features for Large Scale Partial-Duplicate Web Image Search Zhong Wu, Qifa Ke, Michael Isard, and Jian Sun Microsoft Research Abstract In state-of-the-art image retrieval systems, an image is

More information

SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY. Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang

SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY. Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang State Key Laboratory of Software Development Environment Beihang University, Beijing 100191,

More information

Large-scale visual recognition The bag-of-words representation

Large-scale visual recognition The bag-of-words representation Large-scale visual recognition The bag-of-words representation Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline Bag-of-words Large or small vocabularies? Extensions for instance-level

More information

Large Scale Image Retrieval

Large Scale Image Retrieval Large Scale Image Retrieval Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague Features Affine invariant features Efficient descriptors Corresponding regions

More information

Binary SIFT: Towards Efficient Feature Matching Verification for Image Search

Binary SIFT: Towards Efficient Feature Matching Verification for Image Search Binary SIFT: Towards Efficient Feature Matching Verification for Image Search Wengang Zhou 1, Houqiang Li 2, Meng Wang 3, Yijuan Lu 4, Qi Tian 1 Dept. of Computer Science, University of Texas at San Antonio

More information

Spatial Coding for Large Scale Partial-Duplicate Web Image Search

Spatial Coding for Large Scale Partial-Duplicate Web Image Search Spatial Coding for Large Scale Partial-Duplicate Web Image Search Wengang Zhou, Yijuan Lu 2, Houqiang Li, Yibing Song, Qi Tian 3 Dept. of EEIS, University of Science and Technology of China, Hefei, P.R.

More information

Min-Hashing and Geometric min-hashing

Min-Hashing and Geometric min-hashing Min-Hashing and Geometric min-hashing Ondřej Chum, Michal Perdoch, and Jiří Matas Center for Machine Perception Czech Technical University Prague Outline 1. Looking for representation of images that: is

More information

Large scale object/scene recognition

Large scale object/scene recognition Large scale object/scene recognition Image dataset: > 1 million images query Image search system ranked image list Each image described by approximately 2000 descriptors 2 10 9 descriptors to index! Database

More information

Enhanced and Efficient Image Retrieval via Saliency Feature and Visual Attention

Enhanced and Efficient Image Retrieval via Saliency Feature and Visual Attention Enhanced and Efficient Image Retrieval via Saliency Feature and Visual Attention Anand K. Hase, Baisa L. Gunjal Abstract In the real world applications such as landmark search, copy protection, fake image

More information

Compressed local descriptors for fast image and video search in large databases

Compressed local descriptors for fast image and video search in large databases Compressed local descriptors for fast image and video search in large databases Matthijs Douze2 joint work with Hervé Jégou1, Cordelia Schmid2 and Patrick Pérez3 1: INRIA Rennes, TEXMEX team, France 2:

More information

Hamming embedding and weak geometric consistency for large scale image search

Hamming embedding and weak geometric consistency for large scale image search Hamming embedding and weak geometric consistency for large scale image search Herve Jegou, Matthijs Douze, and Cordelia Schmid INRIA Grenoble, LEAR, LJK firstname.lastname@inria.fr Abstract. This paper

More information

Learning a Fine Vocabulary

Learning a Fine Vocabulary Learning a Fine Vocabulary Andrej Mikulík, Michal Perdoch, Ondřej Chum, and Jiří Matas CMP, Dept. of Cybernetics, Faculty of EE, Czech Technical University in Prague Abstract. We present a novel similarity

More information

Efficient Representation of Local Geometry for Large Scale Object Retrieval

Efficient Representation of Local Geometry for Large Scale Object Retrieval Efficient Representation of Local Geometry for Large Scale Object Retrieval Michal Perďoch Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague IEEE Computer Society

More information

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012)

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012) Three things everyone should know to improve object retrieval Relja Arandjelović and Andrew Zisserman (CVPR 2012) University of Oxford 2 nd April 2012 Large scale object retrieval Find all instances of

More information

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013 Lecture 24: Image Retrieval: Part II Visual Computing Systems Review: K-D tree Spatial partitioning hierarchy K = dimensionality of space (below: K = 2) 3 2 1 3 3 4 2 Counts of points in leaf nodes Nearest

More information

Evaluation of GIST descriptors for web scale image search

Evaluation of GIST descriptors for web scale image search Evaluation of GIST descriptors for web scale image search Matthijs Douze Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg and Cordelia Schmid INRIA Grenoble, France July 9, 2009 Evaluation of GIST for

More information

arxiv: v1 [cs.cv] 26 Dec 2013

arxiv: v1 [cs.cv] 26 Dec 2013 Finding More Relevance: Propagating Similarity on Markov Random Field for Image Retrieval Peng Lu a, Xujun Peng b, Xinshan Zhu c, Xiaojie Wang a arxiv:1312.7085v1 [cs.cv] 26 Dec 2013 a Beijing University

More information

Instance Search with Weak Geometric Correlation Consistency

Instance Search with Weak Geometric Correlation Consistency Instance Search with Weak Geometric Correlation Consistency Zhenxing Zhang, Rami Albatal, Cathal Gurrin, and Alan F. Smeaton Insight Centre for Data Analytics School of Computing, Dublin City University

More information

Published in: MM '10: proceedings of the ACM Multimedia 2010 International Conference: October 25-29, 2010, Firenze, Italy

Published in: MM '10: proceedings of the ACM Multimedia 2010 International Conference: October 25-29, 2010, Firenze, Italy UvA-DARE (Digital Academic Repository) Landmark Image Retrieval Using Visual Synonyms Gavves, E.; Snoek, C.G.M. Published in: MM '10: proceedings of the ACM Multimedia 2010 International Conference: October

More information

Learning to Match Images in Large-Scale Collections

Learning to Match Images in Large-Scale Collections Learning to Match Images in Large-Scale Collections Song Cao and Noah Snavely Cornell University Ithaca, NY, 14853 Abstract. Many computer vision applications require computing structure and feature correspondence

More information

Paper Presentation. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval

Paper Presentation. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval Paper Presentation Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval 02/12/2015 -Bhavin Modi 1 Outline Image description Scaling up visual vocabularies Search

More information

Fuzzy based Multiple Dictionary Bag of Words for Image Classification

Fuzzy based Multiple Dictionary Bag of Words for Image Classification Available online at www.sciencedirect.com Procedia Engineering 38 (2012 ) 2196 2206 International Conference on Modeling Optimisation and Computing Fuzzy based Multiple Dictionary Bag of Words for Image

More information

Encoding Spatial Context for Large-Scale Partial-Duplicate Web Image Retrieval

Encoding Spatial Context for Large-Scale Partial-Duplicate Web Image Retrieval Zhou WG, Li HQ, Lu Y et al. Encoding spatial context for large-scale partial-duplicate Web image retrieval. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 29(5): 837 848 Sept. 2014. DOI 10.1007/s11390-014-1472-3

More information

Indexing local features and instance recognition May 16 th, 2017

Indexing local features and instance recognition May 16 th, 2017 Indexing local features and instance recognition May 16 th, 2017 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al.

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al. Presented by Brandon Smith Computer Vision Fall 2007 Objective Given a query image of an object,

More information

6.819 / 6.869: Advances in Computer Vision

6.819 / 6.869: Advances in Computer Vision 6.819 / 6.869: Advances in Computer Vision Image Retrieval: Retrieval: Information, images, objects, large-scale Website: http://6.869.csail.mit.edu/fa15/ Instructor: Yusuf Aytar Lecture TR 9:30AM 11:00AM

More information

Learning bottom-up visual processes using automatically generated ground truth data

Learning bottom-up visual processes using automatically generated ground truth data Learning bottom-up visual processes using automatically generated ground truth data Kalle Åström, Yubin Kuang, Magnus Oskarsson, Lars Kopp an Martin Byröd Mathematical Imaging Group Center for Mathematical

More information

Packing and Padding: Coupled Multi-index for Accurate Image Retrieval

Packing and Padding: Coupled Multi-index for Accurate Image Retrieval Packing and Padding: Coupled Multi-index for Accurate Image Retrieval Liang Zheng 1, Shengjin Wang 1, Ziqiong Liu 1, and Qi Tian 2 1 State Key Laboratory of Intelligent Technology and Systems; 1 Tsinghua

More information

Speeded-up, relaxed spatial matching

Speeded-up, relaxed spatial matching Speeded-up, relaxed spatial matching Giorgos Tolias and Yannis Avrithis National Technical University of Athens {gtolias,iavr}@image.ntua.gr Abstract A wide range of properties and assumptions determine

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza http://rpg.ifi.uzh.ch/ 1 Lab exercise today replaced by Deep Learning Tutorial by Antonio Loquercio Room

More information

Total Recall II: Query Expansion Revisited

Total Recall II: Query Expansion Revisited Total Recall II: Query Expansion Revisited Ondr ej Chum Andrej Mikulı k Michal Perdoch Jir ı Matas Centre for Machine Perception Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical

More information

Image Retrieval with a Visual Thesaurus

Image Retrieval with a Visual Thesaurus 2010 Digital Image Computing: Techniques and Applications Image Retrieval with a Visual Thesaurus Yanzhi Chen, Anthony Dick and Anton van den Hengel School of Computer Science The University of Adelaide

More information

Nagoya University at TRECVID 2014: the Instance Search Task

Nagoya University at TRECVID 2014: the Instance Search Task Nagoya University at TRECVID 2014: the Instance Search Task Cai-Zhi Zhu 1 Yinqiang Zheng 2 Ichiro Ide 1 Shin ichi Satoh 2 Kazuya Takeda 1 1 Nagoya University, 1 Furo-Cho, Chikusa-ku, Nagoya, Aichi 464-8601,

More information

Indexing local features and instance recognition May 14 th, 2015

Indexing local features and instance recognition May 14 th, 2015 Indexing local features and instance recognition May 14 th, 2015 Yong Jae Lee UC Davis Announcements PS2 due Saturday 11:59 am 2 We can approximate the Laplacian with a difference of Gaussians; more efficient

More information

Learning Vocabularies over a Fine Quantization

Learning Vocabularies over a Fine Quantization International Journal of Computer Vision manuscript No. (will be inserted by the editor) Learning Vocabularies over a Fine Quantization Andrej Mikulik Michal Perdoch Ondřej Chum Jiří Matas Received: date

More information

Partition Min-Hash for Partial Duplicate Image Discovery

Partition Min-Hash for Partial Duplicate Image Discovery Partition Min-Hash for Partial Duplicate Image Discovery David C. Lee,,QifaKe 2, and Michael Isard 2 Carnegie Mellon University 2 Microsoft Research Silicon Valley dclee@cs.cmu.edu,{qe,misard}@microsoft.com

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Efficient Representation of Local Geometry for Large Scale Object Retrieval

Efficient Representation of Local Geometry for Large Scale Object Retrieval Efficient Representation of Local Geometry for Large Scale Object Retrieval Michal Perd och, Ondřej Chum and Jiří Matas Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering,

More information

INRIA-LEAR S VIDEO COPY DETECTION SYSTEM. INRIA LEAR, LJK Grenoble, France 1 Copyright detection task 2 High-level feature extraction task

INRIA-LEAR S VIDEO COPY DETECTION SYSTEM. INRIA LEAR, LJK Grenoble, France 1 Copyright detection task 2 High-level feature extraction task INRIA-LEAR S VIDEO COPY DETECTION SYSTEM Matthijs Douze, Adrien Gaidon 2, Herve Jegou, Marcin Marszałek 2 and Cordelia Schmid,2 INRIA LEAR, LJK Grenoble, France Copyright detection task 2 High-level feature

More information

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell Large-scale Image Search and location recognition Geometric Min-Hashing Jonathan Bidwell Nov 3rd 2009 UNC Chapel Hill Large scale + Location Short story... Finding similar photos See: Microsoft PhotoSynth

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

On the burstiness of visual elements

On the burstiness of visual elements On the burstiness of visual elements Herve Je gou Matthijs Douze INRIA Grenoble, LJK Cordelia Schmid firstname.lastname@inria.fr Figure. Illustration of burstiness. Features assigned to the most bursty

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

arxiv: v1 [cs.cv] 11 Feb 2014

arxiv: v1 [cs.cv] 11 Feb 2014 Packing and Padding: Coupled Multi-index for Accurate Image Retrieval Liang Zheng 1, Shengjin Wang 1, Ziqiong Liu 1, and Qi Tian 2 1 Tsinghua University, Beijing, China 2 University of Texas at San Antonio,

More information

Keypoint-based Recognition and Object Search

Keypoint-based Recognition and Object Search 03/08/11 Keypoint-based Recognition and Object Search Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Notices I m having trouble connecting to the web server, so can t post lecture

More information

Indexing local features and instance recognition May 15 th, 2018

Indexing local features and instance recognition May 15 th, 2018 Indexing local features and instance recognition May 15 th, 2018 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Recognizing Object Instances. Prof. Xin Yang HUST

Recognizing Object Instances. Prof. Xin Yang HUST Recognizing Object Instances Prof. Xin Yang HUST Applications Image Search 5 Years Old Techniques Applications For Toys Applications Traffic Sign Recognition Today: instance recognition Visual words quantization,

More information

arxiv: v1 [cs.cv] 15 Mar 2014

arxiv: v1 [cs.cv] 15 Mar 2014 Geometric VLAD for Large Scale Image Search Zixuan Wang, Wei Di, Anurag Bhardwaj, Vignesh Jagadeesh, Robinson Piramuthu Dept.of Electrical Engineering, Stanford University, CA 94305 ebay Research Labs,

More information

Query-adaptive asymmetrical dissimilarities for visual object retrieval

Query-adaptive asymmetrical dissimilarities for visual object retrieval 2013 IEEE International Conference on Computer Vision Query-adaptive asymmetrical dissimilarities for visual object retrieval Cai-Zhi Zhu NII, Tokyo cai-zhizhu@nii.ac.jp Hervé Jégou INRIA, Rennes herve.jegou@inria.fr

More information

With the rapid improvement

With the rapid improvement Web-Scale Near-Duplicate Search With the rapid improvement of Internet and multimedia technology, users regularly generate partial-duplicate images for picture sharing, information delivery, and so forth.

More information

Towards Visual Words to Words

Towards Visual Words to Words Towards Visual Words to Words Text Detection with a General Bag of Words Representation Rakesh Mehta Dept. of Signal Processing, Tampere Univ. of Technology in Tampere Ondřej Chum, Jiří Matas Centre for

More information

Lecture 12 Recognition. Davide Scaramuzza

Lecture 12 Recognition. Davide Scaramuzza Lecture 12 Recognition Davide Scaramuzza Oral exam dates UZH January 19-20 ETH 30.01 to 9.02 2017 (schedule handled by ETH) Exam location Davide Scaramuzza s office: Andreasstrasse 15, 2.10, 8050 Zurich

More information

Effective Real-Scenario Video Copy Detection

Effective Real-Scenario Video Copy Detection 2016 23rd International Conference on Pattern Recognition (ICPR) Cancún Center, Cancún, México, December 4-8, 2016 Effective Real-Scenario Video Copy Detection Yue Zhang Data Science Paytronix Systems,

More information

Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search

Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search Yan Zhang 1,2, Yao Zhao 1,2, Shikui Wei 3( ), and Zhenfeng Zhu 1,2 1 Institute of Information Science, Beijing Jiaotong

More information

Descriptor Learning for Efficient Retrieval

Descriptor Learning for Efficient Retrieval Descriptor Learning for Efficient Retrieval James Philbin 1, Michael Isard 3, Josef Sivic 2, Andrew Zisserman 1 1 Visual Geometry Group, Department of Engineering Science, University of Oxford 2 INRIA,

More information

DeepIndex for Accurate and Efficient Image Retrieval

DeepIndex for Accurate and Efficient Image Retrieval DeepIndex for Accurate and Efficient Image Retrieval Yu Liu, Yanming Guo, Song Wu, Michael S. Lew Media Lab, Leiden Institute of Advance Computer Science Outline Motivation Proposed Approach Results Conclusions

More information

Query Adaptive Similarity for Large Scale Object Retrieval

Query Adaptive Similarity for Large Scale Object Retrieval Query Adaptive Similarity for Large Scale Object Retrieval Danfeng Qin Christian Wengert Luc van Gool ETH Zürich, Switzerland {qind,wengert,vangool}@vision.ee.ethz.ch Abstract Many recent object retrieval

More information

Modern-era mobile phones and tablets

Modern-era mobile phones and tablets Anthony Vetro Mitsubishi Electric Research Labs Mobile Visual Search: Architectures, Technologies, and the Emerging MPEG Standard Bernd Girod and Vijay Chandrasekhar Stanford University Radek Grzeszczuk

More information

Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases

Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases James Philbin 1, Ondřej Chum 2, Michael Isard 3, Josef Sivic 4, Andrew Zisserman 1 1 Visual Geometry Group, Department

More information

Mixtures of Gaussians and Advanced Feature Encoding

Mixtures of Gaussians and Advanced Feature Encoding Mixtures of Gaussians and Advanced Feature Encoding Computer Vision Ali Borji UWM Many slides from James Hayes, Derek Hoiem, Florent Perronnin, and Hervé Why do good recognition systems go bad? E.g. Why

More information

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Classification 3: Bag of Words Aaron Bobick School of Interactive Computing Administrivia PS 6 is out. Due Tues Nov 25th, 11:55pm. One more assignment after that Mea culpa This

More information

Visual Word based Location Recognition in 3D models using Distance Augmented Weighting

Visual Word based Location Recognition in 3D models using Distance Augmented Weighting Visual Word based Location Recognition in 3D models using Distance Augmented Weighting Friedrich Fraundorfer 1, Changchang Wu 2, 1 Department of Computer Science ETH Zürich, Switzerland {fraundorfer, marc.pollefeys}@inf.ethz.ch

More information

Video Google: A Text Retrieval Approach to Object Matching in Videos

Video Google: A Text Retrieval Approach to Object Matching in Videos Video Google: A Text Retrieval Approach to Object Matching in Videos Josef Sivic, Frederik Schaffalitzky, Andrew Zisserman Visual Geometry Group University of Oxford The vision Enable video, e.g. a feature

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Object Recognition in Large Databases Some material for these slides comes from www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture18_index.pptx

More information

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds 9 1th International Conference on Document Analysis and Recognition Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds Weihan Sun, Koichi Kise Graduate School

More information

CLSH: Cluster-based Locality-Sensitive Hashing

CLSH: Cluster-based Locality-Sensitive Hashing CLSH: Cluster-based Locality-Sensitive Hashing Xiangyang Xu Tongwei Ren Gangshan Wu Multimedia Computing Group, State Key Laboratory for Novel Software Technology, Nanjing University xiangyang.xu@smail.nju.edu.cn

More information

Distributed Kd-Trees for Retrieval from Very Large Image Collections

Distributed Kd-Trees for Retrieval from Very Large Image Collections ALY et al.: DISTRIBUTED KD-TREES FOR RETRIEVAL FROM LARGE IMAGE COLLECTIONS1 Distributed Kd-Trees for Retrieval from Very Large Image Collections Mohamed Aly 1 malaa@vision.caltech.edu Mario Munich 2 mario@evolution.com

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Object Recognition and Augmented Reality

Object Recognition and Augmented Reality 11/02/17 Object Recognition and Augmented Reality Dali, Swans Reflecting Elephants Computational Photography Derek Hoiem, University of Illinois Last class: Image Stitching 1. Detect keypoints 2. Match

More information

Large Scale 3D Reconstruction by Structure from Motion

Large Scale 3D Reconstruction by Structure from Motion Large Scale 3D Reconstruction by Structure from Motion Devin Guillory Ziang Xie CS 331B 7 October 2013 Overview Rome wasn t built in a day Overview of SfM Building Rome in a Day Building Rome on a Cloudless

More information

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Fast Indexing and Search Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Motivation Object categorization? http://www.cs.utexas.edu/~grauman/slides/jain_et_al_cvpr2008.ppt Motivation

More information

Supplementary Material for Ensemble Diffusion for Retrieval

Supplementary Material for Ensemble Diffusion for Retrieval Supplementary Material for Ensemble Diffusion for Retrieval Song Bai 1, Zhichao Zhou 1, Jingdong Wang, Xiang Bai 1, Longin Jan Latecki 3, Qi Tian 4 1 Huazhong University of Science and Technology, Microsoft

More information

Sim-Min-Hash: An efficient matching technique for linking large image collections

Sim-Min-Hash: An efficient matching technique for linking large image collections Sim-Min-Hash: An efficient matching technique for linking large image collections Wan-Lei Zhao, Hervé Jégou, Guillaume Gravier To cite this version: Wan-Lei Zhao, Hervé Jégou, Guillaume Gravier. Sim-Min-Hash:

More information

Video Google faces. Josef Sivic, Mark Everingham, Andrew Zisserman. Visual Geometry Group University of Oxford

Video Google faces. Josef Sivic, Mark Everingham, Andrew Zisserman. Visual Geometry Group University of Oxford Video Google faces Josef Sivic, Mark Everingham, Andrew Zisserman Visual Geometry Group University of Oxford The objective Retrieve all shots in a video, e.g. a feature length film, containing a particular

More information

Vocabulary tree. Vocabulary tree supports very efficient retrieval. It only cares about the distance between a query feature and each node.

Vocabulary tree. Vocabulary tree supports very efficient retrieval. It only cares about the distance between a query feature and each node. Vocabulary tree Vocabulary tree Recogni1on can scale to very large databases using the Vocabulary Tree indexing approach [Nistér and Stewénius, CVPR 2006]. Vocabulary Tree performs instance object recogni1on.

More information

Adaptive Binary Quantization for Fast Nearest Neighbor Search

Adaptive Binary Quantization for Fast Nearest Neighbor Search IBM Research Adaptive Binary Quantization for Fast Nearest Neighbor Search Zhujin Li 1, Xianglong Liu 1*, Junjie Wu 1, and Hao Su 2 1 Beihang University, Beijing, China 2 Stanford University, Stanford,

More information

RANSAC: RANdom Sampling And Consensus

RANSAC: RANdom Sampling And Consensus CS231-M RANSAC: RANdom Sampling And Consensus Roland Angst rangst@stanford.edu www.stanford.edu/~rangst CS231-M 2014-04-30 1 The Need for RANSAC Why do I need RANSAC? I know robust statistics! Robust Statistics

More information

Evaluation of GIST descriptors for web-scale image search

Evaluation of GIST descriptors for web-scale image search Evaluation of GIST descriptors for web-scale image search Matthijs Douze, Hervé Jégou, Sandhawalia Harsimrat, Laurent Amsaleg, Cordelia Schmid To cite this version: Matthijs Douze, Hervé Jégou, Sandhawalia

More information

An Evaluation of Two Automatic Landmark Building Discovery Algorithms for City Reconstruction

An Evaluation of Two Automatic Landmark Building Discovery Algorithms for City Reconstruction An Evaluation of Two Automatic Landmark Building Discovery Algorithms for City Reconstruction Tobias Weyand, Jan Hosang, and Bastian Leibe UMIC Research Centre, RWTH Aachen University {weyand,hosang,leibe}@umic.rwth-aachen.de

More information

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 : Presentation structure : 1. Brief overview of talk 2. What does Object Recognition involve? 3. The Recognition Problem 4. Mathematical background:

More information

Partial-Duplicate Image Retrieval via Saliency-guided Visually Matching

Partial-Duplicate Image Retrieval via Saliency-guided Visually Matching Partial-Duplicate Image Retrieval via Saliency-guided Visually Matching Liang Li, Shuqiang Jiang, Zheng-Jun Zha, Zhipeng Wu, Qingming Huang Key Lab of Intell. Info. Process., Institute of Computing Technology,

More information

Visual query expansion with or without geometry: refining local descriptors by feature aggregation

Visual query expansion with or without geometry: refining local descriptors by feature aggregation Visual query expansion with or without geometry: refining local descriptors by feature aggregation Giorgos Tolias, Hervé Jégou To cite this version: Giorgos Tolias, Hervé Jégou. Visual query expansion

More information

Automatic Ranking of Images on the Web

Automatic Ranking of Images on the Web Automatic Ranking of Images on the Web HangHang Zhang Electrical Engineering Department Stanford University hhzhang@stanford.edu Zixuan Wang Electrical Engineering Department Stanford University zxwang@stanford.edu

More information

Volume 2, Issue 6, June 2014 International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 6, June 2014 International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 6, June 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com Internet

More information

Size Matters: Exhaustive Geometric Verification for Image Retrieval Accepted for ECCV 2012

Size Matters: Exhaustive Geometric Verification for Image Retrieval Accepted for ECCV 2012 Size Matters: Exhaustive Geometric Verification for Image Retrieval ccepted for ECCV 2012 Henrik Stewénius, Steinar H. Gunderson, and Julien Pilet Google Switzerland bstract. The overreaching goals in

More information

Partial Copy Detection for Line Drawings by Local Feature Matching

Partial Copy Detection for Line Drawings by Local Feature Matching THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: 599-31 1-1 sunweihan@m.cs.osakafu-u.ac.jp, kise@cs.osakafu-u.ac.jp MSER HOG HOG MSER SIFT Partial

More information

Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences

Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences Michal Perďoch Supervisor: Jiří Matas Center for Machine Perception, Department of Cb Cybernetics Faculty of Electrical Engineering

More information

Sim-Min-Hash: An efficient matching technique for linking large image collections

Sim-Min-Hash: An efficient matching technique for linking large image collections Sim-Min-Hash: An efficient matching technique for linking large image collections Wan-Lei Zhao, Hervé Jégou, Guillaume Gravier To cite this version: Wan-Lei Zhao, Hervé Jégou, Guillaume Gravier. Sim-Min-Hash:

More information

Handling Urban Location Recognition as a 2D Homothetic Problem

Handling Urban Location Recognition as a 2D Homothetic Problem Handling Urban Location Recognition as a 2D Homothetic Problem Georges Baatz 1, Kevin Köser 1, David Chen 2, Radek Grzeszczuk 3, and Marc Pollefeys 1 1 Department of Computer Science, ETH Zurich, Switzerland

More information

Semantic-aware Co-indexing for Image Retrieval

Semantic-aware Co-indexing for Image Retrieval 2013 IEEE International Conference on Computer Vision Semantic-aware Co-indexing for Image Retrieval Shiliang Zhang 2,MingYang 1,XiaoyuWang 1, Yuanqing Lin 1,QiTian 2 1 NEC Laboratories America, Inc. 2

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

Speeding up the Detection of Line Drawings Using a Hash Table

Speeding up the Detection of Line Drawings Using a Hash Table Speeding up the Detection of Line Drawings Using a Hash Table Weihan Sun, Koichi Kise 2 Graduate School of Engineering, Osaka Prefecture University, Japan sunweihan@m.cs.osakafu-u.ac.jp, 2 kise@cs.osakafu-u.ac.jp

More information

Scalable Recognition with a Vocabulary Tree

Scalable Recognition with a Vocabulary Tree Scalable Recognition with a Vocabulary Tree David Nistér and Henrik Stewénius Center for Visualization and Virtual Environments Department of Computer Science, University of Kentucky http://www.vis.uky.edu/

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

Descriptor Learning for Efficient Retrieval

Descriptor Learning for Efficient Retrieval Descriptor Learning for Efficient Retrieval James Philbin 1,MichaelIsard 3,JosefSivic 2, and Andrew Zisserman 1 1 Visual Geometry Group, Department of Engineering Science, University of Oxford 2 INRIA,

More information

Metric Learning for Large Scale Image Classification:

Metric Learning for Large Scale Image Classification: Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Thomas Mensink 1,2 Jakob Verbeek 2 Florent Perronnin 1 Gabriela Csurka 1 1 TVPA - Xerox Research Centre

More information

Robust Building Identification for Mobile Augmented Reality

Robust Building Identification for Mobile Augmented Reality Robust Building Identification for Mobile Augmented Reality Vijay Chandrasekhar, Chih-Wei Chen, Gabriel Takacs Abstract Mobile augmented reality applications have received considerable interest in recent

More information

UNSUPERVISED OBJECT MATCHING AND CATEGORIZATION VIA AGGLOMERATIVE CORRESPONDENCE CLUSTERING

UNSUPERVISED OBJECT MATCHING AND CATEGORIZATION VIA AGGLOMERATIVE CORRESPONDENCE CLUSTERING UNSUPERVISED OBJECT MATCHING AND CATEGORIZATION VIA AGGLOMERATIVE CORRESPONDENCE CLUSTERING Md. Shafayat Hossain, Ahmedullah Aziz and Mohammad Wahidur Rahman Department of Electrical and Electronic Engineering,

More information

Scalable Recognition with a Vocabulary Tree

Scalable Recognition with a Vocabulary Tree Scalable Recognition with a Vocabulary Tree David Nistér and Henrik Stewénius Center for Visualization and Virtual Environments Department of Computer Science, University of Kentucky http://www.vis.uky.edu/

More information